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ABSTRACT: This paper concerns the transient liquid film condensation phenomenon on an isothermal 

vertical surface in contact with an anisotropic porous medium using the complementary error function for 

the temperature profile. The boundary layer equations are formulated and the time variable is involved only 

in the energy equation. The governing equations of the problem have been solved analytically by the 

similarity method using the Kärman-Pholhausen integral method. Thus, the expressions of the dimensionless 

thickness of the liquid film, the Nusselt number and the characteristic limit time of the transition from 

transient to steady state have been developed. The results found allows to extend the isotropic porous medium 

to take into account the anisotropic properties of the porous medium, using the flow permeability tensor and 

the generalised Darcy's law to describe the fluid flow in the porous medium. A good remark has been done 

for the temperature profile which is assumed as the complementary error function and gives the same results 

as the previous studies using a linear function. 

Keywords: Transient film condensation, complementary error function, anisotropic porous medium, Darcy flow 

model. 
 

INTRODUCTION 

Liquid Film condensation heat transfer is a common 

phenomenon in industrial processes such as refrigerating 

machines and heat pumps, steam heating systems, heat 

exchangers and distillation systems in seawater 

desalination plants (Sanya et al., 2014; Degan et al., 

2016). The first work began by Nusselt (1916) who 

considered pure saturated steam in contact with a vertical 

flat wall. The condensation heat transfer problem has 

continued to attract considerable attention (Mendez and 

Trevino, 1997; Chen et al., 1987). Cheng (1981) 

established similarity solutions for steady filmwise 

condensation in a constant-porosity medium. In his 

study, he investigated laminar filmwise condensation 

along a wedge and showed that a linear temperature 

profile was a reasonable assumption for small values of 

Jakob number (i.e. Ja < 1). But his results overestimated 

the effects of condensation heat transfer. Most of the 

work has often focused on Darcy's model, which 

assumes a proportionality between fluid velocity and 

pressure gradient to describe fluid flow in the porous 

medium (Liu et al., 1984). 

There is also increasing interest in work under transient 

conditions. Cheng and Chui (1984b) considered the 

problem of transient liquid film condensation on a 

vertical surface in an isotropic porous medium. They 

used the Kärman-Pholhausen integral method and the 

similarity method to deduce the liquid film thickness and 

the local Nusselt number. 

The objective of present study is to deduce the influence 

of the permeability anisotropy parameters of the porous 

medium on the thickness of the liquid film on the vertical 

surface studied, as well as on the heat transfer flow at the 

surface, for a transient regime using the complementary 

error function for the temperature profile. The Darcy 

model is generalised by taking into account the 

permeability anisotropy tensor (Degan et al., 1995). It is 

employed to describe the characteristics of the liquid 

saturated region in the anisotropic porous medium which 

the complementary error function is used for the 

temperature profile. Then, the analytical results are 

obtained for the dimensionless liquid film thickness, the 

Nusselt number and the characteristic limit time. 

METHODS 

A. Mathematical formulation 

On the Fig. 1, the physical model adopted is a vertical 

plate of low thickness, height 𝐿 and inner surface 

temperature 𝑇𝑤, which is in direct contact with the 

porous medium with anisotropic permeability. The 

coordinate axes (𝑂𝑥) and (𝑂𝑦) are aligned respectively 

with the vertical and horizontal directions. The 

permeability along the two principal axes of the porous 
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matrix are denoted by 𝐾1 and 𝐾2. The permeability 

anisotropy of the porous medium is characterised by the 

permeability ratio 𝐾∗ = 𝐾1 𝐾2 ⁄  and the orientation 

angle 𝜑 defined between the horizontal direction and the 

main permeability axis 𝐾2. Inside this porous medium 

flows a pure saturated vapour with a saturation 

temperature 𝑇𝑆 higher than the surface temperature 𝑇𝑤. 

