
Raghuwanshi   et al.,               Biological Forum – An International Journal     15(9): 743-752(2023)                        743 

 
 

  
   ISSN No. (Print): 0975-1130 

ISSN No. (Online): 2249-3239 

Exploring Effective Weed Management through UAV Application 

Monika Raghuwanshi1*, Namrata Jain2,  K.K. Agrawal3 and Mrinali Gajbhiye1 

1Ph.D. Scholar, Department of Agronomy, JNKVV, Jabalpur (Madhya Pradesh), India. 
2Associate Professor, Department of Agronomy, JNKVV, Jabalpur (Madhya Pradesh), India. 

3Professor, Department of Agronomy, JNKVV, Jabalpur (Madhya Pradesh), India. 

 (Corresponding author: Monika Raghuwanshi*) 

(Received: 03 July 2023; Revised: 04 August 2023; Accepted: 29 August 2023; Published: 15 September 2023) 

(Published by Research Trend) 

ABSTRACT: Weeds, which are plants considered undesirable, can significantly reduce agricultural yields 

by competing for essential resources such as water, nutrients, light, space, and carbon dioxide. Effective 

weed management is essential to meet the increasing demands of food production. The integration of 

drones, artificial intelligence, and a variety of sensors, including hyperspectral, multi-spectral, and RGB 

(red-green-blue), holds the exciting potential to enhance weed management outcomes. The 

transformational impact of Unmanned Aerial Vehicles (UAVs) on agricultural weed management is 

undeniable. This comprehensive review delves into various aspects, encompassing types of UAVs, emerging 

trends, payload options, sensing technologies, weed distribution mapping, spectral analysis, and image 

processing. The utilization of UAVs offers a range of benefits, including heightened efficiency, cost-

effectiveness, and reduced environmental footprint. While challenges persist, real-world case studies 

underscore the successful integration of UAVs into weed management strategies. As a pivotal advancement 

in precision agriculture, UAVs have the capacity to revolutionize weed management, ushering in an era of 

sustainable and precisely targeted interventions. 
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INTRODUCTION 

Sustainable agricultural cultivation faces significant 

challenges today, given the scarcity of resources 

juxtaposed with escalating demands for food 

production. Both biotic and abiotic stresses contribute 

almost equally to the decline in agricultural yield. 

While factors like inadequate or excessive water 

availability, high temperatures, and irregular light 

exposure, as well as nutrient imbalances, contribute to 

abiotic stress, biotic stresses also play a pivotal role in 

yield reduction (Oerke et al., 2006). Among these, 

weeds emerge as the most detrimental biotic hindrance 

to agricultural output, simultaneously impacting agro-

biodiversity and natural water ecosystems (Chauhan et 

al., 2020). These pervasive agricultural pests possess 

the capacity to decimate crops if not effectively 

controlled. Beyond the direct repercussions on crop 

yield, weeds also engender a marked decline in input 

efficiency. Precious and costly resources such as 

fertilizers and irrigation water, intended to optimize 

potential yields, end up being consumed by these weeds 

(Rao et al., 2014; Bhan et al., 1999). Weeds present a 

multitude of issues, extending beyond hindrances to 

crop growth and even affecting the harvesting process. 

The use of herbicides is the dominant choice for weed 

control. In conventional agricultural practices, a 

widespread approach to weed control involves uniform 

herbicide spraying across entire fields, including areas 

already devoid of weeds. Nonetheless, excessive 

herbicide use can lead to the development of herbicide-

resistant weed strains, thereby impacting crop growth 

and yield (Barroso et al., 2004). Furthermore, this 

practice carries a substantial environmental pollution 

risk and escalates operational costs. To address these 

challenges, Precision Agriculture employs Site-Specific 

Weed Management (SSWM) as a solution (Esposito et 

al., 2021). 

Site-Specific Weed Management (SSWM) involves the 

targeted application of herbicides based on spatial 

variability, as opposed to uniform field-wide spraying. 

This approach entails partitioning the field into distinct 

management zones, each receiving tailored treatment, 

considering that weed proliferation is typically 

concentrated in specific areas of the field. 

Accomplishing this objective mandates the creation of a 

precise weed coverage map, which guides the accurate 

deployment of herbicide sprays (Lopez-Granados et al., 

2016). 

To attain this objective, the creation of a precise weed 

cover map is imperative to enable the accurate 

application of herbicide. Typically, remote sensing 

technology is employed to develop the weed cover 

map. By means of image processing, remote sensing 

imagery can be transformed into a usable weed cover 

map, facilitating precise spraying strategies (Lan et al., 

2010). Recent years have witnessed the utilization of 

piloted aircraft and satellite remote sensing for weed 

identification and mapping (Castro et al., 2012). 
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However, achieving satisfactory outcomes has proven 

challenging due to the limited spatial resolution of 

remote sensing imagery. Presently, the issue of spatial 

resolution inadequacy can be effectively addressed 

through the application of UAV-based remote sensing 

technology. Unmanned Aerial Vehicles (UAVs) can 

operate at lower altitudes, capturing comprehensive 

field imagery and data that are subsequently employed 

to generate an accurate weed cover map. This map 

delineates areas where chemical application is most, 

least, or not required at all (Perez-Ortiz et al., 2015; 

Ahirwar et al., 2019). 

