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ABSTRACT: For developmental planning and management on sustainable basis of any area mapping and 

monitoring of land use land cover (LULC) is necessary. For sustainable development of land use land cover 

to help the planners and policy makers remote sensing and GIS has become a proven tool. This study is an 

attempt to assess or estimate the change in land use/land cover using remote sensing (RS) and 

Geographical Information System (GIS) in Jabalpur district, Madhya Pradesh between 2016 and 2022. 

Sentinel – 2A satellite data for the period has been used to extract LULC using Maximum likelihood 

supervised classification method. There are five LULC classes were identified in the study area such as 

agricultural land, built-up land (habitation), open/barren/wasteland, forest, and waterbodies. Results 

obtained shows increase in built up area and waterbody by 26.70% and 7.88% respectively between 2016 

and 2022. 
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INTRODUCTION  

For gaining continual goals at the juncture of 21st 

century country is facing several threats like climate 

change, increasing frequency of disasters which arrests 

the human progress (Mishra et al., 2020). 

Anthropogenic activities are responsible for driving 

these changes which results in modified landscape that 

affects the ecosystem (Sharma et al., 2012; Sharma et 

al., 2011). Further scientific studies (Liping et al., 

2018; Rojas et al., 2013; Jianchu et al., 2005) supports 

the argument that landscape changes are notably related 

with biodiversity losses, degrading water quality, and 

increased carbon emission. To understand the 

interaction between the human and environment the 

landscape change is very important criteria (Patil et al., 

2017; Gajbhiye and Sharma 2017). Therefore, land use 

land cover mapping and change detection is necessary 

to achieve sustainable developments for human being 

(Sharma et al., 2016).    

Traditional methods of sixties and seventies for LULC 

mapping were time consuming and error prone (Sharma 

et al., 2014; Sharma and Seth 2010). In present era 

satellite image based monitoring of earth surface in the 

form of LULC map are widely recognized (Abbas et 

al., 2010; Yang et al., 2012; Subedi et al., 2013; Hassan 

and Nazem 2015; Li et al., 2016; Lamchin et al., 2018; 

Shiferaw et al., 2019). Geospatial based LULC change 

detection techniques have been successfully employed 

during last decades for whole globe (Jin et al., 2013; Jia 

et al., 2014; Zhu and Woodcock 2014; Phiri and 

Morgenroth 2017; Jin et al., 2017; Wu et al., 2018). 

Globally various researchers effectively determined the 

various land cover replacement by different LULC 

categories (Salazar et al., 2015; Duong et al., 2016; 

Tolessa et al., 2017; Niquisse et al., 2017; Gashaw et 

al., 2018). For planning and development of any area 

LULC map is a prerequisite (Tiwari et al., 2017; 

Lohare et al., 2023). LULC has major implication on 

various issues of earth eco-system like biodiversity, 

socio-economic vulnerability of people, environmental 

sustainability etc (Sala et al., 2000). Changes observed 

in LULC are due to increasing population, 

industrialization and urbanization. A country like India 

that supports 17.50 % of world’s population on 2% 

global land areaneeds LULC based change detection 

studies (Sharma et al., 2018). According to last census 

(2011) population growth rate of Madhya Pradesh was 

20.35 per cent and population of Jabalpur 1268848. 

Therefore, for developmental planning on sustainable 

basis spatial mapping and monitoring of LULC is very 

important to feed the demand of increasing population.     

Changes in the state and configuration of land cover 

have implications on climatic conditions of an area also 

on living status of people. Due to increase in population 

and city urbanization, large area of agricultural land and 

forest covers are being converted into other land uses in 

Madhya Pradesh resulted in various problems. 

