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ABSTRACT: A model made of the composition of concepts and artificial inelegance is one of best methods
for modeling. In this study, the artificial neural network was used for modeling of environmental impacts in
eggplant production of Guilan province in Iran. The initial data were calculated from farmers in the studied
area by questionnaire method in the studied region. The eleven environmental impacts were considered for
life cycle assessment of eggplant production. Accordingly, the CML 2 baseline 2000 method was applied in
SimaPro 8.0.3 software package. The results indicated the global warming potential was calculated about 253
kg CO2 eq. as most important environmental index for production of 1 ton eggplant. As can be seen,
machinery had the highest share of emission in all indices; followed by nitrogen and pesticides. In another
hands, the ANN model developed based on Levenberg-Marquardt learning Algorithm. The seven items of life
cycle inventory and environmental impacts was considered for inputs and outputs of model, respectively. The
7-8-8-11 structure was the best topology for prediction of environmental impacts. In the last part of this
study, the sensitivity analysis was done for determination of robustness of calculated model. The results
indicated the sensitivity values were varied between 0.638 and 0.996 and nitrogen had the most rates among
all input for sensitivity analysis in most indicators; while the lowest rate of sensitivity was belonged to
phosphate and potassium, approximately.
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INTRODUCTION

Eggplant (Solanum melongena) is a species of
nightshade commonly known in British English as
aubergine and also known as brinjal, brinjal eggplant,
melongene, garden egg, or guinea squash. As a member
of the genus Solanum, it is related to both the tomato
and the potato. It was originally domesticated in India
from the wild nightshade, the thorn or bitter apple.
China, Mainland China and India have the highest rate
of eggplant production. After these countries, Iran had
fourth largest producer of eggplant in the world
(Nabavi-Pelesaraei et al., 2013a). Life cycle assessment
(LCA) is defined as the “compilation and evaluation of
the inputs, outputs and potential environmental impacts
of a product system throughout its life cycle” (Guinée,
2004). Thus, LCA is a tool for the analysis of the
environmental bur-den of products at all stages in their
life cycle from the extraction of resources, through the
production of materials, product parts and the product
itself, and the use of the product to the management
after it is discarded either by reuse, recycling or final
disposal (in effect, therefore, ‘from the cradle to the
grave’). The main applications of LCA are in: (a)
analyzing the origins of problems related to a particular
product; (b) comparing improvement variants of a

given product; (c) designing new products; and (d)
choosing between a numbers of comparable products
(Guinée, 2004).
Artificial neural networks (ANNs) have high learning
ability and capability of identifying and modeling the
complex nonlinear relationships between the input and
the output of a system (Nazghelichi et al., 2011). It
does not require a prior knowledge of relevance among
parameters and estimates the respond based on the
trained data in the investigated range (Karimi et al.,
2012). ANN can learn the complex transport processes
of a system from given inputs and observed outputs,
serving as an instrument for universal function
approximation (Chen and Kim, 2006). The basic
advantage of ANN is that it does not need any
mathematical model since an ANN learns from
examples and recognizes patterns in a series of input
and output data without any prior assumptions about
their nature and interrelations (Nourbakhsh et al.,
2014). In the recent years, many studied considered to
environmental impacts assessment and their modeling
by intelligence methods. LCA of bean production in the
Prespa National Park was investigated by Abeliotis et
al. (2013).
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In another study carried out by Roy et al. (2007), Life
cycle of rice was evaluated to determine environmental
load and production cost of rice in Bangladesh.LCA of
Italian citrus-based products was studied by Beccali et
al. (2010). Khoshnevisan et al. (2013a) investigated the
modeling of environmental impacts of potato
production by ANN. The environmental impacts
modeled using fuzzy method in traditional and
consolidated rice production by Khoshnevisan et al.
(2014).
Based on the literature, there has been no study on
environmental emissions modeling for eggplant
production with respect to input emitter flow using
ANN. The purpose of this study was to model field
emissions of eggplant production in different impact
categories. ANNs used for prediction the environmental
indices of this production in Guilan province of Iran.