From this standpoint, it's crucial to acknowledge the 

existing research endeavors focused on employing 

UAVs for weed detection, which contribute to the 

advancement of research domains. While the 

agricultural utility of UAVs is widely recognized, 

there's a notable scarcity of comprehensive review 

articles systematically compiling and synthesizing the 

most recent and forthcoming applications of this 

technology in various dimensions of weed detection. 

Thus, this systematic review aims to bridge this 

informational void. The objective of this review is to 

delineate both the present state and prospective 

trajectories of UAV-based applications in weed 

detection within agricultural fields. 

UAV TECHNOLOGY OVERVIEW 

Emerging trends in UAV technology for weed 

management: 

1. Advanced Sensing Technologies: UAVs are 

incorporating increasingly sophisticated sensing 

technologies, such as hyperspectral, multispectral, and 

thermal sensors. These sensors can detect subtle 

changes in plant health and identify specific weed 

species based on their spectral signatures. This enables 

more accurate and targeted weed identification, 

mapping, and management. 

2. Machine Learning and AI Integration: Machine 

learning and artificial intelligence (AI) algorithms are 

being integrated into UAV systems to enhance weed 

detection and decision-making. By analyzing large 

datasets of aerial imagery and sensor data, these 

algorithms can identify patterns, classify weed species, 

and provide actionable insights for more effective weed 

management strategies. 

3. Autonomous Navigation and Swarming: UAVs are 

becoming more autonomous and capable of working 

collaboratively in swarms. This enables efficient 

coverage of large areas and enhances the accuracy of 

weed mapping and treatment. Swarming technology 

also facilitates real-time data sharing among UAVs, 

allowing them to adapt to changing conditions on the 

fly. 

4. Robotics-Assisted Weed Removal: Some UAVs are 

being equipped with robotic arms or mechanical tools 

to physically remove weeds. These systems can 

autonomously identify and eliminate weeds without the 

need for chemical herbicides. They are particularly 

valuable in organic farming and environments where 

chemical use is restricted. 

5. Data Integration Platforms: Emerging UAV 

systems are designed to integrate seamlessly with 

existing farm management software and Geographic 

Information System (GIS) platforms. This integration 

allows farmers to access comprehensive data on weed 

distribution, growth trends, and treatment history, 

aiding in decision-making and long-term planning. 

6. Real-time Monitoring and Action: UAVs equipped 

with real-time communication capabilities enable 

farmers to monitor weed growth and respond rapidly to 

changes in weed populations. This instantaneous 

feedback loop enhances the effectiveness of weed 

management strategies and reduces the potential for 

crop yield loss. 

7. Regulatory and Environmental Considerations:  

As UAV technology for weed management advances, 

there is an increasing emphasis on regulatory 

compliance and environmental impact. UAV operators 

must navigate legal frameworks and ensure that their 

operations align with pesticide application regulations 

and environmental protection guidelines. 

8. Customization and Modularity:  Some UAV 

platforms offer modular designs, allowing users to 

easily switch between different payloads and sensors. 

This flexibility enables farmers to adapt their UAVs for 

various agricultural tasks, including weed management, 

as needs evolve. 

Types of UAVs used in agriculture: 

Certainly, there are several types of UAVs (Unmanned 

Aerial Vehicles) used in agriculture for various 

purposes, including weed management. Here are some 

common types: 

1. Fixed-Wing UAVs: These UAVs have a fixed wing 

design, similar to airplanes. They can cover larger areas 

efficiently and stay airborne for longer durations. Often 

used for mapping and surveillance tasks, including 

weed detection and assessment. 

2. Multirotor UAVs: These UAVs have multiple 

rotors, such as quadcopters (four rotors) or hexacopters 

(six rotors). They provide stability, maneuverability, 

and can hover in place, making them suitable for close-

up inspections, data collection, and precise applications. 

3. Hybrid UAVs: These UAVs combine features of 

both fixed-wing and multirotor designs. They can take 

off and land vertically like multirotors but transition to 

fixed-wing flight for longer range and endurance. 

Useful for covering larger agricultural fields while 

maintaining the ability to access specific areas for 

closer inspection. 

4. Single-Rotor Helicopter UAVs: These UAVs have 

a single large rotor for lift and a tail rotor for stability 

and control. They offer good payload capacity and are 

suitable for carrying heavier sensing equipment. Useful 

for tasks like spraying, where heavier payloads are 

required. 

5. Nano and Mini UAVs: These are smaller UAVs 

designed for tasks that require close access or 

maneuvering in tight spaces. They may have limited 

endurance and payload capacity but can be ideal for 

specific applications like monitoring crops in dense 

vegetation. 
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6. Tethered UAVs: These UAVs are connected to a 

ground station by a tether, providing continuous power 

and data connectivity. They can remain in the air for 

extended periods and are used for surveillance, 

communication, and monitoring tasks. 