According to Department of Agriculture and Framers 

Welfare, Directorate of Economics and Statistics in MP 

during 2000-01 out of total geographical area 

(30755361 ha.) of state, area under forest was 28.14 per 
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cent, fallow land 4.5 per cent, net sown area 47.67 per 

cent. While, in the year 2020-21 forest 28.3 per cent, 

fallow land 1.49 per cent, net sown area was 51.31 per 

cent. However, in Jabalpur district during 2000-01 out 

of total geographical area (519757 ha.) of district forest 

14.40 per cent, fallow land 8.02 per cent, and net sown 

area was 51.33 per cent. While, during 2020-21 the area 

under forest 14.93 per cent, fallow land 4.29 per cent 

and net sown area was 53.75 per cent. So, for 

sustainable development & planning LULC mapping & 

change detection is crucial not only for 72.6 Million 

people of Madhya Pradesh, but also many more people 

of adjoining states because Madhya Pradesh is a larger 

grower and production state of cereals, pulses and 

horticultural crops. 

In the present study high resolution (10m) Sentinal-2A 

Imagery has been used to map the changing pattern of 

LULC of Jabalpur district from 2016 to 2022. Apart 

from above all considerations, technological, socio-

economic and institutional setup is also inferred to 

govern the LULC pattern. With the increasing scale of 

anthropogenic change and impact on environment, it 

has become important to have land use resources 

inventory of Jabalpur district. As per census 2011, 41.5 

per cent population lives in the rural areas and they are 

dependent on agriculture. Also, population density from 

413 persons per square km in the year 2001 to 2011 has 

increased to 473 persons per square km, which warrants 

utilizing resources in judicious manner. So, this again 

justifies mapping the LULC of the district. There have 

been some attempts to study the LULC of the district, 

however very few researchers attempted the change 

detection study of Jabalpur district using fine resolution 

satellite data (10m), therefore this paper aims to utilize 

geospatial technique to detect the LULC changes in 

Jabalpur district from 2016 to 2022.  

MATERIALS AND METHODS 

Study area. The present study is conducted in Jabalpur 

district which is located on the bank of Narmada river 

and comes under Kymore Plateau and Satpura Hills 

Agro Climatic Zone (Zone-VII). Its total area is 519757 

haand geographically located between 22° 49' 42" N to 

23° 37' 5" N and 79° 20' 56" E to 80° 35' 10" E. The 

district comprises of 1457 villages divided into seven 

developmental blocks i.e., Jabalpur, Sihora, Majholi, 

Patan, Shahpura, Panagar and Kundam. The climate of 

district is favorable for cereals, pulses, oilseed, and 

horticultural crops with the maximum temperature in 

May (40-43°C) and minimum in January (8-10°C). 

Average annual rainfall of the district is 1358 mm. The 

total irrigated area is 28%.  Most of the area of the 

district is having clay soil (45%) and some of the area 

contains light soil (25%). Elevation ranges from 325 to 

765 m above mean sea level (MSL). Location map of 

study area is presented in Fig. 1. 

 
Fig. 1. Location map of study area. 

Data source: A cloud free satellite image of Sentinel 

2A MSI (Multi Spectral Instrument) with spatial 

resolution of 10m has been used to prepare the LULC 

map of the study area. This satellite image was 

downloaded from Copernicus Open Access Hub 

website (https://scihub.copernicus.eu/). The date of 

acquisition of the satellite image was 15th December 

2016 (L1C,4 tiles) and 19th December 2022 (L2B, 4 

tiles) and a total number of 8 tiles with its tile name as 

T44QLL, T44QLM, T44QML, T44QMM together 

coinciding with district boundary were used. The 

downloaded tiles were having projected coordinate 

system as UTM Zone 44N and geographic coordinate 

system as WGS 1984. 

The brief information of spatial and spectral 

characteristics of different band used in Sentinel 2A 

MSI is presented in Table 1 (Patle et al., 2020). 

https://scihub.copernicus.eu/
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Table 1: Brief details of spatial and spectral characteristics of bands used in Sentinel 2A MSI. 

