

15(10): 212-216(2023)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

A Study on Fish Diversity of Meghalaya

Bashemphang Snaitang¹, Shiparna Saxena¹, Hameka Papang² and M.K. Yadav^{1*}

¹Department of Aquaculture, School of Agriculture,
Sanjeev Agrawal Global Educational (SAGE) University Bhopal (Madhya Pradesh), India.

²Professor, Superintendent of Fisheries, Mawkyrwat District, Shillong (Meghalaya), India.

(Corresponding author: M.K. Yadav*)
(Received: 21 July 2023; Revised: 21 August 2023; Accepted: 18 September 2023; Published: 15 October 2023)
(Published by Research Trend)

ABSTRACT: An attempted has been made to know fish biodiversity of Meghalaya. In the current study it was concluded that that the total of one hundred two (102) species were found in Meghalaya and many fish species were belong to family Cyprinidae. The data collection was done by using different types of nets (cast nets, gill nets, drag nets and triangular scoop nets) and help of local fish farmers of Meghalaya. It is concluded that the Order Cypriniformes has the maximum number of species in the Meghalaya River that entails of 53 species followed by Siluriformes that entail of 34 species. Perciformes has the lowest number of species that it consists of only one species. The research deals with biodiversity of fish fauna from different rivers of Meghalaya. In the future, this study will be of great assistance in developing a strategy for the conservation of Meghalaya's fish biodiversity.

Keywords: Diversity, Abundance, Vulnerable, Endangered, Least Concern.

INTRODUCTION

Fish are the most visible and well-known aquatic animals that lives in water, including both fresh water and marine ecosystems. They are an important source of food for humans as well as many other organisms (Arunkumar, 2018). Fish Diversity means or refers to the variety of fish species that are present in the particular Habitat or ecosystem. They are essential by providing important ecological, economic and cultural services. The fish diversity is form by various factors including habitat, water quality, Climate, ecological niche, etc. Despite the importance of the diversity of fish, they are threatened by various harmful factors, including overfishing population, deforestation, waste generation, energy consumption, habitat destruction and the Change of the Climate (Kar et al., 2006). Therefore program and conservation process are responsible to protect and sustain fish Diversity, to ensure the growth, reproduction, and survival which is the essential of the overall health and Functioning of aquatic ecosystem and Human well being Aquatic major components of fish are water, sunlight, nutrient cycling, aquatic plant, planktons, bacteria and other organisms. They are essential for the growth, survival and reproduction of fish according to Borahand Des (2020); Britz et al. (2018); Dey et al. (2015). The southern rivers shaped deep gorges laterally the southern edge of the plateau as a consequence of vast destruction by these rivers, which is recognized to the up liftmen of the plateau (Romero and Green 2005; Sen, 2003; Imsong et al., 2016). The rich fish diversity in Meghalaya is demonstrated by the miscellaneous climatic zones, from subtropical to sub alpines, and the Meghalaya comprises both Himalayan

and Indo-Burma hot spot zones according to Vaiphei and Gupta (2013).

MATERIAL AND METHOD

Study area: The study was done during 9th July, 2022 to 14th January, 2023. The survey was conducted for one year to enlist the diversity of fish species. The study area (Ranikor river) lies between latitude 25.23553"north and longitude 91.22234" East, (Umpung river) lies between latitude -25.22384" north and longitude -91.35534 east (Dawki river) lies between latitude -25.23758" north and longitude -91.99082" east.

Fig. 1. Ranikor river.

Fig. 2. Umpung river.

Fig. 3. Dawki river.

Sampling and Data Collection: A range of methods, such as gill nets, cast nets, scoop nets, hook & lines, seining, traps, are used to sample fish at each site. These methods vary in terms of the size of fish they capture and the type of habitat they are best suited to.

RESULT AND DISCUSSION

The fish fauna is an important aspect of fishery potential of a water body. In the present study the Order "Cypriniformes" was dominant with 53 Species and the Family "Cyprinidae" was found abundance with 38 Species.

Table 1: Calculating the order of Species during the research period.

