

Biological Forum – An International Journal

15(11): 21-23(2023)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

Average Performance of Genotypes for Growth, Yield, and Quality Traits in Tomato (Solanum lycopersicum L.)

 Durga Hemanth Kumar Ch^{1*}, Narm Naidu L.², Ravindra Babu M.³, Rajani A.⁴, Gopal K.⁵ and Paratpara Rao M.⁶
¹Ph.D. Scholar, Department of Vegetable Science, Dr. Y.S.R Horticultural University (Andhra Pradesh), India.
²Director of Research, Dr. Y.S.R Horticultural University (Andhra Pradesh), India.
³Senior Scientist, HRS, Department of Vegetables, Venkataramannagudem, Dr. Y.S.R Horticultural University (Andhra Pradesh), India.
⁴Senior Scientist HRS, LAMFARM, Department of Vegetable Science, Dr. Y.S.R Horticultural University (Andhra Pradesh), India.
⁴Senior Scientist HRS, LAMFARM, Department of Vegetable Science, Dr. Y.S.R Horticultural University (Andhra Pradesh), India.
⁵Associate Dean, COH, Arpet, Department of Plant Pathology, Dr. Y.S.R Horticultural University (Andhra Pradesh), India.
⁶Associate Professor, Department of Genetics and Plant Breeding, Dr. Y.S.R Horticultural University (Andhra Pradesh), India.

(Corresponding author: Durga Hemanth Kumar Ch*) (Received: 26 August 2023; Revised: 16 September 2023; Accepted: 11 October 2023; Published: 15 November 2023) (Published by Research Trend)

ABSTRACT: During Kharif 2021, An experiment was conducted at P.G Research Farm, College of Horticulture, Venkataramannagudem, to examine the individual performance of 60 genotypes for yield characteristics. When it came to yield and yield-contributing traits, such as fruit yield per plant (5.17 kg) and number of fruits per plant (57.66), VRSL 87 was the best genotype. Plant height (137.80) and the number of primary branches per plant (11.88) were found to be significantly higher in the genotype VRSL 223 than in VRSL 66. On the other hand, VRSL 26 had a higher average fruit weight (118.01). Fruit diameter and length (8.50 and 8.40) were found to be superior to those of the genotype VRSL 107. When necessary multilocation trials are completed, the high yielding genotypes will be used as commercial varieties.

Keywords: Tomato, mean, per se performance.

INTRODUCTION

The tomato, or Lycopersicon esculentum Mill., is a widely grown vegetable that is considered important worldwide. The wild tomato first appeared in the Peru-Ecuador-Bolvia region of the Andes (South America) (Vavilov, 1951), and it has since spread throughout the world as one of the most popular vegetables due to its adaptability to a variety of growing environments. The tomato crop is highly versatile, can yield large amounts of food, and is used in both the fresh and processed food industries. It is one of the most nutritious vegetables, high in protein, fat, carbs, vitamin A, and vitamin C, among other vital minerals and food components. It finds application in both the fresh and processed food industries. It is scientifically legitimate to evaluate performance as a whole before releasing new varieties (Pidigam et al., 2019; Saidaiah et al., 2021; Rajashekar Reddy et al., 2017). In light of the aforementioned, the current study was conducted to evaluate the tomato accessions' overall performance.

MATERIALS AND METHODS

The current investigation is made up of three experiments. All experimental materials were evaluated

at the College of Horticulture in Venkataramannagudem, West Godavari District, Andhra Pradesh, from August 2021 to January 2023. The location is in Agro-climatic Zone-10, humid, East Coast Plain and Hills (Krishna-Godavari zone) with an average rainfall of 900 mm and is geographically located at 16° 63' 120" N latitude and 81° 27' 568" E longitude at 34 m (112 feet) above mean sea level. Summers are short and humid, and winters are mild. The experimental site's soil is a red sandy loam with good drainage and a moderate water holding capacity. The weather was favourable for crop growth and development at all stages of crop development of tomato. Sixty different tomato genotypes were evaluated for yield and yield attributing traits. The experiment was conducted from July 2021 to February 2021 in RBD and replicated FOR 3 times, with a total of 60 genotypes and a spacing of 60 cm 60 cm.

RESULTS AND DISCUSSION

The fruit length was recorded in VRSL 107 (7.46 cm), lower fruit length was observed in VRSL 114 (2.92 cm). Plant height varied from 141.28 to 76.30 cm general mean of 97.06cm. Higher plant height of 141.28 cm was recorded in VRSL 134, which was VRSL 223 (137. 80 cm), while the lower fruit length was observed in VRSL 107 (76.30 cm) while the number of primary branches varied from 2.50 to 12.85 with general mean of 7.46. Among the genotypes, higher no of primary branches of 12.85 was recorded in VRSL 24, lower number of primary branches was observed in VRSL 177 (2.50). Among, higher average fruit weight of 57.66g was recorded in VRSL 87, which was followed by VRSL 44 (51.88g), the lower fruit

weight was observed in VRSL 82 (13.66g). Among the genotypes, higher average fruit yield of 5.17 was recorded in VRSL 87, which was followed by VRSL 8 (4.88), while the lower fruit weight was observed in VRSL 177 (0.64). Similar results were earlier reported by Singh *et al.* (2015); Kumar and Gowda (2016); Maurya *et al.* (2020); Anuradha *et al.* (2020) for this trait in tomato.