7. Autonomous vs. Remote-Controlled UAVs: UAVs 

can be autonomous, meaning they follow pre-

programmed flight paths and execute tasks without 

constant human intervention. Alternatively, they can be 

remotely controlled by operators who guide them in 

real-time using remote control devices. The choice of 

UAV type depends on the specific agricultural tasks, 

the size and layout of the fields, the payload 

requirements (such as cameras, sensors, or sprayers), 

and the desired flight duration. Each type has its own 

advantages and limitations, so selecting the appropriate 

UAV for a given weed management scenario requires 

careful consideration of these factors. 

 
Fig. 1.  (a) A fixed-wing UAV “AgEagle RX60” from AgEagle, (b) An unmanned helicopter “Shuixing No.1” from 

Hanhe, (c) A flapping-wing UAV from the Drone Bird Company “AVES Series” , (d) A hybrid UAV,  “Linglong” 

from Northwestern Polytechnical University (https://wurenji.nwpu.edu.cn/cpyf/cpjj1/xzjyfj_ll_.htm (accessed on 17 

October 2021)). 

 

Payload options for weed detection and 

management: 

Payload options for weed detection and management on 

UAVs include a variety of sensors, cameras, and 

equipment that enable the identification, mapping, and 

targeted treatment of weeds. Here are some common 

payload options: 

1. Multispectral and Hyperspectral Cameras: These 

cameras capture light in multiple or narrow spectral 

bands beyond the visible spectrum. They allow for 

detailed spectral analysis of crops and weeds, aiding in 

the differentiation between healthy and weed-infested 

areas. 

2. Thermal Cameras: Thermal cameras capture 

infrared radiation emitted by objects based on their 

temperature. They are useful for detecting temperature 

differences between crops and weeds, enabling 

identification even under varying lighting conditions. 

3. LIDAR Sensors:  Light Detection and Ranging 

(LiDAR) sensors emit laser pulses and measure the 

time it takes for the pulses to return after hitting 

objects. It creates detailed 3D maps of the environment, 

helping to identify the height and structure of both 

crops and weeds. 

4. RGB Sensors: Standard RGB cameras capture 

images in red, green, and blue bands of the visible 

spectrum. While less advanced than multispectral or 

hyperspectral cameras, RGB imagery can still provide 

valuable information for weed detection and mapping. 

5. Ultraviolet (UV) Cameras:  UV cameras capture 

ultraviolet light, which can reveal unique spectral 

features related to plant health and stress. UV imaging 

can help detect specific markers associated with certain 

weed species or stress conditions. 

6. Global Positioning System (GPS) and Global 

Navigation Satellite System (GNSS) Receivers:  

Accurate positioning is essential for precise mapping 

and targeted interventions. GPS/GNSS receivers on 

UAVs provide real-time positioning data, which can be 

integrated with other sensor data. 

7. Spraying Systems: For weed management, UAVs 

can be equipped with spraying systems that deliver 

targeted herbicides or other treatments to weed-infested 

areas. These systems can reduce chemical use and 

minimize the impact on non-target vegetation. 

8. Artificial Intelligence (AI) and Machine Learning 

Software:  AI and machine learning algorithms can 

process sensor data in real-time to identify and classify 

weeds. These algorithms can be used to create weed 

distribution maps and guide targeted interventions (Bini 

et al., 2020). 

9. Communication and Data Transmission 

Equipment: UAVs equipped with communication 

equipment can transmit data, images, and mapping 

information in real-time to ground stations. This allows 

for immediate analysis and decision-making. 

10. Remote Sensing Software and GIS Integration: 

Software tools that process and analyze UAV-collected 

data, enabling the creation of detailed maps, charts, and 

reports. 

Sensing technologies for weed detection: Our 

comprehensive examination identified four primary 

categories of cameras employed for the detection of 

weed patches: RGB, multispectral, hyperspectral and 

https://wurenji.nwpu.edu.cn/cpyf/cpjj1/xzjyfj_ll_.htm
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thermal cameras. For instance, Agüera-Vega et al., 

2021 utilized multispectral sensors capturing data in the 

green, near-infrared, red and red-edge spectra, in 

addition to thermal sensors to differentiate weed images 

from those of maize crops. Revanasiddappa et al., 2020 

compiled weed images to generate a map of weed sites, 

which was then uploaded to cloud storage. Lambert et 

al., 2018 conducted a study that integrated both 

remotely sensed ground data and aerial imagery, 

creating models that linked actual ground-truth weed 

densities with image intensities. These models were 

used to predict weed densities in different fields. 

Furthermore, investigations into the impact of weeds on 

hydraulic efficiency in canals have employed ground 

imagery, UAV images, and high-resolution satellite 

data.  

Red-Green-Blue (RGB) Sensors in Weed 

Management: Digital pictures consist of pixels that 

incorporate a combination of red-green-blue (RGB) 

color channels, commonly referred to as the visible 

spectrum. An RGB camera of standard quality can be 

employed to identify and categorize different weed 

types using the color properties and depth details of 

their flowers, fruits, branches, and trunks. Additional 

attributes of plants, like their dimensions, quantity of 

leaves, cotyledons, as well as genuine leaf 

characteristics encompassing shape, color, texture, and 

arrangement, can also be discerned using the RGB 

sensor. 