Order	Collected	Total
Cypriniformes	53	53
Siluriformes	24	24
Perciformes	11	11
Synbranchiformes	6	6
Cyprinodontiformes	2	2
Osteoglossiformes	2	2
Angulliformes	1	1
Beloniformes	1	1
Tetradontiformes	1	1
Clupleiformes	1	1
Total	102	102

In the present study the fish diversity of Meghalaya, there I was found 10 order fishes and the most abundance order was found there "Cypriniformes" with 53 fish species.

Table 2: calculating the Family of Species during the research period.

Family	Collected	Total
Cyprinidae	38	38
Bagridae	8	8
Cobitidae	7	7
Balitoridae	6	6
Sisoridae	5	5
Channidae	5	5
Siluridae	4	4
Psilorhynchidae	3	3
Synbranchidae	3	3
Mastacembelidae	2	2
Erethistidae	2	2
Notopteridae	2	2
Claridae	2	2
Belontidae	2	2
Aplocheillidae	1	1
Poecilidae	1	1
Chandidae	1	1
Anabantidae	1	1
Tetradontidae	1	1
Chacidae	1	1
Nandidae	1	1
Anguilidae	1	1
Beloridae	1	1
Gobidae	1	1
Clupleidae	1	1
Heteropneustidae	1	1
Olyridae	1	1
Family-27	Total no. 102	102

In this trail I was found that there were 27 fish family and the most abundance fish family was found "Cyprinidae" with 38 fish species.

The present study suggests that Meghalaya and its river have a rich in fish diversity. The availability of a good numbers related to their suitable ecology of the water body which provides breeding ground for fish.

List of Fish Species in Meghalaya with their Economic Importance and IUCN Status during 2022-2023.

Order	Family	Species	Economic Importance	IUCN statu
Cypriniformes	Cyprinidae	Salmophasia bacaila	Food	LC
		Tor mosal	Food	EN
		Labeo rohita	Food	NT
		Cirrhinus reba	Food	VU
		Poropontius clavatus	Food	EN
		Barilius vagra	Food	VU
		Garra nasuta	Food	LC
		Crossochilus latius	Food	LC
		Barius shacra	Food	NT
		Labeo catla	Food	VU
		Tor tor	Food	EN
		Tor putitora	Food	EN
		Bangana elangana	Food	LC
		Chagunius chagunio	Food	LC
		Cirrhinus mrigala	Food	VU
		Chela cachius	Food	LC
		Cyprinus carpio	Food	VU
		Danio dangila	Food	LC
		Labeo bata	Food	LC
		Barilius bendelisis	Food	NT
		Garra gotyla	Food	VU
		Garra kempi	Food	VU
		Puntius sarana	Food	VU
		Puntius terio	Food	VU
		Puntius shalynius	Food	VU
		Puntius sophore	Food	NT
		Puntius chola	Food	VU
		Puntius conchonius	Food	VU
		Garra lamta	Food	VU
		Raiamas bola	Food	VU
		Raiamas guttaus	Food	EN
		Salmostoma phulo	Food	NE NE
		Devario aequipinnatus	Food	LC
	Balitoridae	Lepidocephalicthys guntea	Food	LC
		Lepidocephalicthys annandalei	Food	LC
		Ctenopharyngodon Idella	Food	NE
		Hypophthalmicthys molitrix	Food	NE
		Poropontius clavatus	Food	EN
		Schistura beavani	Food	LC
	Schistura prasbadi	Food	EN	
	Schistura multifasciatus	Food	VU	
	Schistura denisoni	Food	LC	
		Aborichthys garoensis	Food	EN
	Cobitidae	Lepidocephalicthy scaudofuractus	Food	NE
		Lepidocephalicthys guntea	Food	LC
		Lepidocephalicthy sannadalei	Food	LC
		Botia rostrata	Food	VU
		Botia lohachata	Food	NE
		Canthophrys gongata	Food	NT
		Neoeucirrhichthys maydelli	Food	LC
Psilorhynchidae	Psilorrhynchus balitora	Food	NE	
	1 5115111y Hellidae	Psilorrhynchus patilora Psilorrhynchus gracilis	Food	EN
		Psilorrhynchu ssucatio	Food	EN
Siluriformes	Bagridae	Aorichthys seenghala	Food	NE
Sharmormes	Dagiluae	Baasio batasio	Food	NE NE
	+	Mystus bleekeri	Food	VU
		mysius bieekeri	F000	NT