Band Spatial resolution (m) Wavelength (µm) Description 

Band 1 60 0.443 Ultra-Blue-Coastal and Aerosol 

Band 2 10 0.490 Blue 

Band 3 10 0.560 Green 

Band 4 10 0.665 Red 

Band 5 20 0.705 Visible and Near Infrared (VNIR) – Vegetation Red Edge 1 

Band 6 20 0.740 Visible and Near Infrared (VNIR) – Vegetation Red Edge 2 

Band 7 20 0.783 Visible and Near Infrared (VNIR) – Vegetation Red Edge 3 

Band 8 10 0.842 Near Infrared (NIR) 

Band 8A 20 0.865 Narrow Near Infrared (NNIR) 

Band 9 60 0.945 Short Wave Infrared (SWIR) – Water Vapour 

Band 10 60 1.375 Short Wave Infrared (SWIR) – Cirrus 

Band 11 20 1.610 Short Wave Infrared (SWIR) 

Band 12 20 2.190 Short Wave Infrared (SWIR) 

 

LULC Classification approach: To generate 

reflectance files QGIS software has been used to have 

atmospherically corrected tiles for initial pre-processing 

technique. The band-2 (blue), band-3 (green), band-4 

(red) and band-8 (NIR) as obtained after atmospheric 

correction were further used to prepare the RGB 

composite image for each tile. ERDAS (Earth 

Resources Data Analysis System) IMAGINE® 2020 is 

used with the help of layer stack tool to prepare a RGB 

composite image. 

The RGB composite tiles were mosaic ked and further 

made subset by using vector file of Jabalpur district 

boundary. The change in band combination of RGB 

composite image successfully yielded FCC (False 

Colour Composite) image. FCC can be defined as an 

artificially generated colour image in which the red, 

green and blue colours are assigned to the wavelength 

in which they do not belong in nature. The false colour 

composite image of the study area is shown in Fig. 2. 

 
Fig. 2. False Colour Composite image of the study area. 

The FCC image of the study area aided in preparing the 

AOI (Area of Interest) files of different LULC classes 

using on-screen visual interpretation principles, 

available ancillary data, prior knowledge-based logic 

rules, sufficient ground reference data and satellite data 

of Google Earth Pro. After preparation of AOIs, 

supervised classification was performed using FCC 

image that yielded broad classes of LULC in the 

classified image. The obtained image was recoded to 

prominent LULC classes characterized by variations in 

tone, texture, shape, association, and the pattern of 

various objects within the satellite data.  

 

A total of five prominent LULC classes viz., 

agricultural land, built-up land (habitation), 

open/barren/wasteland, forest, and waterbodies were 

identified during the classification process. 

Subsequently, the AOI files were further overlaid on 

supervised classified image to get thematically recoded 

raster image. At last, area covered by each LULC class 

was calculated. The methodological framework used in 

the classification approach is shown in Fig. 3. 
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Fig. 3. Methodological framework used in LULC 

classification approach. 

Accuracy Assessment: Accuracy assessment or 

validation is a significant step in the processing of 

remote sensing data (Rwanga and Ndambuki 2017). 

The most common way to express the accuracy of 

classified image is by a percentage of the map area that 

has been correctly classified when compared with 

reference data or “ground truth” (Story and Congalton 

1986). This statement can be justified by comparing the 

correctness of the classification generated by sampling 

the classified data expressed in the form of an error 

matrix (sometimes also referred as a confusion matrix 

or contingency table). An error matrix is a square array 

of numbers set out in rows and columns, which express 

the number of sample units assigned to a particular 

class in one classification relative to the number of 

sample units assigned to a particular class in another 

classification (Congalton and Green 2019). The row 

total in error matrix represents classified data whereas 

the column total represents reference or ground truth 

data. An error matrix is a very effective way to 

represent the accuracy of produced thematic map, 

because it provides a clear way of deriving the 

individual accuracies of each class (Congalton and 

Green 1993).  

The error matrix is also used to compute other measures 

of accuracies such as overall accuracy, producer’s 

accuracy and user’s accuracy (Story and Congalton 

1986). Producer’s and user’s accuracies can be 

computed to determine the individual class accuracies 

in addition to computing the overall classification 

accuracy for the entire matrix. The overall accuracy for 

the image classification can be obtained by dividing the 

sum of the entries in the “from-to” agreement of the 

error matrix with the total number of the examined 

pixels in the classification (Islam et al., 2018). As the 

name suggests, the producer’s accuracy signifies the 

interest of producer of classification that how well a 

certain area can be classified (Congalton, 1991). The 

user’s accuracy is indicative of the probability that a 

pixel classified on the map/image actually represents 

that category on the ground (Story and Congalton 

1986).  The error matrix also aides in generating kappa 

coefficient values which can be used as another 

measure of agreement or accuracy (Cohen, 1960). The 

generation of kappa coefficient (k) has become a 

standard component of almost every accuracy 

assessment (Rosenfield and Fitzpatrick-Lins 1986; 

Hudson and Ramm 1987; Congalton, 1991). 

