Biodiversity of Mosquitovorus dragonflies (Order: Odonata) from Kolhapur district including Western Ghats

T.V. Sathe and A.R. Bhusnar

Department of Zoology, Shivaji University Kolhapur (MS), India

ABSTRACT : Biodiversity protection and conservation is on national and international agenda and responsible for sustainable development of a region or a country and secondly dragonflies are potential bio control agents of mosquitoes. Therefore, biodiversity of mosquitovorus dragonflies of Kolhapur district including Western Ghats of Maharashtra has been studied. In all, 43 species of dragonflies were found feeding on mosquitoes. The important genera includes *Gomphus, Burmagomphus, Cyclogomphus Microgomphus, Anax, Macromia, Orthetrum, Potomarcha,* Pantala, Chlorogomphus, Epophthalmia, Indionyx, Amphithemis, Hylaeothemis, Heliogompuhus Davidiodies Bradinopyga, Crocothemis and Lameligomphus.

Keywords : Diversity, mosquitovorus dragonflies, Kolhapur, western Ghats.

INTRODUCTION

Dragonflies are commonly found near ponds, pools, rivers, streams, marshy places etc. They are reported from sea levels to over 3,600 M and from brakish marshy areas to desert lands from all over the world. Out of 5000 species reorted from the word, 500 species belonging to 139 genera of 17 families have been reported from India (Kulkarni and Prasad 2002). Prasad and Kulkarni, (2001) reported 71 species from Nilgiri Biosphere reserve and its environment. Prasad and Kulkanri, (2002) also reported additional 34 species from Kerala. From Western Ghats 138 species have been reported, but most of the studies are confined to Western Ghats of Kerala and very little attention is paid on the Western Ghats of Maharashtra except the work of Sathe and Shinde, (2008 a and b). Western Ghats is among the 18 hot spots of the world from the view point of conservation and protection of biodiversity. Secondly, dragonflies are potential bio-control agents of mosquitoes. Therefore, present study was undertaken. In past, Fraser (1933, 34, 36), Prasad (1995, 1996). Prasad and Varshney (1995), Prasad and Kulkarni (2001, 2002), Kulkarni and Prasad (2002), Sathe and Shinde (2006, 2007, 2008 a. b.) etc have worked on biodiversity of Odonata from India.

MATERIAL AND METHODS

Survey of dragonflies was made by visiting various Tahsils of Kolhapur district including westerns Ghats at weekly interval from the years 2008 - 10. Mostly, spot observation was followed by photography and rarely Odonates were collected from the Ghats for their identification. After noting characteristics the live dragonflies were released in the environment from where they collected. The dragonflies were identified by consulting Fraser (1933, 34, 36); Lahiri (1987), Silsby (2001), Sathe and Shinde (2008 a) etc. and mosquitoes were identified by consulting Smith (1973) and Sathe and Tingare (2010). Prey index have been prepared by spot observations and by providing 50 mosquito larvae to naids of dragonfly species in glass Aquarium size $3' \times 2' \times 1'$ (L \times W \times H).

RESULTS

The results recorded in table-1 shows that 31 species of mosquitovorus dragonflies were common and 12 species were rare in Kolhapur district including Western Ghats, Maharashtra.

Table 1 : Biodiversity, occurrence and mosquito preys of dragonflies.

Sr. No.	Dragonfly species	Sub-family	Prey species	Occurrence
1.	Gomphus sp.	Gomphinae	Mosquitoes	Common
2.	Gomphus nilgiricus (Laid law)	Gomphinae	Anopheles spp.	Common
3.	Burmagomphus laidlaw (Fraser)	Gomphinae	Culex spp.	Common
4.	Burmagomphus (Fraser) pyramidalis	Gomphinae	Culex spp.	Common Contd