"RGB cameras, extensively employed, particularly for 

weed detection, are widely accessible in local markets, 

offering a cost-effective option in comparison to other 

sensor types. The RGB approach also boasts minimal 

upkeep expenditure and necessitates only modest 

training to proficiently execute techniques for capturing 

and interpreting images. Furthermore, the integration of 

RGB sensors with unmanned aerial vehicles (UAVs) 

allows for a range of agricultural activities, including 

field mapping, identification of plant stress, and 

estimation of biomass. 

RGB sensors find practical utility in precision 

agriculture. Concerns regarding the health and vitality 

of crops can also be pinpointed using amalgamated data 

from RGB-D (RGB-depth) and IR (infrared) sources, 

which can be harnessed for forecasting and preemptive 

measures (Rosell-Polo et al., 2015). The nitrogen 

balance index (NBI), assessing the ratio of chlorophyll 

to polyphones represents one of the indicators exploited 

for detecting nitrogen deficiencies. 

Multispectral Sensors for Agricultural Purpose: 

Advancements in precision agriculture technology, 

such as GPS, GIS, and equipment capable of variable-

rate application, provide the necessary tools for 

utilizing information derived from multi-spectral 

images to address management challenges. According 

to the findings of Chang et al., 2014;  Berni et al., 

2009; Barnes et al., 1996 in the processing of multi-

spectral images with a relatively limited number of 

discrete spectral bands, the spectral information 

contained within a pixel of a multi-spectral image is 

typically quite constrained compared to the richer 

spectral data provided by a hyperspectral image pixel. 

Mapasyst (2021) explains that multi-spectral imagery is 

produced by sensors that measure reflected energy 

across distinct segments or bands of the 

electromagnetic spectrum. An illustration of multi-

spectral imagery can be observed in the Landsat-8 

satellite image, which comprises various bands, each 

characterized by a spatial resolution of 30 meters, 

except for bands 8, 10, and 11 (as indicated in Table 1). 

Band 8 possesses a spatial resolution of 15 meters, 

while Bands 10 and 11 have a spatial resolution of 100 

meters.  As elucidated by Chang and Bai et al., 2018 

the most recent Landsat 8 satellite, launched in 2013, 

incorporates a dual-sensor configuration, housing the 

Operational Land Imager (OLI) and the Thermal 

InfraRed Sensor (TIRS). 

Table 1: Comparison of corresponding band properties of Landsat 8 OLI and TIRS images. 

Landsat 8 Bands) Wavelength (um) Resolution (m) 

Band 1—Ultra Blue 0.435–0.451 30 

Band 2—Blue 0.452–0.512 30 

Band 3—Green 0.533–0.5990 30 

Band 4—Red 0.636–0.673 30 

Band 5—Near Infrared (NIR) 0.851–0.879 30 

Band 6—Shortwave Infrared (SWIR) 1 1.566–1.651 30 

Band 7—Shortwave Infrared (SWIR) 2 2.107–2.294 30 

Band 8—Panchromatic 0.503–0.676 15 

Band 9—Cirrus 1.363–1.384 30 

Band 10—Thermal Infrared (TIRS) 1 10.60–11.19 100 

Band 11—Thermal Infrared (TIRS) 2 11.50–12.51 100 

 

Hyperspectral sensors  for the Agricultural Sector:  

Significant advancements have been witnessed in 

hyperspectral imaging in recent years. As noted by 

Chang et al., 2014 hyperspectral imaging is primarily 

distinguished from multispectral imagery by its 

heightened capacity for target detection and 

classification, particularly when dealing with high-

resolution and intricate targets. Qian et al., 2020 

explains that space-borne hyperspectral imaging has 

emerged as a next-generation remote sensing 

technology, offering the capability to capture hundreds 

of closely spaced and narrow spectral bands for every 
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pixel within a scene. Borengasser et al., 2007 point out 

that the bandwidth of hyperspectral data typically spans 

from 1 to 15 nanometers, in contrast to multispectral 

data which encompasses bands ranging from 50 to 120 

nanometers. The platforms employed for acquiring 

hyperspectral images include both space-borne and 

airborne systems, as detailed in Table 2 below. Qian et 

al., 2020 elaborates that hyperspectral sensors gather 

both spectral and spatial information of a scene, 

resulting in the generation of a data cube for each 

scene. The acquisition of hyperspectral data can be 

achieved through three main methods: (i) methods 

based on dispersive elements, (ii) methods based on 

spectral filters, and (iii) snapshot hyperspectral 

imaging. 