As the vapour flows through the porous medium, 

condensation of the vapour occurs on the wall leading to 

the formation of a thin liquid film with a thickness 

𝛿𝐿along the vertical surface. As a result, there are two 

areas: the porous medium saturated by the liquid film 

dropping on the wall and the saturated vapour in the rest 

of the porous space with anisotropic permeability. In 

addition, the following assumptions are assumed as 

those of Cheng (1981), namely that the liquid-vapour 

interface is quite distinct, the properties of the porous 

medium are such that those of the liquid film and vapour 

are constant, the boundary layer approximations are 

applicable to the phenomenon near to the vertical surface 

and the time variable is involved only in the energy 

equation as those of Cheng and Chui (1984b). 

Generalised Darcy's law is also used to describe the fluid 

flow in the porous medium and then the momentum 

equations can be deduced. 

Thus, the governing equations of the problem, in 

compact form, are deduced, namely the following 

continuity (1), momentum (2) and energy (3) equations: 
𝜕𝜌

𝜕𝑡
+ ∇⃗⃗ . (𝜌𝑉⃗ ) = 0                                                     (1) 

𝑉⃗ =
𝐾

𝜇
(−∇⃗⃗ 𝑃 + 𝜌𝑔 )                                                 (2) 

𝜕𝑇

𝜕𝑡
+ 𝑉⃗ . ∇⃗⃗ 𝑇 = 𝛼𝑐∇

2𝑇                                                (3) 

Where, 𝑃 is the pressure in the porous medium, 𝜌 the 

density of the fluid, 𝑔  the gravitational acceleration 

vector, 𝜇 the dynamic viscosity of the fluid, 𝑉⃗  the 

velocity vector of the fluid in the porous medium, 𝛼 is 

the thermal diffusivity of the fluid and (𝐾)
−1

the inverse 

symmetrical second-order permeability tensor defined in 

the cartesian coordinates as (Degan et al. (1995): 

(𝐾)
−1

=
1

𝐾1
[
𝑎 −𝑐
−𝑐 𝑏

] with 𝑎 = 𝑐𝑜𝑠2𝜑 + 𝐾∗𝑠𝑖𝑛2𝜑, 

𝑏 = 𝐾∗𝑐𝑜𝑠2𝜑 + 𝑠𝑖𝑛2𝜑 

and 𝑐 =
1

2
(1 − 𝐾∗)sin2𝜑. 

The writing of equations (1), (2) and (3) in the region of 

the liquid film become in primitive form: 
𝜕𝑢𝐿

𝜕𝑥
+

𝜕𝑣𝐿

𝜕𝑦
= 0                                                             (4) 

𝑢𝐿 =
𝐾1

𝑎𝜇𝐿
𝑔(𝜌𝐿 − 𝜌𝑣)                                                 (5) 

𝜕𝑇

𝜕𝑡
+ 𝑢𝐿

𝜕𝑇

𝜕𝑥
+ 𝑣𝐿

𝜕𝑇

𝜕𝑦
= 𝛼𝑐

𝜕2𝑇

𝜕𝑦2                                      (6) 

Where the equation (5) is obtained from the previous 

study by Degan et al. (2016) under the aforementioned 

assumptions and the ratio of the heat capacities and the 

thermal diffusivity of the liquid in porous medium are 

defined as follows: 

𝜎 =
(𝜌𝑐𝑃)𝑐

(𝜌𝑐𝑃)𝐿
                                                                (7) 

𝛼𝑐 =
𝑘𝑐

(𝜌𝑐𝑃)𝐿
                                                             (8) 

Where (𝜌𝑐𝑃)𝑐 and 𝑘𝑐 are the heat capacity and the 

thermal conductivity of the fluid-filled porous medium 

defined by Cheng and Chui (1984b) as (𝜌𝑐𝑃)𝑐 =
(1 − ∅)(𝜌𝑐𝑃)𝑝 + ∅(𝜌𝑐𝑃)𝐿 and 𝑘𝑐 = (1 − ∅)𝑘𝑝 + ∅𝑘𝐿 

where ∅ is the porosity and the subscripts « p » and « L » 

denote the quantities associated respectivily with the 

porous medium and the saturated liquid. 