FAMILY - GOMPHIDAE

5.	Davidioides martini (Fraser)	Gomphinae	Anopheles spp.	Common
6.	Mesogomphus lineatus (Selys)	Gomphinae	Aedes spp. Anopheles spp.	Rare
7.	Lamelligomphus (Fraser) malbarensis	Gomphinae	Culex spp.	Common
8.	Lamelligomphus nilgiricus (Fraser)	Gomphinae	Aedes spp.	Rare
9.	Megalogomphus superbus (Fraser)	Gomphinae	Culex spp.	Rare
10.	Cyclogomphus ypsilon (Selys)	Gomphinae	Culex spp.	Common
11.	Cyclogomphus heterostylus Gomphinae (Selys)	Culex spp.	Common (Sept. oct)	
12.	Merogomphus longistigma tamaracherriensis (Fraser)	Gomphinae	Culex spp.	Rare
13.	Onychogompus striatus (Fraser)	Gomphinae	Culex spp.	Rare
14.	Acrogomphus sp.	Epigomphinae	Culex spp.	Common
15.	Mcirogomphus sp.	Epigomphinae	Anopheles spp.	Common
16.	Mcirogomphus longistigma (Fraser)	Epigomphinae	Anopheles spp.	Rare
17.	Heliogomphus sp.	Epigomphinae	Aedes spp.	Common
18.	Macrogomphus annulatus	Epigomphinae	Culex spp.	Common
19.	Macrogomphus (Fraser) Wynaadicus	Epigomphinae	Culex spp. Aaedes spp.	Common
20.	Ictinus sp.	Inctinae	Aedes spp.	Rare
FAMILY	- CORDULEGASTERIDAE			
21.	Chlorogomphus (Fraser) xanthoptera	Chlorogomphinae	Culex spp.	Common
22.	Chlorogomphus campioni (Fraser)	Chlorogomphinae	Culex spp.	Common
FAMILY	– AESHNIDAE			
23.	Anax parthenope (Selys)	Anaxinae	Aedes spp.Culex spp.	Rare
24.	Anax immaculifrons (Rambur)	Anaxinae	Aedes spp.	Common
25.	Gynacantha basiguttata (Selys)	Aeshinae	Aedes spp.	Common
26.	Gynacantha millaridi (Fraser)	Aeshinae	Anopheles spp.	Common
FAMILY	– LIBELLULIDAE			
27.	Macromia indica	Corduliinae	Anopheles spp. Culex	Common

28.	Macromia flavincia (Selys)	Corduliinae	Anopheles spp. Culex spp.Adesesh	Rare
29.	Macromia flavovittata (Fraser)	Corduliinae	Anopheles spp. Culex spp.Adesesh	Rare
30.	M. cingulata (Rambur)	Corduliinae	Anopheles spp. Aedes spp.Culex spp.	Common
31.	Epophthalmia vittata vittata (Burmeister)	Corduliinae	Anopheles spp.	Common
32.	Epophthalmia frontalis binocellata (Fraser)	Corduliinae	Anopheles spp. Aedes spp.	Common
33.	Macromidia sp.	Corduliinae	Aedes spp.	Common
34.	Idionyx optata (Selys)	Corduliinae	Culex spp.	Common
35.	Hemicordulia asiatica (Selys)	Corduliinae	Anopheles spp. Culex spp.	Common
36.	Amphithemis mariae (Laidlaw)	Libellulinae	Culex spp.	Rare
37.	Hylaeothemis fruhstorferi (Kirsch)	Libellulinae	Aedes spp.	Common
38.	Potamarcha obscura (Rambar)	Libellulinae	Culex spp. Aedes spp.	Common
39.	Orthetrum sabina (Drury)	Libellulinae	Culex spp.	Common
40.	Pantala faviscens (Rambur)	Libellulinae	Anopheles spp. Culex spp.	Common
41.	Sympetrum sp.	Libellulinae	Anopheles spp.	Rare
42.	Crocothemis servilia servilia (Drury)	Libellulinae	Anopheles spp. Aedes spp.Culex spp.	Common
43.	Bradinopyga jaminata (Rambur)	Libellulinae	Anopheles spp., Culex spp., Aedes spp.	Common

DISCUSSION

Augmentative release of biocontrol agents is practiced routinely in several countries for the suppression of mosquitoes (Corbet 1999). Thomas et al., (1988) studied efficacy of *Bradinopyga jaminata* and *Brachythemis contaminata* against mosquito larvae while, Santamarin and Mijares (1986) studied the mosquito larvae feeding potential of *Pantala flaviscens* and *Tramea abdominalis*. They tested *Culex quinquefaciatus* larvae against above two dragonflies and found that above dragonflies are good biocontrol agents of mosquito *C. quinquefaciatus*. The larvae of *Anopheles sinesis* have also been tested against *Sympetrum frequens* (Urabe *et al.*, 1986). Very interestingly, *Aedes aegipti* mosquito population was suppressed upto 92% in Myanmar by using a libellulid dragonfly *Czocontenemis servelia* (Sebustian *et al.*, 1990).