Table 2: Type of platform for hyperspectral image acquisition 

Spaceborne (Satellite Sensor) Airborne (Fixed -Wing/Airplane) 

Landsat, Ikonos, Quickbird, ASTER (Advanced Spaceborne 

Thermal Emission and Reflection Radiometer), Hyperion 

AISA, AVIRIS (Airborne Visual and Infra-Red Imaging 

Spectrometer), CASI, HyMAP 

 

Creation of weed distribution maps using UAV 

data: Creating weed distribution maps using UAV 

(Unmanned Aerial Vehicle) data involves collecting 

aerial imagery and processing it to identify and map 

weed-infested areas. This process typically involves 

several steps: 

 

 
Process of weed map creation 

1. Data Collection: Utilize UAVs to capture high-

resolution aerial imagery of the target area. Modern 

UAVs equipped with multispectral or hyperspectral 

cameras can provide valuable data beyond visible light, 

which can help in identifying different types of 

vegetation and stress levels. 

2. Flight Planning: Plan the UAV flight path to ensure 

complete coverage of the target area. Factors like 

altitude, overlap between images, and flight speed need 

to be optimized to capture accurate and detailed 

imagery. 

3. Image Acquisition: Execute the planned flight path 

to capture the required images. Ensure consistent 

lighting conditions and minimal cloud cover for optimal 

results. 

4. Image Preprocessing: Preprocess the collected 

images to correct for distortions, adjust for varying 

lighting conditions, and remove any artifacts. 

Georeference the images to align them with real-world 

coordinates using Ground Control Points (GCPs) for 

accurate spatial referencing. 

5. Image Stitching: Stitch the individual images 

together to create a seamless orthomosaic of the target 

area. This orthomosaic serves as the base for 

subsequent analysis. 

6. Weed Detection and Mapping: Apply image 

analysis techniques to detect and differentiate weeds 

from other vegetation. This can involve various 

methods, including machine learning algorithms, 

vegetation indices (e.g., NDVI), and object detection 

techniques. Train machine learning models using 

labeled samples of weed and non-weed areas to 

automate the process. 

7. Data Analysis: Process the results of weed detection 

to generate weed distribution maps. These maps can 

highlight the locations and extent of weed infestations 

in the target area. 

8. Validation and Ground Truthing: Validate the 

accuracy of the generated maps by comparing them 

with ground truth data collected from the field. This 

step helps refine the detection algorithms and improve 

the overall accuracy of the maps. 

9. Map Generation and Visualization: Generate 

visual maps that display the weed distribution using 

GIS (Geographic Information System) software. These 

maps can be presented with color-coded zones 

representing different weed density levels or types. 

10. Decision Making and Management: Use the weed 

distribution maps to make informed decisions regarding 

weed control strategies. These maps can help allocate 

resources more efficiently, prioritize treatment areas, 

and monitor the effectiveness of weed management 

efforts over time. 

11. Regular Updates: As the landscape changes over 

time, it's important to regularly update the distribution 

maps using new UAV data. This ensures that the maps 

remain accurate and reflective of the current weed 

distribution. 

Spectral analysis and image processing techniques: 

Spectral analysis and image processing techniques play 

a crucial role in extracting meaningful information from 

UAV-captured images and spectral data for weed 

identification and management. Here are some 

commonly used techniques. 

1. Spectral signatures:  Spectral signatures  are unique 

patterns of reflectance at different wavelengths of light. 

Collect spectral data using sensors like multispectral or 
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hyperspectral cameras. Analyze the spectral signatures 

of crops and weeds to identify distinctive patterns 

associated with different species. It helps to identify 

unique spectral features associated with different crops 

and weed species. Spectral signature analysis aids in 

creating reference libraries for classification. 

2. Vegetation Indices: Vegetation indices are 

mathematical combinations of reflectance values at 

specific wavelengths. Calculate indices such as NDVI, 

Green NDVI, Enhanced Vegetation Index (EVI), and 

more. These indices help quantify plant health and 

stress, aiding in weed identification. 

3. Image Preprocessing: Image preprocessing 

techniques enhance the quality of UAV-captured 

images by correcting for atmospheric effects, sensor 

distortions, and noise. Techniques include radiometric 

calibration, atmospheric correction, and geometric 

rectification. 

4. Image Segmentation: Image segmentation divides 

an image into meaningful segments or regions based on 

color, texture, or other features. It can help separate 

crops from weeds or identify different types of weeds 

within an image. 

5. Object Detection and Classification: Object 

detection algorithms identify specific objects (e.g., 

plants) within an image. Classification algorithms then 

categorize the detected objects into different classes 

(e.g., crops, weeds). Deep learning techniques like 

Convolutional Neural Networks (CNNs) are often used 

for this purpose. 

6. Feature Extraction: Feature extraction involves 

identifying and quantifying specific characteristics of 

objects in an image. Texture, shape, and color features 

can be extracted and used as input for classification 

algorithms. 

7. Principal Component Analysis (PCA): PCA is a 

dimensionality reduction technique that transforms the 

original spectral bands into a smaller set of orthogonal 

components. It helps highlight the most significant 

spectral variations and can aid in separating different 

vegetation types. Analyze the principal components to 

identify patterns and differentiate crops from weeds. 

8. Unmixing Techniques: Unmixing methods separate 

mixed spectral signatures in an image into their 

constituent endmembers. This can be useful for 

identifying specific plant species within an image 

containing multiple types of vegetation. 