MATERIALS AND METHODS

A. Data collection and processing
This study follows our previous study which was
conducted on modeling and optimization of energy use
and greenhouse gas emissions of eggplant production
using artificial intelligence and multi-objective genetic
algorithm (Nabavi-Pelesaraei et al., 2013b).
Accordingly, data used in this study were obtained from
60 eggplant farms from 5 villages in Guilan province of
Iran in 2012–2013 crop years.

B. Life cycle assessment (LCA)
The working method for LCA is structured along a
frame work that has become the subject of world-wide
consensus and that forms the basis of a number of ISO

standards. This frame work divides the entire LCA
procedure into four distinct phases: goal and scope
definition, inventory analysis, impact assessment, and
interpretation. A full LCA includes each of these four
components (Khoshnevisan et al., 2013b).
Defining a meaningful boundary is very important
because the environmental problems of agricultural
systems can maintain during postharvest processes
when products are taken out fields. If we define the
farm gate as the system boundary, we disregard the
differences in emissions due to transport and processing
of products. We also ignored how differences in the end
use of the product and its by-products can affect net
environmental impacts.

Due to unavailability of complete set of data we only
focused on farm emissions and we assumed that all the
emissions were related to the input materials which
used in potato cultivation in the farms. For instance, no
significance was attached to transportation in this study.
All direct and indirect field emissions were calculated
as the proposed method by Nemecek and Kagi (2007).
The impact categories used in this study are listed in
Table 1. The CML 2 baseline 2000 developed by the
Centre of Environmental Science of Leiden University
was used as an impact-evaluation method
(Khoshnevisan et al., 2013a). The emphasis should be
laid on the fact that this baseline does not encompass
some impact categories like land use, water use, etc.
For the environmental impacts analysis of the systems
under study, the functional unit adopted was 1 ton of
harvested eggplant.

Table 1: Environmental impact categories and measurement units for
each category.

Impact categories Nomenclature Units

Abiotic depletion AD kg Sb eq.
Abiotic depletion (fossil fuels) ADF MJ
Global warming potential GWP kg CO2 eq.
Ozone layer depletion potential ODP kg CFC-11 eq.
Human toxicity potential HTP kg 1,4-DB eq.
Fresh water aquatic ecotoxicity FAE kg 1,4-DB eq.
Marine aquatic ecotoxicity MAE kg 1,4-DB eq.
Terrestrial ecotoxicity potential TEP kg 1,4-DB eq.
Photochemical oxidation PO kg C2H4 eq.
Acidification potential AP kg SO2 eq.
Eutrophication potential EP kg PO4

-2 eq.

C. Life cycle inventory (LCI)
The life cycle inventory analysis phase (LCI phase) is
the second phase of LCA. It is an inventory of
input/output data with regard to the system being
studied. It involves collection of the data necessary to
meet the goals of the defined study (ISO, 2006).

In this section input materials, energy flows and
assumptions considered in the LCI are elaborated. The
detailed quantitative data for eggplant production
systems upon which the analysis was based are
summarized in Table 2.
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Table 2: Life cycle inventory data for eggplant production.

MaxMinAverageUnitsItems

61.774.1123.05kg1. Machinery
59.175.9224.21L2. Diesel fuel

kg3. Chemical fertilizer
32.214.2613.94(a) Nitrogen
13.781.825.96(b) Phosphate (P2O5)
7.951.053.44(c) Potassium (K2O)
1.760.100.68kg4. Pesticide
0.050.020.04kg5. Seed