In addition, the initial and boundary conditions 

associated with the preceding governing equations are as 

follows: 

❖ Initial condition: 𝑇(𝑥, 𝑦, 0) = 𝑇𝑆   (at 𝑡 = 0)                                                         

(9) 

❖ Boundary condition at the vertical 

surface: 𝑇(𝑥, 0, 𝑡) = 𝑇𝑊,    𝑡 > 0                              (10) 

❖ Boundary condition at liquid-vapour interface: 

𝑇(𝑥, 𝛿𝐿 , 𝑡) = 𝑇𝑆                                                          (11) 

B. Scale analysis 

Based on the work of Bejan (1984) and designating as 𝐿 

and 𝛿𝐿 respectively the orders of magnitude on the 𝑥 and 

𝑦 axes, in the liquid boundary layer region where 𝛿𝐿 ≪
𝐿, equations (4), (5) and (6) obey the following orders of 

magnitude: 
𝑢𝐿

𝐿
~

𝑣𝐿

𝛿𝐿
                                                                        (12) 

𝑢𝐿~
𝐾1

𝜇𝐿
𝑔(𝜌𝐿 − 𝜌𝑣)                                                    (13) 

(𝜎
∆𝑇

𝑡
𝛿𝐿) , (𝑢𝐿

∆𝑇

𝐿𝑅𝑎𝐿
𝛿𝐿) ,

(𝑣𝐿∆𝑇) ~ (
ℎ𝑓𝑔

𝑐𝑝𝐿

𝑢𝐿

𝐿𝑅𝑎𝐿
𝛿𝐿) , (

ℎ𝑓𝑔

𝑐𝑝𝐿

𝛿𝐿

𝑡
) , (𝛼𝑐

∆𝑇

𝛿𝐿
)              (14) 

In equation (14), ∆𝑇is such that : 

∆𝑇 = (𝑇𝑊 − 𝑇𝑆)                                                       (15) 

Considering the orders of magnitude of equations (12) to 

(14), the following results are obtained for 𝛿𝐿, 𝑢𝐿, 𝑣𝐿 and 

𝑡 : 
𝛿𝐿 ~ 𝐿                                                                       (16) 

𝑢𝐿 ~ 
𝛼𝑐

𝐿
𝑅𝑎𝐿                                                              (17) 

𝑣𝐿 ~ 
𝛼𝑐

𝐿
                                                                     (18) 

𝑡 ~ 
𝜎𝐿2

𝛼𝑐
                                                                     (19) 

The Rayleigh number is defined in equation (17): 

𝑅𝑎𝐿 =
𝐾1𝑔𝐿

𝜇𝐿𝛼𝑐
(𝜌𝐿 − 𝜌𝑉)                                                   (20) 

C. Resolution 

Taking into account the orders of magnitude 𝐿𝑅𝑎𝐿 , 𝐿, 

𝛼𝑐𝑅𝑎𝐿/𝐿, 𝛼𝑐/𝐿, ∆𝑇, 𝜎𝐿2 𝛼𝑐⁄  respectively for the 𝑥 and y 

axes, the 𝑥 and y components of velocity, temperature 

and time, the governing equations (4), (5) and (8) take 

the following dimensionless form: 
𝜕𝑈𝐿

𝜕𝑋
+

𝜕𝑉𝐿

𝜕𝑌
= 0                                                             (21) 

 

𝑈𝐿 =
1

𝑎
                                                                           (22) 

 

∫
𝜕𝜃𝐿

𝜕𝜏

𝐴

0

𝑑𝑌 +
1

𝑎
∫

𝜕𝜃𝐿

𝜕𝑋
𝑑𝑌

𝐴

0

= (
𝜕𝜃𝐿

𝜕𝑌
)
𝑌=𝐴

− (
𝜕𝜃𝐿

𝜕𝑌
)
𝑌=0

         (23) 
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Where 𝐴 is the dimensionless thickness of the liquid film 

defined as: 

𝐴 =
𝛿𝐿

𝐿
                                                                              (24) 

(
𝜕𝜃𝐿

𝜕𝑌
)
𝑌=𝐴

= −
1

𝑎 𝐽𝑎

𝜕𝐴

𝜕𝑋
−

1

𝜎𝐽𝑎

𝜕𝐴

𝜕𝜏
                             (25) 

 

Equation (23) can be solved under the following 

dimensionless boundary conditions: 

𝜏 = 0,   𝜃𝐿(𝑋, 𝑌, 0) = 0                                              (26a) 