Recently, Sathe and Shinde (2008 b) prepared a index of dragonflies and their prey mosquitoes from Orus region of Sindhudurg district of Maharaqshtra (Western Ghats). Sathe and Shinde (2008, b) also demonstrated the use of dragonflies in insect pest management rather than mosquitoes. The present work will add great relevance in designing mosquito biological control programme by using dragonflies.

ACKNOWLEDGMENT

Authors are thankful to DBT. NEW DELHI for providing financial assistance to the Res. Project (BT/PR - 9962/AGR/05/396/2007).

REFERENCES

- Corbet P.S. (1999). Dragon flies: Behaviour and ecology of Odonates, Corn. Uni. Press new and Harley Books, Great Horetesty, UK. 1.829
- Fraser, F.C. (1933, 1934 and 1936). Fauna of British India including Ceylon and Burma. Odonata, 1: XIII + 423pp.2: XXIII + 398 pp. 3: XI+ 461pp., Taylor and Francis, London.
- Fraser, F.C. (1957). A classification of the Order Odonata R. Zool. Soc. N.S.W. Sydney, 133pp.

- Kulkarni, P.P. and Prasad, M. (2002). Insecta: Odonata Zool. Survey India: Wetland Ecosystem Series No. 3: Fauna of Ujani: 91-104.
- Lahiri, A.R. (1987). Studies on odonate fauna of Megalaya. Rec. Zool. survey of India Misc. publ. Paper **99:** 402pp.
- Prasad, M. (1995). On a collection of Odonata from Goa, India, Fraseria (N.S.), **12**(2): 7-8.
- Prasad, M. and Varshney, R.K. (1995). A checklist of Odonata of India including data on larval studies. Oriental Ins., 29: 385 – 428.
- Prasad, M. (1996). An account of the Odonata of Maharashtra state, India. Rec. Zool survey India, 95(3-14): 305 -327.
- Prasad, M. (1999). Faunal diversity in India: Odonata. Zoological survey of India, Calcutta, 177-178.
- Prasad, M. and Kulkarni, P.P. (2001). Insecta: Odonata Zool. Surv. India: fauna of conservation Area series 11: fauna of Nilgiri biosphre Reserve: 73 – 83.
- Prasad, M. and Kulkarni, P.P. (2002). Insecta: Odonata Zool Surv. India: Fauna of Eravikulam National Park. Conservation Area series, 13: 7.9
- Santamarina, H. and Mijares, A. (1986). Odonata as bioregulators of the larval phase of mosquitoes. *Revi.cubana de. Medina-Tropical*, 38111: 89-97.
- Sathe, T.V. and Shinde, K.P. (2006). On a new species of the genus *Rhyothemis* Hagen (Order: Odonata) from India. J. Nat. Con, 18: 2421-424.

- Sathe, T.V. and Shinde, K.P. (2007). On a new species of the genus Crocothemis Brauer from Western Ghats, Maharashtra. Flora and Fauna, 2(13): 367-370.
- Sathe, T.V. and Shinde, K.P. (2008a). Dragonflies and pest management. DPH New Delhi-1-179.
- Sathe, T.V. and Shinde, K.P. (2008b). Biodiversity of dragonflies from Orus Sindudurga, Maharashtra. Proc. Nat. Sem. Recent. Trends Life sci. Belgaum 2: 87-88.
- Sathe, T.V. and Tingare, B.P. (2010). Biodiversity of mosquitoes. Mangl publ. New Delhi, 1-217.
- Sebustian, A; Myint Sein, Myat Thu. And Philip S. Corbet. (1990). Suppression of Aedes aegypti (Diptera: Culicidae) using augumentative release of larvae Odonata: Libellulidae with community participation in Yangon, Myanmar. Bull. Ento Res., 80: 223-232.
- Silsby, J. (2001). Dragonflies of the world: Natural History Museum and Plymbridge Distritutors Ltd. 1: 124.
- Smith, K.G.V. (1973). Insects and other arthropods of medical importance. T. B.M. London 37–107.
- Thomas, M; Daniel, M.A. and Gladsutone, M. (1988). studies on the food preference in three species of Dragonfly naiads with particular emphasis on mosquito larvae predation. Bicovas, 1: 34-41.
- Urabe, V.K. Ikemoito, T and Aida. (1986). Studies on Sympetrum frequency (Odonata: Libellulidae) nymphs as natural enemy of mosquito larvae Anopheles sinsensis invice fields Z, Evalution of predatory capacity and efficiency in laboratory. Jap. J. Sanid. Zool, 3(37): 213-230.