D. Development of ANN model
During the past 15 years there has been a substantial
increase in the interest on artificial neural networks.
The basis of ANN modeling methods is biological
neuron activities. Neurons in the brain learn to respond
to a situation from a collection of examples represented
by inputs and outputs. Scientists have tried to mimic the
operation of the human brain to solve various problems
by using mathematical methods. They have found, and
used, various networks to solve practical problems.
Neural networks include a wide range of mathematical
methods and artificial neural networks (ANNs), the
commonly used term to differentiate them from
biological neural networks, have become one of the
most important modeling method that have been used
more than other modeling methods for complex input-
output dependencies (Taki et al., 2012). In this study,
the LCI items were considered as inputs of ANN
model; while the outputs of ANN model were
environmental impacts. Moreover, the Levenberg-
Marquardt learning Algorithm was used for training
ANNs. The Levenberg-Marquardt algorithm is the most
widely used optimization algorithm. It outperforms
simple gradient descent and other conjugate gradient
methods in a wide variety of problems (Ranganathan,
2004). Also, the one and two hidden layers were the
connecter between inputs and outputs for ANN
modeling.
All links between input layers and hidden layers
composed the input weight matrix and all links between
hidden layers and output layers composed the output
weight matrix. Weight (w) which controls the
propagation value (x) and the output value (O) from
each node is modified using the value from the
preceding layer according to Eq. (1) (Zhao et al., 2009):

( )∑+= ii xwTfO (1)

where ‘T’ is a specific threshold (bias) value for each
node. ‘f ’ is a non-linear sigmoid function, which
increased monotonically. Error was calculated at the
end of training and testing processes based on the
differences between targeted and calculated outputs.

The error function can be expressed as (Deh Kiani et
al., 2010):
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where ‘p’ is the index of the p training pairs of vectors,
‘k’ is the index of element in the output vector, ‘zpk’ is
the kth element of the output vector when pattern p is
presented as input to the network, and ‘tpk’ is the kth

element of the pth desired pattern vector.
The mean square error (MSE) is one of the most
common measures used to forecast accuracy in ANN. It
is an average of the squares of the difference between
the actual observations and those predicted. The
squaring of the errors tends to heavily weight statistical
outliers, affecting the accuracy of the results. Moreover,
the MSE can be showed networks capability in
modeling.
The MSE can be written as:
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where ‘ti’ and ‘zi’ are the actual and the predicted
output for the ith training vector, and ‘N’ is the total
number of training vectors (Safa and Samarasinghe,
2011).
The coefficient of determination (R2) and mean
absolute percentage error (MAPE), which show the
mean ratio between the error and the experimental
values, are defined as:
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where ‘n’ is the number of the points in the data set,
and ‘t’ and ‘z’ are actual output and predicted output
sets, respectively (Tang and Yin, 2012).

E. Sensitivity Analysis
Sensitivity Analysis via ANN (SAANN) can rank and
select the major and input variables through its analysis.
SA with partial differential is based on a calculation of
input, weights and output variables from the ANN
simulation. The calculation of sensitivity, S is as
follows (Sung, 1998):
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Where O is output and H is a hidden node that has to be

differentiated, 1
ijw and 2

ijw are the weights with

respthe the hidden layerirst and second connection of
hidden layer. The first connection is for input and
hidden layer and the second connection is for hidden
node and the output layer (Sung, 1998).
Basic information on LCI of eggplant production was
entered into Excel 2010 spreadsheets, Matlab R2014a
and SimaPro 8.0.3 software package.

RESULTS AND DISCUSSION

A. Environmental impact assessment of eggplant
production
Studying the articles and essays which we formerly had
a review of them in the review of literature had