𝑌 = 0,   𝜃𝐿(𝑋, 0, 𝜏) = 1                                             (26b) 

𝑌 = 𝐴,   𝜃𝐿(𝑋, 𝐴, 𝜏) = 0                                            (26c) 

We consider the following temperature profile that 

satisfies the boundary condition (26b), defined by Cheng 

and Pop (1984a) as: 

𝜃𝐿(𝜂) = 𝑒𝑟𝑓𝑐(𝜂)                                                          (27) 

Where 𝑒𝑟𝑓𝑐 is the complementary error function and 𝜂 

represents the variable defined as follows: 

𝜂 =
𝑌

𝐴
                                                                              (28) 

Substituting equations (27) and (28) in equation (23), the 

following equation is obtained: 

[𝜉 +
1

𝜎𝐽𝑎
]
𝜕𝐴

𝜕𝜏
+

1

𝑎
[𝜉 +

1

𝐽𝑎
]
𝜕𝐴

𝜕𝑋
=

2

𝐴√𝜋
                    (29) 

𝜉is the parameter such that: 

𝜉 = ∫𝜃𝐿(𝜂)

1

0

𝑑𝜂                                                              (30) 

Equation (29) can be solved under the following 

dimensionless boundary conditions: 

𝜏 = 0,    𝐴(𝑋, 0) = 0                                                  (31a) 

𝜏 ≥ 0,    𝐴(0, 𝜏) = 1                                                  (31b) 

Equation (29) is a partial differential equation of the 

hyperbolic type which will be solved by the method of 

characteristics through the following system of 

differential equations: 
2

[𝜉 +
1

𝜎𝐽𝑎
]
𝑑𝜏 = 𝐴𝑑𝐴 =

2𝑎

[𝜉 +
1

𝐽𝑎
]
𝑑𝑋                            (32) 

Equation (32) has the following characteristic: 

𝑑𝑋 =
[𝜉 +

1

𝐽𝑎
]

[𝜉 +
1

𝜎𝐽𝑎
]
𝑑𝜏                                                          (33) 

Parameter 𝐴can then be deduced from the following 

relationships: 

❖ For transient film condensation: 

 

[𝜉 +
1

𝜎𝐽𝑎
] 𝐴𝑑𝐴 = 2dτ                                                   (34) 

❖ For steady film condensation: 

[𝜉 +
1

𝐽𝑎
] 𝐴𝑑𝐴 = 2𝑎𝑑𝑋                                                   (35) 

By integrating equation (34) with condition (31a), the 

equation (36) is obtained in the case of transient regime: 

𝐴 = {√𝜋 (𝜉 +
1

𝜎𝐽𝑎
)}

−1/2

𝜏1/2                                       (36) 

Similarly, by solving equation (35) subject to condition 

(31b), expression (37) is found in steady state: 

𝐴 = 2𝑎
1

2 {√𝜋 (𝜉 +
1

𝐽𝑎
)}

−
1

2

𝑋
1

2                                     (37) 

Thus, the expression of 𝐴 changes according to 

equations (36) and (37) along the boundary characteristic 

line: 

𝜏𝐶 = 𝑎 
[𝜉 +

1

𝜎𝐽𝑎
]

[𝜉 +
1

𝐽𝑎
]

𝑋                                                       (38) 

Equation (38) shows the limit time for the regime to 

move from the transient case to steady state case. The 

corresponding temperature profile can now be deduced. 

❖ In the case where 𝜏 < 𝜏𝐶 , the expression (39a) 

is found : 

𝜃𝐿(𝜂) = 𝑒𝑟𝑓𝑐 {
y

2
{√𝜋 (𝜉 +

1

𝜎𝐽𝑎
)}

1/2

𝜏−1/2}            (39) 

 

❖ In the case where 𝜏 > 𝜏𝐶 , the expression 

(39b) is found: 

𝜃𝐿(𝜂) = 𝑒𝑟𝑓𝑐 {
y

2
𝑎−1/2 {√𝜋 (𝜉 +

1

𝐽𝑎
)}

1/2

𝑋−1/2}      (40) 