For assessing the accuracy of classified map, a total 

number of 453 randomly distributed points were 

generated over the entire classified map in ArcGIS® 

10.3 environment. The classified data was further 

compared for agreement with ground truth or reference 

data obtained from Google Earth Pro satellite data and 

field visit data.    

The post interpretation phase included preparation of 

LULC maps and detection of their changes. The change 

detection technique, which was employed in this study, 

was the post-classification comparison. The overlay 

consisting of LULC maps of 2016 and 2022 were made 

through ERDAS IMAGINE software. Then a 

comparison table was prepared for the overlaid land 

use/land cover maps of 2016 and 2022. 

RESULTS AND DISCUSSION 

LULC Classification: The land use land cover 

classification at large scales (District level) is a heavy 

computational task yet is critical to landowners, 

researchers and decision makers enabling them to make 

informal decisions for varying objectives (Yang et al., 

2017). A total of five major LULC classes such as 

agricultural land (i.e., crop land, agricultural 

plantation), built-up land (i.e., habitation, rural), 

open/barren/wasteland (i.e., barren rocky, scrub land), 

forest (i.e., dense/closed and open category of 

evergreen forest), and waterbodies (i.e., streams, ponds, 

and reservoirs) were identified in Jabalpur district. 

Fig. 4 and 5 shows the classified LULC map of the 

study area for 2016 and 2022 respectively. The LULC 

statistics of Jabalpur district is shown in Table 2. It 

indicates that major portion of Jabalpur district in 2016 

is covered by agricultural land 308018 ha (59.26%), 

forest 95021.90 ha (18.28%) followed by 

open/barren/wasteland 93962 ha (18.08%) whereas 

very small area is covered by waterbodies 13923.80 ha 

(2.68%) and least area is covered by built up land 

8839.91 ha (1.70%). Similarly, in the year 2022 the 

major portion of Jabalpur district is covered by 

agricultural land 301990 ha (58.10%), forest 95099 ha 

(18.30%) followed by open/barren/wasteland 96456.11 

ha (18.56%) whereas very small area is covered by 

waterbodies 15020.50 ha (2.89%) and least area is 

covered by built up land 11200 ha (2.15%). 
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Fig. 4. LULC map of the study area for the year 2016. 

 
Fig. 5 LULC map of the study area for the year 2022. 

Table 2: Comparison of areas and rates of change of the five LULC classes between 2016 and 2022. 

LULC Class 
2016 LULC Area 2022 LULC Area 

Change between 

2016 and 2022 

Average Rate of 

change 

ha % ha % ha % ha/yr % 

Agriculture 308018 59.26 301990 58.10 -6028 -1.96 -1004.67 -0.33 

Built-up Land 8839.91 1.70 11200 2.15 2360.09 26.70 393.35 4.45 

Open/Barren/ 

Waste Land 
93962 18.08 96456.11 18.56 2494.11 2.65 415.68 0.44 

Forest 95021.90 18.28 95099 18.30 77.10 0.08 12.85 0.01 

Waterbody 13923.80 2.68 15020.50 2.89 1096.70 7.88 182.78 1.31 

Total 519765.61 100 519765.61 100 0.00 0.00 0.00 0.00 

 

It can be observed from Table 2 that study area had 

been subjected to intensive human influence as the 

built-up area has increased with 26.70% between 2016 

and 2022, water body area has increased to 7.88%, 

open/barren/waste land has increased to 2.65% least 

increase (0.08%) observed in forest area for the district. 

However, agriculture land area is showing 1.96% of 

decrease from 2016 to 2022. 