provided us with the handy hints on a constructive
selection of the impact categories for the present study.
The prevalence of the selected impact categories were
observed in the most of studies which we had
investigated, additionally, the employment of CML 2
baseline 2000 to calculate impact categories had been
the most frequent approach. However some impact
categories such as stratospheric ozone depletion
potential (ODP), fresh water aquatic ecotoxicity
potential (FAETP) and photochemical ozone creation
potential (POCP) could be included in the conduct of
the current study, Brentrup et al. (2004a) argued that
the selected impact categories; the above mentioned
selected impact categories play the most pivotal role to
carry out a LCA study. Therefore the others like POCP
and ODP are regarded as dispensable categories for
arable crop production (Abeliotis et al., 2013). Farm
emissions encompassed emissions to air, water and soil
from the field. After calculating all emissions, all of
them were converted into the reference substances
according to each impact category (characterization
factors). For instance in the impact category of GWP all
the emissions were converted to CO2 equivalent
according to CML guidelines (Guinée et al., 2002). The
results of the potential environmental impacts of the
eggplant cultivation are illustrated in Table 3. The
results revealed the total GWP was calculated as 252.99
kg CO2 eq. t-1. The another impacts including AD,
ODP, HTP, PO, AP and OP were computed as 0.003 kg
Sb eq., 1.54E-05 kg CFC-11 eq., 0.13 kg C2H4 eq., 1.23
kg SO2 eq., 3.84 kg PO4

-2 eq., respectively.

Table 3: Environmental impact categories and measurement units for
each category.

Impact categories Units Values

Abiotic depletion kg Sb eq. 0.003
Abiotic depletion (fossil fuels) MJ 2946.53
Global warming potential kg CO2 eq. 252.99
Ozone layer depletion potential kg CFC-11 eq. 1.54E-05
Human toxicity potential kg 1,4-DB eq. 302.25
Fresh water aquatic ecotoxicity kg 1,4-DB eq. 95.83
Marine aquatic ecotoxicity kg 1,4-DB eq. 224455.46
Terrestrial ecotoxicity potential kg 1,4-DB eq. 0.31
Photochemical oxidation kg C2H4 eq. 0.13
Acidification potential kg SO2 eq. 1.23
Eutrophication potential kg PO4

-2 eq. 3.84

Nemecek et al. (2011) in their studies showed that the
N2O and CO2 emissions of chemical fertilizers made
high contribution to GWP. Management of using
chemical fertilizers can be an appropriate way for
reducing the environmental impacts on potato
production. The evaluation of the type of fertilizer
illustrates the necessity of knowing the composition of
the fertilizers and provides explicit possibilities to
optimize fertilization practices. In some situations, the
type of mineral fertilizer is the main determinant of

emissions at the whole farm level and changing the type
of fertilizer could significantly reduce the
environmental impact (Charles et al., 2006). The use of
chemical fertilizers should happen cautiously due to
their permanent effect on environment. Other LCA
studies have demonstrated that, for example, the use of
urea or organic fertilizers (e.g. slurry) as N sources
results in much higher APs (Küsters and Jenssen,
1998).
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The distribution of emissions of each input is
demonstrated in Fig 1. The results indicated that
machinery had the highest share of emission in all of
environmental impacts; followed by nitrogen fertilizer
and pesticide, respectively. The import of non-standard
machinery and them was the main reason of machinery
share in total emissions. In another hand, the false
opinion of studied area farmers was the reason for
irregular consumption of chemical fertilizers (especially
nitrogen) and pesticides. In fact, the farmers believed
the more use of chemical inputs can be increased the

yield, significantly. So, the education of true pattern can
be improved this bad condition of environmental
impacts. Moreover, the lack of proper pricing policy
(for example low price of chemical fertilizer and same
price of chemical products and organic products) was
another main problem in the agricultural system of the
Guilan province Iran. Obviously, the farmers like to
more yield and applied more chemical inputs when
these price is low. Accordingly, it’s suggested the
supervision of input pattern should be done by local
experts because the local farmers had the trust to them.

Fig. 1. Contribution of inputs to environmental impact categories.

B. Evaluation and analysis of model
The ANN model developed for the prediction of
environmental impacts based on LCI inputs. From 60
farmers, 45 units were considered for training (75% of
total). Obviously, 15 units remained for testing of
calculated topology. The results indicated that the
topology with 7-8-8-11 structure had the best model for
modeling of environmental impacts. As is clear, the two
hidden layers results were better than one layer.