Using equations (27), (28), (37) et (39), the expression 

of the heat flux for the transient case can be deduced 

where 𝜏 < 𝜏𝐶: 

𝑞𝑤 =
𝑘(𝑇𝑊−𝑇𝑆)

√𝜋
{√𝜋 (𝜉 +

1

𝜎𝐽𝑎
)}

1/2

(
𝜎

𝛼𝑐𝑡
)
1/2

            (41) 

The local Nusselt number is given by the formula (42): 

𝑁𝑢𝑥 =
𝑞𝑤  𝑥

𝑘(𝑇𝑊 − 𝑇𝑆)
                                                      (42) 

In other words, in the region 𝜏 < 𝜏𝐶 , the local Nusselt 

number is as follows: 

𝑁𝑢𝑥

√𝑅𝑎𝑥,𝐿

= {
(𝜉 +

1

𝜎𝐽𝑎
)

√𝜋
}

1

2

(
𝜏

𝑋
)
−

1

2
                                 (43) 

Similarly, considering equations (29), (30), (31a) and 

(40), the expression of the heat flow for the steady state 

case can be obtained where 𝜏 > 𝜏𝐶: 

𝑞𝑤 =
𝑘(𝑇𝑊 − 𝑇𝑆)

𝑥
{
(𝜉 +

1

𝐽𝑎
)

𝑎√𝜋
𝑅𝑎𝑥,𝐿}

1 2⁄

                    (44) 

The expression (45) can be deduced from this: 

𝑁𝑢𝑥

√𝑅𝑎𝑥,𝐿

= {
𝜉 +

1

𝐽𝑎

𝑎√𝜋
}

1/2

                                                  (45) 

RESULTS AND DISCUSSION 

Fig. 2 shows the variations of the limit time 𝜏𝐶  at the end 

of which the steady state is reached, when the plate is 

subjected to condensation phenomena by natural 

convection. It can be seen from this figure that 𝜏𝐶varies 

linearly as a function of the distance 𝑋 counted on the 

surface from the leading edge when the Jakob number is 

equal to2.0 and 𝜎 =0.6, for an orientation angle of the 

main axes of permeability 𝜑 = 30°and for different 

values of the anisotropy ratio 𝐾∗. This line is also 

justified by considering equation (38) and divides the 

plane (𝑋, 𝜏) into two half planes for which a different 

flow mode corresponds respectively. The lower half 

plane defined for times 𝜏 (𝜏 < 𝜏𝐶) is the seat of pure 
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conduction through the porous medium, while the upper 

half-plane is the region dominated by convective heat 

transfer at times 𝜏(𝜏 > 𝜏𝐶), according to the work 

carried out by Degan et al. (2007). Moreover, for a given 

distance 𝑋, when the anisotropy ratio decreases, the 

decrease in the time 𝜏𝐶  taking by the condensation 

phenomena to pass from the transient regime to the 

steady state is noticed. This implies in the plane (𝑋, 𝜏) to 

an extension of the domain corresponding to the upper 

half plane delimited by 𝜏𝐶 . 

Fig. 3 illustrates the variation of the dimensionless time 

𝜏𝐶  as a function of the distance 𝑋, expressed by equation 

(42), for different values of the angle 𝜑, when 𝐾∗ = 2.5, 

𝐽𝑎 = 2.0 and 𝜎 =0.6. The same remark as the previous 

work (Sanya et al., 2021) can be concluded that the time 

𝜏𝐶  at which the steady state is reached increases as a 

function of the increase of the orientation angle 𝜑 of the 

main axes of the anisotropic permeability porous 

medium. This increase of the limit dimensionless time 𝜏𝐶  

reflects the persistence of the transient regime before the 

appearance of the permanent regime. 

Fig. 4 illustrates the effect of the time on the 

dimensionless thickness 𝐴of the liquid film along a 

vertical surface for various values of Jakob number for 

𝜎 = 0.6. It can be noticed that the dimensionless 

thickness of the liquid film increases continuously with 

time but it decreases for the increase value of the Jakob 

number, in the transient state. This trend follows from 

the fact that the dimensionless thickness of the liquid 

film is proportional to 𝜏1 2⁄  (Eq. (36)) and inversely 

proportional to 𝐽𝑎1 2⁄ , such that increasing Jakob number 

implies the diminution of the dimensionless thickness of 

the liquid film which becomes less and less affected by 

time.  The same behavior is observed in Figure 5 

illustrating the effect of the time on the dimensionless 

thickness of the liquid film along a vertical surface for 

various values of heat capacity ratio 𝜎 for 𝐽𝑎 = 10.0. 