9. Image Fusion: Image fusion combines data from 

multiple sensors, such as RGB and multispectral 

images, to create a single, comprehensive image. 

Fusion enhances the ability to distinguish and 

characterize different features in the field. 

10. Machine Learning and AI: Machine learning 

algorithms, including supervised and unsupervised 

approaches, can be trained to classify UAV-captured 

images based on spectral and spatial features. AI 

techniques can handle complex patterns and 

relationships for accurate classification. 

11. Supervised Classification: Use labeled training 

data to teach machine learning algorithms to distinguish 

between different plant types. Algorithms like support 

vector machines (SVM), random forests, and deep 

learning can learn to classify crops and weeds. 

12. Unsupervised Classification: Group pixels with 

similar spectral characteristics together without prior 

training. Techniques like k-means clustering and 

hierarchical clustering can identify distinct regions in 

the field, including weed patches. 

13. Change Detection: Change detection techniques 

compare images captured at different times to identify 

changes in vegetation cover. They can reveal the spread 

of weeds over time. 

14. Edge Detection: Detect edges or boundaries of 

objects in an image. Identify the boundaries of weed 

patches and distinguish them from surrounding crops. 

15. Spectral Angle Mapper (SAM): Compare the 

spectral angle between a reference spectrum and each 

pixel's spectrum. Pixels with angles closer to the 

reference represent similar materials, aiding in 

identifying weeds. 

Benefits of using UAVs for weed management: 

Using Unmanned Aerial Vehicles (UAVs) for weed 

management offers several significant benefits, making 

it a valuable tool for modern agricultural practices and 

environmental management: 

1. High-resolution Imaging:  UAVs equipped with 

advanced cameras can capture high-resolution imagery, 

allowing for detailed monitoring and analysis of weed 

distribution and infestations. This level of detail aids in 

accurate weed identification and mapping. 

2. Rapid Data Collection:  UAVs can cover large 

areas quickly, enabling timely data collection. This 

speed is especially beneficial in time-sensitive 

operations, such as detecting and managing rapidly 

spreading weed infestations. 

3. Cost-Effectiveness:  Traditional methods of data 

collection, such as ground surveys or piloted aircraft, 

can be costly. UAVs offer a cost-effective alternative, 

reducing the expenses associated with data collection, 

labor, and equipment. 

4. Access to Remote Areas:  UAVs can access remote 

or difficult-to-reach areas, such as rugged terrain, 

hillsides, and densely vegetated regions. This capability 

ensures comprehensive coverage of the entire area, 

including challenging landscapes. 

5. Reduced Risk: Using UAVs eliminates the need for 

human operators to enter potentially hazardous or 

difficult terrain, reducing the risk of accidents and 

injuries associated with ground-based data collection. 

6. Real-time Monitoring: UAVs can provide real-time 

or near-real-time monitoring of weed infestations. This 

enables timely decision-making for implementing 

control measures and adjusting strategies as needed. 

7. Precise Application of Treatments: UAVs can be 

equipped with precision application systems to target 

specific weed-infested areas with herbicides or other 

treatments. This minimizes the use of chemicals and 

reduces the impact on non-target plants and the 

environment. 

8. Environmental Impact: UAVs have a smaller 

environmental footprint compared to traditional 

methods that involve heavy machinery or vehicles. 

They emit fewer greenhouse gases and disturb the 

ecosystem less during data collection. 

9. Flexibility and Adaptability: UAVs can be used at 

various growth stages of crops, enabling the monitoring 
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of weed growth patterns and changes throughout the 

growing season. This adaptability improves the 

effectiveness of weed management strategies. 

10. Integration with Other Technologies: UAV data 

can be integrated with other technologies, such as 

Geographic Information Systems (GIS) and remote 

sensing software, to create comprehensive weed 

distribution maps and management plans. 

11. Data-driven Decision-making: The accurate and 

timely data collected by UAVs supports data-driven 

decision-making. Farmers and land managers can use 

this information to optimize weed control strategies, 

improve resource allocation, and increase overall 

productivity. 

12. Long-term Monitoring: UAVs can be employed 

for repeated monitoring and assessment over multiple 

seasons. This long-term perspective helps track changes 

in weed populations, assess the effectiveness of 

management strategies, and make adjustments as 

necessary. 

Overall, the use of UAVs for weed management 

enhances the efficiency, accuracy, and sustainability of 

agricultural and environmental practices. However, it's 

important to note that successful implementation 

requires proper training, equipment maintenance, and 

data analysis skills to fully capitalize on the benefits 

offered by UAV technology. 

Limitations and challenges in UAV-based weed 

management: While UAVs offer significant benefits 

for weed management, there are also limitations and 

challenges that need to be addressed for successful 

implementation: 

1. Limited Payload Capacity: UAVs have limited 

payload capacities, which can restrict the types of 

sensors, cameras, and equipment that can be carried. 

This limitation can impact the quality and variety of 

data that can be collected during flights. 

2. Battery Life and Flight Time: UAVs have 

relatively short flight times due to battery limitations. 