Table 2 shows the average rate of change per annum for 

the study area with 4.45% increase in the built up 

(habitation), 1.31% increase in water body, 0.44% 

increase in open/barren/waste land, while forest area 

increase is negligible. However, the decline of 

agriculture area is meagre i.e. 0.33%.  

Accuracy Assessment: To obtain the reliability of 

classified image, error matrix was generated (Table 3 

and 4). The error matrix aided in assessing the overall 

accuracy, producer’s accuracy, user’s accuracy and 

kappa coefficient of the classified map using reference 

or ground truth data. The overall accuracy of the 

classified image 2016 and 2022 was found as 88.52% 

and 93.81% respectively. The producer’s accuracy was 

calculated by dividing the principal diagonal (the 

agreement) by total number of sample points in that 

map class as specified by sum of the reference (ground 



Lohare   et al.,               Biological Forum – An International Journal     15(10): 585-592(2023)                                         590 

truth) data (or column total) for that class. Table 3 and 

Table 4clearly illustrate the process adopted for 

calculation of producer’s accuracy of each class. The 

computation of producer’s accuracy for the year 2016 

for different classes of classified image showed that 

agricultural land producer’s accuracy was highest 

among all the classified classes (96.86%). It was further 

followed by forest (88.31%), open/barren/waste land 

(85.36%) and waterbodies (81.81%). The least value of 

producer’s accuracy was obtained for built-up land 

(25%) indicating a shift in large number of reference 

data sample points into other classified classes 

(disagreement) leading to high error of omission. Apart 

from producer’s accuracy, user’s accuracy was also 

calculated for all the produced classes of the classified 

image. The user’s accuracy was highest for waterbodies 

(100%), followed by agricultural land (91.82%), 

open/barren/waste land (84.33%), forest (82.92%) and 

built-up land (70%). The kappa coefficient (k) was 

found as 0.80. 

The computation of producer’s accuracy for the year 

2022 for different classes of classified image showed 

that agricultural land producer’s accuracy was highest 

among all the classified classes (i.e., 98.83%). It was 

further followed by open/barren/waste land (90.56%), 

forest (89.41%), and waterbodies (81.81%). The least 

value of producer’s accuracy was obtained for built-up 

land (57.14%) indicating a shift in large number of 

reference data sample points into other classified 

classes (disagreement) leading to high error of 

omission. Apart from producer’s accuracy, user’s 

accuracy was also calculated for all the produced 

classes of the classified image. The user’s accuracy was 

highest for waterbodies (100%), followed by 

agricultural land (94.79%), open/barren/waste land 

(92.77%), forest (92.68%) and built-up land (80%). The 

kappa coefficient (k) was found as 0.89. 

A kappa coefficient value of k = 1 indicates a perfect 

agreement between the categories while a value of k = 0 

indicates that the observed agreement equals the chance 

agreement (Cohen, 1960). A value greater than 0.75 

indicates a very good to excellent agreement, while a 

value between 0.40 to 0.75 indicates a fair to good 

agreement (Pandey et al., 2007). A value of less than or 

equal to 0.4 indicates a poor agreement between the 

classification categories (Manserud and Leemans 

1992). On the basis of such criteria, the value of k = 

0.94 in this case indicates good to excellent agreement. 

The above statements clearly indicate that methodology 

adopted for satellite image classification to prepare 

LULC map is satisfactory.  

Table 3: Error (Confusion) matrix for the year 2016. 

 

Table 4: Error (Confusion) matrix for the year 2022. 
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CONCLUSIONS 

This study demonstrated that the recent advances in 

Remote Sensing and Geographical Information System 

technologies provide powerful tool for mapping and 

detecting change in Land Use Land Cover. This 

research carried out in Jabalpur district, Madhya 

Pradesh, India using these modern technologies in 

conjunction with field observations showed both land 

cover conversion and modifications. The general trend 

observed by the present study is increase in built up 

land (habitation) area by 4.45% per annum and very 

little decrease (0.33%) in agriculture area. The 

increasing trend of built up area suggest to policy 

makers to restrict human intervention activities. The 

findings of the study highlight the need for 

comprehensive assessment of human activities and the 

adaptation of suitable measures for the same. 
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