The dimensionless thickness 𝐴 drops progressively as 𝜎 

is made weaker, independently of the time 𝜏, but this 

decreasing is less drastic than it can be observed in Fig. 

4. 

Fig. 6 shows the variation of the heat transfer rate 

𝑁𝑢𝑥 (𝑅𝑎𝑥,𝐿)
1 2⁄

⁄  for different values of the ratio of the 

anisotropy permeability coefficients and for φ = 30°, 
𝐽𝑎 = 2.5 and σ = 0.6. With regard to the general trend, 

it can be seen that the heat transfer rate decreases over 

time, corresponding to the transient period (𝜏 < 𝜏𝐶), and 

ends up maintaining a constant value from the limit time 

𝜏𝐶at which the steady state begins(𝜏 > 𝜏𝐶). During this 

steady state, where the time variable no longer has any 

influence, the heat transfer rate decreases as the ratio of 

the anisotropic permeability coefficients increases. The 

same decrease is also observed in Figure 7 for an 

increase in the orientation angles of anisotropic 

permeability of the porous medium. Moreover, in the 

transient regime, anisotropic permeability of the porous 

medium has no influence. A good remark can be made 

when K∗ = 1.0 in Fig. 6 or 𝜑 = 0 in Fig. 7 which implies 

that 𝑎 = 1 and the result is similar to that obtained 

analytically by Cheng and Chui (1984b) for the isotropic 

porous medium. This behavior can also be proved from 

the fact that, according to equation (5), when the 

parameters K∗ and 𝜑 are held constant respectively to 1.0 

(that is to say K1 = K2 = 𝐾) and 0, the velocity of the 

liquid film in the anisotropic porous medium 𝑢𝐿 is the 

same to that found by Cheng and Chui (1984b) in the 

case of isotropic porous medium. 

 
Fig. 1. Physical situation and coordinate system. 

 
Fig. 2. Effect of the ratio of anisotropic permeability coefficients on the characteristic limit time 𝜏𝐶  for φ = 30°, 

𝐽𝑎 = 2.0 and σ = 0.6. 
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Fig. 3. Effect of the orientation angle of the main axes on the characteristic limit time 𝜏𝐶  for K∗ = 2.5, 𝐽𝑎 = 2.0 and 

σ = 0.6. 

 
Fig. 4. Effect of the time on the dimensionless thickness of the liquid film for various values of Jakob number for 

σ = 0.6. 

 
Fig. 5. Effect of the time on the dimensionless thickness of the liquid film for various values of heat capacity ratio σ 

for  𝐽𝑎 = 10.0. 

 

Fig. 6. Effect of the ratio of the anisotropic permeability coefficients on the heat transfer rate 𝑁𝑢𝑥 𝑅𝑎𝑥,𝐿
1 2⁄⁄  for 𝜑 =

30°, 𝐽𝑎 = 2.5 and σ = 0.6. 
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Fig. 7. Effect of the orientation angle of the main axes on the heat transfer rate 𝑁𝑢𝑥 𝑅𝑎𝑥,𝐿
1 2⁄⁄  for K∗ = 3.0, 𝐽𝑎 = 2.5 

and σ = 0.6. 