This can limit the area that can be covered in a single 

flight and may require multiple flights to cover larger 

areas, leading to increased operational complexity. 

3. Weather Conditions: Weather conditions, such as 

high winds, rain, and low visibility, can impact UAV 

flights. Adverse weather conditions may lead to flight 

cancellations or reduced data quality, affecting the 

reliability of data collection. 

4. Regulatory and Legal Considerations: UAV 

operations are subject to regulations set by aviation 

authorities. Compliance with these regulations, such as 

obtaining appropriate permits and adhering to flight 

restrictions, is essential but can be time-consuming and 

restrictive. 

5. Data Processing and Analysis: Processing and 

analyzing the collected data require specialized 

software and expertise in remote sensing, image 

processing, and GIS. Generating accurate and 

meaningful weed distribution maps can be challenging 

without the necessary skills. 

6. Sensor Limitations: The quality and accuracy of 

data collected depend on the sensors and cameras used. 

Poor sensor quality or inadequate calibration can lead to 

inaccurate or unreliable data, impacting the 

effectiveness of weed detection and mapping. 

7. Weed Species Variability: Different weed species 

may exhibit varying levels of spectral and visual 

characteristics. Developing accurate detection 

algorithms that can identify a wide range of weed 

species can be complex. 

8. Ground Truthing: Validation of UAV-generated 

weed distribution maps requires ground truthing, which 

involves physically confirming the presence and extent 

of weeds in the field. This process can be time-

consuming and may introduce errors due to inconsistent 

ground sampling. 

9. Data Integration: Integrating UAV data with 

existing farm management systems or workflows can 

be challenging, requiring compatibility between 

different software platforms and data formats. 

10. Privacy Concerns: UAVs equipped with cameras 

raise privacy concerns, especially if they fly over areas 

with private property or sensitive information. Proper 

communication and obtaining necessary permissions 

are crucial. 

11. Costs: While UAV technology can be cost-effective 

in the long run, there are initial costs associated with 

purchasing the UAV, sensors, software, and training. 

Maintenance, repairs, and ongoing software updates 

also contribute to operational expenses. 

12. Skill Requirements: Operating UAVs and 

analyzing the collected data require skilled personnel. 

Training and maintaining a capable team can be 

demanding and add to operational costs. 

13. Interpretation Challenges: Interpreting UAV-

collected imagery to accurately differentiate weeds 

from other vegetation or false positives can be complex, 

requiring expertise and continuous refinement of 

detection algorithms. 

14. Scale and Resolution Trade-offs: Achieving high-

resolution imagery across large areas can be 

challenging due to the trade-off between flight altitude, 

ground coverage, and image detail. 

CASE STUDIES 

Mattivi et al., 2021 in their study tested a low-cost 

UAV for weed mapping, evaluated open-source 

packages for semi-automatic weed classification, and 

implemented a prescription map-based sustainable 

management scenario. The results showed good 

performances of the tested technologies in all the 

process steps: UAS survey, orthomosaic generation, 

semi-automatic weed detection and prescription maps 

generation and the best results in weed detection were 

given by the ANN method, thus its output was chosen 

as input for the prescription map creation. 

De Camargo et al., 2021 conducted research in 

Brunswick, Germany with the aim of  Optimization of  

deep residual Convolutional Neural Network (CNN) 

(ResNet-18) for classifying weed and crop plants in 

UAV imagery. They concluded that the image classifier 

achieved an overall accuracy of 94% when mapping the 

UAV aerial images of the test field. The classified 

images quite accurately distinguished weed species 

learned by the model, even in more complicated areas 
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of the aerial imagery where plants overlapped each 

other.  

Tanut et al., 2020 Developed a model by using the K-

nearest neighbors algorithm  to identify the defect areas 

in the sugarcane farms. The defect areas in the 

sugarcane are usually caused by storms and weeds.  

This model can recognize and classify the 

characteristics of the objects in sugarcane plantation 

images with an accuracy of 96.75%. 

Islam et al., 2021 studied on the performances of 

several machine learning algorithms; random forest 

(RF), support vector machine (SVM) and k-nearest 

neighbors (KNN), to analyzed the UAV images for 

weed detection, collected from a chilli crop field 

located in Australia and found that RF and SVM 

algorithms are efficient and practical to use for weed 

detection with 96% and 94% accuracies respectively.  

A study was conducted on consumer-grade UAV 

utilized for detecting and analyzing late-season weed 

spatial distribution patterns in commercial onion fields  

by Rozenberg et al., 2021 In this study, a simple 

unmanned aerial vehicle (UAV) was utilized to survey 

11 dry onion (Allium cepa L.) commercial fields to 

examine late-season weed classification and investigate 

weeds spatial pattern. The study generated and 

evaluated 176 weed maps, employing pixel and object-

based image analyses with two supervised classification 

algorithms: Maximum Likelihood (ML) and Support 

Vector Machine (SVM). The results of the 

classification processes demonstrated high accuracy in 

weed mapping across all spatial resolutions tested. 