	1	1	1	
		Mystus montanus	Food	VU
		Mystus cavasius	Food	NT
		Mystus tengara	Food	NE
		Mystus vittatus	Food	VU
		Neotropius atherinoides	Food	NE
		Spereta aor	Food	LC
	Sisoridae	Gagata cenia	Food	LC
		Glyptothorax striatus	Food	NT
		Glyptothorax telchitta	Food	NT
		Glyptothorax ventrolineatus	Food	NE
		Bagarius yarelli	Food	NT
	Siluridae	Ompok bimaculatus	Food	EN
		Ompok pabo	Food	NT
		Wallago attu	Food	NT
	Clarridae	Clarias magur	Food	LC
		Clarias gariepinus	Food	LC
	Chacidae	Chaca chaca	Food	EN
	Olyridae	Olyra longicaudata	Food	LC
	Heteropneustidae	Heteropneutes fosssilis	Food	VU
	Erethistidae	Conta conta	Food	NE
		Erethister shara	Food	NE
Perciformes	Channidae	Channa gachua	Food	LC
		Channa marulius	Food	NE
		Channa punctatus	Food	NT
		Channa orientalis	Food	NE
		Channa stewartia	Food	LC
	Belontidae	Pollyacanthus fasciatus	Food	NT
		Pollyaconthus lalius	Food	LC
	Gobidae	Glossobius giuris	Food	NT
	Anabantidae	Anabastes tudineus	Food	VU
	Masacembelidae	Macrognathus aral	Food	NT
	Chandidae	Parambassis baculis	Food	LC
Synbranchiformes	Mastacembelidae	Macrognathus cuchia	Food	NT
		Macrognathus pancalus	Food	LC
		Mastacembelu sarmatus	Food	LC
	Synbranchidae	Momopterus cuchia	Food	NT
		Monopteros albus	Food	LC
cyprindontiformes	Aplocheilidae	Aplocheilus panchax	Food	VU
	Poecilidae	Poecilia reticulata	Food	NE
Osteoglossiformes	Notopteridae	Chitala chitala	Food	EN
	1	Notopterus notopterus	Food	NT
Anguilliformes	Angullidae	Anguilla bangalensis	Food	EN
Beloniformes	Belonidae	Xenentodon cancila	Food	NT
Tetradontiformes	Tetradontidae	Tetratodon cutcutia	Food	NT
Clupeiformes	Clupeidae	Hilsa hilsa	Food	VU
		•		

LC-Least Concern; NT-Near Threatened; VU-Vulnerable; NE-Not Evaluated; EN Endangered.

In the present study we found that there were so many fish species found in concern of their availability like LC-Least Concern, NT-Near Threatened, VU-Vulnerable, NE-Not Evaluated, and EN Endangered. In this study we found that least concern (LC) fish's family was found 27, Near Threatened (NT) 15, Vulnerable (VU) 20, Not Evaluated (NE) 14 and Endangered21 fish's families found in Meghalaya.

DISCUSSION

If we discussed about water quality parameters of present study, there was found all water quality parameters in suitable range. The physicochemical and geological conditions happening in the Mountain Rivers impact the physiology and biology of the fish fauna (Khanna and Singh 2003). The present study showed that the maximum fish diversity is present in Meghalaya, the present study was strongly supported by

Ramanujam *et al.* (2010); Rapsang and Joshi (2012). Most obvious reasons of biodiversity loss have been habitat loss, over-exploitation, and introduction of invasive species. Despite the discovery of several new species to date, the rate of increase of pressure on this fauna is high that extinction may be expected even before discovery. The main riverine system of the eastern and central part of Meghalaya plateau that movement near the north Umiam, Umkhri and Digaru (Mahapatra *et al.*, 2003); Nath *et al.* (2016). These results will sustenance to take up more studies on diversity of fish fauna in Meghalaya.