Table 1	1:	Mean	values	of	tomato	genotypes.
---------	----	------	--------	----	--------	------------

C		Dland haisht	No. of primary	Fruit	Fruit	Average	Name have af	Fruit
Sr. No.	Treatment	Plant height	branchesper	length	diameter	fruit weight	Number of fruits/ plant	yield/plant
INO.		(cm)	plant	(cm)	(cm)	(g)	iruits/ piant	(kg)
T1	VRSL 8	92.78	11.82	5.23	5.20	96.66	50.50	4.88
T2	VRSL 18	99.16	9.32	5.80	5.70	81.33	51.66	4.20
T3	VRGL 22	92.00	8.75	4.12	3.35	53.92	32.75	1.76
T4	VRSL 24	94.42	12.85	5.60	5.60	84.33	53.33	4.49
T5	VRGL 26	115.30	7.10	4.58	7.46	118.01	31.10	3.67
T6	VRSL 28	114.51	11.30	5.36	5.10	64.00	38.66	2.47
T7	VRSL 30	87.10	5.75	3.35	4.14	38.31	44.93	1.72
T8	VRSL 38	92.26	9.70	5.46	5.43	63.33	44.33	2.80
T9	VRSL 39	95.70	5.50	5.56	5.60	67.66	43.00	2.90
T10	VRSL 40	107.82	11.11	4.70	4.56	59.00	36.66	2.16
T11	VRSL 41	87.80	3.50	5.46	5.50	66.00	25.00	1.65
T12	VRSL 42	107.82	12.15	4.46	4.46	58.00	33.00	1.91
T13	VRSL 43	90.50	2.83	6.36	6.26	72.66	42.33	3.07
T14	VRSL 44	96.50	10.50	4.73	4.80	87.66	51.88	4.54
T15	VRSL 45	113.10	6.50	5.30	5.43	64.00	51.66	3.30
T16	VRSL 46	93.40	6.60	4.27	4.63	33.95	38.31	1.30
T17	VRSL 52	100.60	7.65	3.58	4.00	43.20	44.56	1.92
T18	VRSL 56	99.50	9.95	4.15	4.64	98.28	39.69	3.90
T19	VRSL 63	89.50	6.83	3.93	4.55	73.43	42.33	3.10
T20	VRSL 66	114.20	11.88	3.50	4.56	86.73	47.92	4.15
T21	VRSL 72	98.40	10.43	6.14	5.00	75.57	49.66	3.75
T22	VRSL78	89.30	2.50	4.73	4.65	96.69	15.00	1.45
T23	VRSL 81	102.60	4.50	6.30	6.40	72.00	15.00	1.08
T24	VRSL 82	105.70	6.50	6.20	6.23	69.00	13.66	0.94
T25	VRSL 86	85.30	5.50	5.63	5.66	69.33	34.33	2.38
T26	VRSL 87	85.99	11.30	5.38	5.93	89.80	57.66	5.17
T27	VRSL 88	100.50	8.10	3.72	4.21	66.48	40.45	2.68
T28	VRSL 90	87.20	7.50	4.69	5.09	52.11	13.66	0.71
T29	VRSL 92	85.00	6.50	4.56	4.56	55.00	42.33	2.32
T30	VRSL 94	91.10	6.50	4.81	4.82	77.67	34.33	2.66
T31	VRSL 104	97.47	10.19	5.43	5.43	84.33	55.00	4.63
T32	VRSL 105	76.90	5.50	3.60	3.80	51.66	43.66	2.25
T33	VRSL 106	100.33	9.80	4.23	4.30	52.33	46.00	2.40
T34	VRSL 107	76.30	5.50	8.50	8.40	66.33	46.66	3.09
T35	VRSL 109	86.50	6.83	4.76	4.80	63.00	41.66	2.62
T36	VRSL 113	94.90	1.83	4.00	5.17	56.67	41.33	2.34
T37	VRSL 114	87.20	2.83	2.97	2.92	42.59	55.33	2.35
T38	VRSL118	89.90	8.45	3.92	4.58	57.26	43.66	2.49
T39	VRSL 122	89.40	8.45	3.66	3.81	64.09	39.56	2.53
T40	VRSL 128	95.60	7.05	4.90	3.40	36.55	45.98	1.68
T41	VRSL 133	87.70	8.90	4.48	4.55	44.46	36.90	1.64
T42	VRSL 134	141.28	8.30	4.43	4.43	54.33	36.90	1.64
T43	VRSL145	93.30	8.20	2.79	3.04	44.36	55.00	2.98
T ₄₄	VRSL154	94.00	9.50	3.46	4.72	64.21	46.66	2.06
T ₄₅	VRSL160	95.00	7.70	4.32	3.63	55.21	49.90	3.20
T ₄₅	VRSL174	88.60	8.60	5.04	4.57	44.93	39.67	2.19
T ₄₀	VRSL175	90.20	3.83	5.24	4.71	69.74	33.43	1.50
T ₄₈	VRSL176	88.30	3.83	6.27	6.21	114.36	40.33	2.81
T ₄₀	VRSL177	105.70	2.50	3.82	3.56	25.62	43.00	3.19
T ₅₀	VRSL178	89.70	3.50	5.30	4.57	37.45	25.00	0.64
T 50	VRSL180	122.30	8.60	3.70	3.53	54.00	42.33	1.58
T51 T52	VRSL180	105.70	4.83	3.53	3.59	73.54	57.66	3.11
			n International 1		5(11), 21	•	57.00	3.11 22