Nomenclature 

𝑎, 𝑏, 𝑐  Anisotropy constants in permeability 

A Dimensionless film thickness, δL L⁄  

𝑐𝑃 Specific heat capacity of fluid at constant pressure (𝐽. 𝑘𝑔−1. 𝐾−1) 

𝑔  Gravitational acceleration (𝑚. 𝑠−2) 

h Latent heat of condensation (J. kg− 1) 

𝐽𝑎 Jakob number, 𝐽𝑎 =
𝐶𝑝𝐿(𝑇𝑆−𝑇𝑊)

 ℎ𝐿𝑣
 

𝐾 Flow permeability anisotropic tensor 

𝐾1, 𝐾2 Flow permeability along the principal axes 𝑥, 𝑦 respectivily (𝑚2) 

𝐾∗  Anisotropic permeability ratio, 𝐾1 𝐾2⁄  

𝑘𝐿 Effective thermal conductivity of the liquid film in porous medium (𝑊.𝑚−1. 𝐾−1) 

𝐿 Height of the verticale surface (𝑚) 

𝑁𝑢𝑥  Local Nusselt number 

𝑃 Pressure (𝑃𝑎) 

𝑞 Local heat transfer rate transmitted to the condensing surface 

𝑅𝑎𝐿 Rayleigh number, 𝑅𝑎𝐿 =
𝐾1𝑔𝐿

𝜇𝐿𝛼𝐿
(𝜌𝐿 − 𝜌𝑣) 

𝑅𝑎𝑥,𝐿 Local Rayleigh number 

𝑇 Temperature (𝐾) 

𝑡 Time (s) 

𝜏 Dimensionless time 

𝜏𝐶  Dimensionless time of the changing flow mode from transient to steady state 

V  Velocity of the liquid film in the porous medium (𝑚. 𝑠−1) 

𝑢𝐿 , 𝑣𝐿 Velocity components in 𝑥, 𝑦 directions (𝑚. 𝑠−1) 

𝑥, 𝑦 Cartesian coordinates (𝑚) 

 

Greek symbols 

𝛼𝑐 Thermal diffusivity of the fluid-filled porous medium (𝑚2. 𝑠−1) 

𝛿𝐿 Liquid film thickness (𝑚) 

𝜂 Similarity variable 

𝜇 Dynamic viscosity of the fluid (𝑘𝑔.𝑚−1. 𝑠−1) 

𝜆 Parameter defined in equations (38) and (41) 

θL Dimensionless temperature profile in the liquid film, (𝑇𝐿 − 𝑇𝑆) ∆𝑇𝐿⁄  

𝜌 Density of the fluid (𝑘𝑔.𝑚−3) 

𝜎 Heat capacity ratio, 𝜎 = (𝜌𝑐𝑝)𝑐
(𝜌𝑐𝑝)𝐿

⁄  

φ Orientation angle of main axes (°) 
 

Superscript 

∗ Dimensional quantities 

Subscripts 

𝑝 refers to porous medium 

𝐿 refers to liquid region 

𝑠 refers to saturation condition 

𝑤 refers to the vertical surface 
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CONCLUSIONS 

This study copes with liquid film condensation along a 

vertical surface embedded in anisotropic porous medium 

whose principal axes are non-coincident with the gravity 

vector. With the formulation of the problem on the basis 

of the generalized Darcy’s law, boundary-layer equations 

are solved analytically by the method of characteristics, 

as time is taken into account in equation of energy. By 

the end, the results obtained for the temperature profile 

assuming as a complementary error function have the 

same trends with those for the temperature profile 

assuming as linear function (Sanya et al., 2021):  

1. The transient convective flow along a vertical plate has 

a singularity characterised by the transition that the 

convective flow undergoes from a regime where 

instabilities movements in the porous medium prevail to 

a regime characterised by stationary movements which 

take place from a limit dimensionless time 𝜏𝐶  counted 

from the initial moment of heating of the surface by the 

initiation of the condensation phenomena. This time 

𝜏𝐶  corresponds to the time from which the characteristic 

quantities of heat and mass transfer suddenly change 

from the transient one-dimensional conduction regime to 

a two-dimensional natural convection regime near to the 

vertical surface where a steady-state regime now 

prevails. The limiting dimensionless time 𝜏𝐶  to reach the 

steady state increases with increasing the anisotropy ratio 

𝐾∗ and the orientation angle 𝜑 of the main axes of the 

porous medium.  

2. The dimensionless thickness of the liquid boundary 

layer shows the same pattern as that obtained for the case 

of isotropic porous medium in the transient regime by 

previous work.  

3. The heat transfer rate depends on the time variable in 

the transient regime and the anisotropy permeability 

parameters in the steady state. 
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