A study conducted eight experiments in Denmark with 

the aim of determining the yield loss of spring barley 

attributed to Cirsium arvense (also known as Canada 

thistle) within farmers' fields by Rasmussen et al., 2020  

Additionally, the study sought to propose and evaluate 

a novel approach for quantifying the infestation of 

Cirsium arvense in larger plots. One of the significant 

contributions of the study is its successful 

demonstration of a method for quantifying C. arvense 

coverage using unmanned aerial vehicle (UAV) 

imagery. The study introduced a mathematical 

relationship to estimate the yield loss of spring barley 

due to Cirsium arvense infestation. The yield loss 

equation, Y = 100(1−exp(−0.00170·X)), where Y 

represents the percentage of crop yield loss and X 

indicates the percentage of Cirsium arvense coverage, 

provided valuable insights into the impact of Cirsium 

arvense on crop productivity.  

Pena et al., 2015 conducted a research study on weed 

seedling detection using red–green–blue (RGB) and 

multispectral cameras on a small UAV and reported 

that if the discrimination of individual weed plants is 

the objective, then the pixel size should be 

approximately 1 to 4 cm. That pixel size required flight 

altitudes of 40 to 100 m for the researcher’s RGB 

camera and 40 to 60 m for their multispectral camera. 

However, if the objective is weed patch detection, the 

pixel size of remotely sensed images could be 5 cm or 

even greater, corresponding to a flight altitude of 100 m 

or higher for both of their cameras.  

Okamoto and Lee et al., 2009 conducted research 

aimed at establishing an image processing technique to 

identify ripe citrus fruits within individual trees. They 

employed hyperspectral imaging, capturing images of 

three distinct varieties of green citrus fruits using a 

hyperspectral camera operating in the 369–1042 nm 

wavelength range. The methodology involved pixel 

differentiation and the identification of fruit objects. 

The outcomes revealed that pixel discrimination yielded 

a relatively strong detection rate (70–85%), enabling 

the early-stage identification of green fruits using 

hyperspectral imaging. 

Suzuki et al., 2008 undertook a study focused on 

segmenting images to distinguish between crops and 

weeds in a soybean field for weed detection, utilizing 

hyperspectral remote sensing. The study exhibited an 

impressive level of accuracy (99.9%) in distinguishing 

between soil and plants. The hyperspectral camera 

employed in this investigation (ImSpector V10: Specim 

Ltd., Oulu, Finland) encompassed a spectral 

wavelength range spanning 360 to 1010 nm, with a 

spectral resolution of 10 nm. 

Okamoto et al., 2007 explored plant classification for 

weed detection through hyperspectral imaging coupled 

with wavelet analysis. The researchers captured 

hyperspectral images utilizing 240 wavebands to extract 

spectral data. They evaluated three distinct plant 

classification techniques—Euclidean distance, 

discriminate analysis, and wavelet coefficient. The 

findings revealed that the wavelet coefficient approach 

exhibited practicality in weed detection. Moreover, the 

validation results indicated the prospective real-world 

utility of the developed classification methodology." 

CONCLUSIONS 

Agriculture plays a crucial role in upholding the 

economy, serving as a foundational element that 

influences long-term economic growth and structural 

shifts. Amidst this backdrop, farmers confront a range 

of uncertainties, including issues related to achievable 

crop yields, the consequences of climate change, the 

presence of pests and weeds, soil degradation, and other 

intricate challenges. Nevertheless, the rise of advanced 

technologies spanning production, information sharing, 

transportation, and more, has distinctly introduced new 

patterns in the agricultural domain. This evolution is 

notably demonstrated by the rapid acceptance of 

artificial intelligence (AI) in conjunction with the 

advancement of state-of-the-art computing 

technologies. Within the sphere of agricultural 

management, AI, encompassing tools such as drones 

and remote sensing unmanned aerial vehicles (UAVs), 

has emerged as a potent, accurate, cost-effective, and 

sustainable remedy. Its importance lies in ensuring the 

continued viability of the agricultural sector in 

efficiently meeting the demands and supply dynamics 

of food production. 

A key aspect explored in this study revolves around the 

strategic utilization of unmanned aerial vehicles 

(UAVs) and machine learning algorithms to enhance 

the sustainability of weed management practices. This 

is accomplished by precisely identifying clusters of 

weeds within cultivated fields. The incorporation of 

UAVs holds potential for advancing strategies in 
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integrated weed management (IWM). By identifying 

weed patches, these technologies can alleviate the 

pressure on herbicide-resistant weeds, thus reducing the 

spread of herbicides into the environment. The 

application of AI in agriculture also offers the benefit of 

addressing labor shortages and minimizing human 

intervention in tasks such as the application of chemical 

herbicides. For example, the use of drone-based 

fertilizer sprayers streamlines this process, optimizing 

both efficiency and accuracy. 

In summary, this paper envisions that the ongoing 

advancement of AI technology will significantly 

transform the agricultural sector. This transformation 

will serve as a pivotal approach in reshaping the 

industry for all stakeholders involved, aligning with the 

fundamental principles of agricultural precision—

employing the right strategies, in the right locations, at 

the right times, and in suitable quantities. 
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