Biological Forum – An International Journal 15(11): 21-23(2023)

T53	VRSL185	86.10	4.50	4.33	4.36	58.00	18.00	1.32
T54	VRSL187	84.50	7.95	3.85	4.08	32.75	41.33	2.39
T55	VRSL192	89.20	6.50	4.66	4.70	47.66	47.26	1.54
T ₅₆	VRSL206	110.67	9.45	4.34	4.30	55.12	65.33	3.11
T57	VRSL209	87.10	6.40	3.68	4.25	38.10	41.45	2.28
T ₅₈	VRSL210	122.33	9.00	4.46	3.90	39.55	44.36	1.69
T59	VRSL223	137.80	6.95	5.65	4.73	64.20	42.56	1.68
T ₆₀	VRSL244	94.70	5.50	3.70	3.80	50.33	41.56	4.57
	Mean	97.06	7.36	4.670	4.75	62.29	40.54	2.70
	StdError	0.38	0.39	0.38	0.39	0.073	0.20	0.09
	CD@5%	1.08*	0.118**	1.08*	0.118**	0.204*	0.57*	0.27**

CONCLUSION AND FUTURE SCOPE

After multilocation, multisession studies, five superior genotypes for fruit yield, namely VRSL 87, VRSL 8, VRSL 24, VRSL 44, and VRSL 104, may be used as parents. As a result, the identified superior genotypes should be used in subsequent improvement studies using various breeding strategies.

Acknowledgement. Development of resistant hybrids against tomato leaf curl virus in tomato (*Solanum esculentum* L.) was carried out and financially supported by the college of Horticulture, Dr. Y.S.R. Horticultural University, Venkataramannagudem (A.P.). The author wishes to express his gratitude to Dr. L. Naram Naidu, Director of Research at Dr. YSRHU, for his assistance throughout the study. **Conflict of Interest.** None.

REFERENCES

- Anuradha, B., Saidaiah, P., Ravinder R. K., Harikishan Sudini and Geetha, A. (2020). Genetic divergence for yield and yield attributes in tomato (*Solanum lycopersicum* L.). *Green Farming*, 11(4&5), 293-298.
- Kumar, S. and Gowda, P. H. R. (2016). Estimation of heterosis and combining ability in tomato for fruit shelf life and yield related traits using the line× tester crossing method. *Mysore Journal of Agricultural Sciences*, 50(2), 400-404.

- Maurya, N., Kumari, M., Ram, C. N., Nath, S. and Kumar, S. (2020). Studies on genetic variability, heritability and genetic advance in cucumber (*Cucumis sativus*). Journal of pharmacognosy and phytochemistry, 9(5), 481-484.
- Pidigam, S., Suchandranath, M., Srinivas, N., Narshimulu, G., Srivani, S. and Adimulam (2019). Assessment of genetic diversity in yard long bean (*Vigna unguiculata* (L.). Walp subsp. sesquipedalis Verdc.) Germplasm from India using RAPD markers. *Genetic Resources* and Crop Evolution, 66, 1231-1242.
- Rajashekar Reddy, D., Saidaiah, P., Ravinder Reddy, K. and Pandravada, S. R. (2017). Mean performance of cluster bean genotypes for yield, yield parameters and quality traits. *Int. J Curr. Microbiol. App. Science*, 6(9), 3685-3693.
- Saidaiah, P., Ravinder Reddy, K., Harikishan Sudini, Geetha A. (2021). Mean performance of 40 genotypes in tomato (Solanum lycopersicum L.). International journal of chemical studies, 9(1), 279-283.
- Singh, N., Ram, C. N., Deo, C., Yadav, G. C. and Singh, D. P. (2015). Genetic variability, Heritability and Genetic advance in tomato (*Solanum lycopersicum L.*). *Plant Archives*, 15(2), 705-709.
- Vavilov, N. I. (1951). The origin, variation, immunity and breeding of cultivated plants. *Chronica Bot.*, 13, 1-366.

How to cite this article: Durga Hemanth Kumar Ch, Narm Naidu L., Ravindra Babu M., Rajani A., Gopal K. and Paratpara Rao M. (2023). Average Performance of Genotypes for Growth, Yield, and Quality Traits in Tomato (*Solanum lycopersicum* L.). *Biological Forum – An International Journal, 15*(11): 21-23.