As above-mentioned, the R2, RMSE and MAPE were
calculated for description of model. Accordingly, the
results of them are given in Table 4. Based on results,
the R2 were varied between 0.913 and 0.977. Moreover,
0.007 to 0.060 was the range of RMSE in the ANN
model and the range of MAPE was found between
0.015 and 0.101. So, it can be said the ANN model was
appropriate for prediction of environmental impacts,
significantly.

Table 4: Network performance of environmental prediction for the
best topology.

Environmental
indices

R2 RMSE MAPE

AD 0.997 0.023 0.096
ADF 0.947 0.030 0.022
GWP 0.948 0.045 0.063
ODP 0.957 0.007 0.015
HTP 0.953 0.059 0.080
FAE 0.913 0.052 0.095
MAE 0.933 0.060 0.064
TEP 0.936 0.056 0.084
PO 0.939 0.039 0.040
AP 0.919 0.035 0.060
EP 0.977 0.030 0.101
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Khoshnevisan et al. (2013a) reported the ANN model
with 11-10-6 structure was the best model for
prediction of environmental indices of potato
production in Esfahan province of Iran. Their results
showed the ANN model can be predicted the
environmental impacts with high accuracy. In another
study, researchers founded the two hidden layers can be
use for achieving more accuracy in ANN model for
modeling of environmental impacts of strawberry
production (Khoshnevisan et al., 2013b).

C. Sensitivity analysis of environmental impacts
The robustness of ANN model was determined by
sensitivity analysis of LCI in environmental impacts.
Table 5 illustrated the results of sensitivity analysis in
this study. According to results, the rate of sensitivity
value was calculated between 0.638 and 0.996. So, it
can be said the high robustness was existed in
calculated ANN model. As can be seen in Table 5, the
nitrogen was the high sensitive rate among all input,
approximately; while the other chemical fertilizers
(phosphate and potassium) had the lower value of
sensitivity in this study.

Table 5: Sensitivity analysis of life cycle inventory.

Sensitivity AD ADF GWP ODP HTP FAE MAE TEP PO AP EP

1. Machinery 0.973 0.904 0.729 0.664 0.913 0.692 0.793 0.962 0.900 0.638 0.736
2. Diesel fuel 0.991 0.876 0.887 0.933 0.721 0.740 0.759 0.996 0.671 0.710 0.747
3. Nitrogen 0.723 0.960 0.726 0.977 0.699 0.986 0.943 0.952 0.867 0.667 0.706
4. Phosphate (P2O5) 0.924 0.710 0.662 0.694 0.722 0.758 0.796 0.729 0.878 0.961 0.653
5. Potassium (K2O) 0.687 0.888 0.717 0.730 0.906 0.722 0.660 0.940 0.864 0.691 0.801
6. Pesticide 0.793 0.795 0.878 0.871 0.762 0.939 0.861 0.948 0.724 0.921 0.710
7. Seed 0.756 0.996 0.708 0.786 0.700 0.699 0.814 0.808 0.959 0.779 0.692

Khoshnevisan et al. (2013a) reported that the area has
the inflectional effect on GWP, followed by nitrogen,
electricity and irrigation water in potato production. In
another study, the high sensitivity rate on GWP was
belonged to potassium in hazelnut production
(Sabzevari and Nabavi-Pelesaraei, 2015).

CONCLUSION

In this study the environmental impacts of eggplant
production was determined and the ANN method was
used for modeling and sensitivity of the LCA indices. It
should be noted, this research was done in Guilan
province of Iran as one of main eggplant producer in
north of Iran. However, the results indicated the high
consumption of non-renewable resources was the main
reason for high rate of emissions in several
environmental impacts. The rate of GWP was
calculated about 253 kg CO2 eq. for eggplant
production. Also, machinery was the most effective
inputs in all of impacts. The modeling results
demonstrated ANN model with 7-8-8-11 structure was
the best topology for prediction of environmental
impacts. According to sensitivity analysis results, the
sensitivity values were varied between 0.638 and 0.996
and nitrogen had the most rates among all input for
sensitivity analysis in most indicators.
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