CONCLUSIONS

Fish diversity plays a crucial role in nutrient cycling food chain and food web, or stable the ecosystem, Fish species provide benefits in the economy, supporting various trade such as aquariums, and are significant for cultural and spiritual in many communities Aquatic life is also impacted by various activities including Human activities, urbanisation, Industrialisation, waste water discharge pollution, overfishing, climate change, habitat destruction To prevent and conserve the aquatic life in the ecosystem, agent and research should and must conduct a situation analysis and problem identification process by sharing knowledge to fish farmers stakeholders and local communities so that they can improve to increase productivity, sustainability, valuing their traditional knowledge in the aquaculture sectors.

Acknowledgement. I acknowledge the SAGE University Bhopal and Department of Aquaculture, School of Agriculture for providing me all necessary facilities for this study.

Conflict of Interest. None.

REFERENCES

- Arunkumar, W. A. M. L. (2018). Garramayokhylleni a new labeonin species (Cyprinidae: Labeonide) from Manipur, Northeastern India, 234-349.
- Borah, D. K. and Des, J. (2020). Ichtyho faunal Diversity of Jinan river in Goalpara Assam, India. *CIB Tech Journal of Zoology*, 9, 30-35
- Britz, R., Sykes, D., Gower, D. J. and Kamel, R. G. (2018). *Monopterus rongsaw*, a new species of hypogean swamp eel from the khasi hills in Northeast India. (Teleoster Synbranchiformes: Synbranchidae), *Friedrich Pfeil*, 23(45), 76-564.
- Dey, S. Manorama, M. and Ramanujam, S. N. (2015). New records of three species of fish in the upper reaches of the Brahmaputra and surma-meghna river basins, Meghalaya, India. *Journal of Threatened Taxa*, 7(12), 7922-7926.

- Imsong, W., Choudhury, S. and Phukan, S. (2016).

 Ascertaining the neotectonic activities in the southern part of Shillong Plateau through geomorphic parameters and remote sensing data. *Current Science*, 91-98.
- Kar, D., Nagarathna, A. V., Ramachandra, T. V. and Dey, S. C. (2006). Fish diversity and conservation aspects in aquatic ecosystem in Northeastern India. *Zoos Print Journal*, 21(7), 2308-2315.
- Khanna, S. S. and Singh, H. R. (2003). Fish Biology and Fisheries. Narendra Publishing House, Delhi, India. 507pp.
- Mahapatra, B. K., Vinod, K. and Mandal, B. K. (2003). Studies on native ornamental fish of Meghalaya with a note on their cultural prospects *Aquaculture*, 4(2), 171-180
- Nath, R. Baruah, D., Das. P, and Sarma, D. (2016). Present status, threats and conservation measures of mahseer resource in the central rivers of Meghalaya SKUAST *Journal of Research*, 18(1), 32-40.
- Ramanujam, S. N., Manorama, M. and Dey, S. (2010). Ichthyo diversity of Meghalaya: India. *Electronic Journal of Ichthyology*, 6(2), 15-26.
- Rapsang, G. F. and Joshi, S. R. (2012). Bacterial diversity associated with tungtap, an ethnic traditionally fermented fish product of Meghalaya.
- Romero, A. and Green, S. M. (2005). The end of regressive evolution: Examining and interpreting the evidence from cave fishes. *J Fish Biol.*, *67*, 3-32.
- Sarma, D., Singh, A. K. and Baruah, D. (2018). Check list of endemic ichthyofauna of North-east India. *Indian Journal of Fisheries*, 65, 1-15.
- Sen N. (2003) Fish fauna of north east India with special reference to endemic and threatened species. *Rec. Zool. Surv. India*, 101(3-4), 81-99.
- Vaiphei, K. T. and Gupta, B. B. P. (2013). Fish Diversity in Meghalaya. *Indian Journal of Traditional Knowledge*,

How to cite this article: Bashemphang Snaitang, Shriprna Saxena, Hameka Papang and M.K. Yadav (2023). A Study on Fish Diversity of Meghalaya. *Biological Forum – An International Journal*, *15*(10): 212-216.