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ABSTRACT: In this paper, we applied a Bayesian dynamical seasonal modelling of count data. Their 
usefulness is illustrated by their application to Acute Encephalitis Syndrome (AES) cases from Gorakhpur 

regions and by comparing them with the widely used seasonal autoregressive integrated moving average 

(SARIMA) models for seasonal modelling. The outbreak of encephalitis causes many deaths and long-term 

disabilities among children and young adults. We considered the AES case data of Gorakhpur from (Jan-12 

to Nov-17). We focus on the case of response variables following a Poisson distribution, concentrating on the 

dynamical seasonal harmonic model. The study helps the policy maker, future disease spread and a better 

understanding of high-risk months, which may be associated with AES cases. Prior knowledge of the disease 

outbreak is a main and essential step for policymakers to minimise the disease risk and mortality of children, 

and enhance health services, vaccination programmes, and other public health initiatives. 
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INTRODUCTION 

Acute Encephalitis Syndrome (AES), also known as 
‘Chamki Fever’ or Litchi Virus in India, is a unified term 
used for infections that cause inflammation and cause 
irritation or swelling in the brain. It represents (Rajnish 
et al., 2012) as an acute onset of fever and clinical 
neurological manifestations that include mental 
confusion, disorientation, delirium, or coma. This 
syndrome is very complex. It can happen by viruses, 
bacteria, fungi, and many more factors responsible for 
this disease. Japanese encephalitis (JE) virus is the most 
common cause of AES in India, with a union health 
ministry estimate attributing 5-35 per cent of cases due 
to JE. However, the syndrome is also caused by scrub 
typhus, dengue, mumps, measles, and even Nipah or 
Zika virus, etc. (Julia and Natasha 2007). In several 
cases, though, the cause of AES remains clinically 
unidentified. AES occurs every year, from July to 
November. The outbreak of this disease causes many 
deaths and long-term disabilities among children and 
young adults. 
In the southern State of Madras, which is now Tamil 
Nadu, the disease was first reported in India in 1955 
(Webb and Sheila 1956). According to the National 
Vector Borne Diseases Control Programme (NVBDCP), 
14,995 AES cases were diagnosed in 2019, with 710 
deaths across 23 states NVBDCP (2019). India records a 
fatality rate of 6 per cent in AES, and the fatality rises to 
25 per cent amongst children (NVBDCP, 2017). Assam, 
Bihar, Jharkhand, Uttar Pradesh, Manipur, Meghalaya, 
Tamil Nadu, Karnataka, and Tripura are the worst 
affected states by this disease. The AES is endemic in as 
many as 171 districts in 19 states (Jai and Shiv 2014). 
AES disease includes illnesses caused by many 

infectious as well as non-infectious causes. Most AES 
cases are due to viral encephalitis. JE has been 
considered to be the most important cause of AES in 
India (Rashmi, 1999), in Asia (Howard and Yuri 2005; 
Pam 2004). Many studies were executed in the past for 
AES status and their scenario in India (Rajnish et al., 
2012; Nagabhushana, 2012; Sourish and Anirban 2016; 
Jai et al., 2017). AES and its association with different 
diseases and possible factors are responsible for the AES 
cases investigated in several studies. A descriptive case 
study was carried out to determine the proportion of JE 
and dengue among AES cases (Sneha and Bellara 2016). 
In a case-control study, Girish et al. (2016) investigated 
AES cases and associated factors such as socio-
demographic and behavioural practices, the presence of 
pigs, chickens, birds, and other cattle, and the lychee 
orchard in the vicinity of households. The study 
summarised that literacy status, the occupational status 
of parents, travel using public transport modes, and the 
presence of a lychee orchard near the vicinity of 
households are factors in the occurrence of AES cases. 
Other factors identified in studies as responsible for AES 
cases include heat stroke, pesticides or hypoglycin A 
(Bandyopadhyay et al., 2015), very hot and humid 
temperatures, and undernutrition (Sen et al., 2014). A 
clinical study found that scrub typhus was also a cause 
of AES (Mahima et al., 2017; Mahima et al., 2018). All 
these studies are at the district level and survey- or 
questionnaire-based. 
The risk model for encephalitis was also designed at the 
micro-level, including factors such as villages, land use, 
pig population distribution, the occurrence of 
encephalitis cases, and the population under the age of 6 
(Nutan and Santanu 2019; Manoj et al., 2018). A 
Bayesian generalized additive model for AES cases was 
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used in association with meteorological variables by 
Praveen et al. (2021). Therefore, the literature survey 
shows that only survey-based studies on AES were 
reported by Praveen et al. (2021). Thus, there are a few 
studies on the statistical modelling of AES cases. 
However, dynamic seasonal modelling of time-series 
models has been applied in literature and in many fields. 
The seasonality behaviour of time series data appears 
very slowly in a non-stationary manner. But with 
dynamic seasonal models, seasonal behaviour is 
effectively treated by Christopher (1974). It also ensures 
that the seasonal component, which is non-stationary, is 
not confounded with the trend and that the seasonal 
pattern is predicted into the future over seasons that are 
consecutive time periods (Andrew and Andrew 1994). 
Later, a dynamic seasonal model was used in different 
fields where a seasonal pattern must be taken into 
account (Andrew, 1997; Giovanni et al., 2009; Serdar et 

al., 2021). 
The AES cases show seasonal behaviour as they appear 
to be high in the summer season. Moreover, with the 
analysis of SARIMA models, the observed series must 
be stationary (the mean and variance do not change with 
time). In addition, in real-life circumstances, it is 
impossible to get the data in a stationary form. As a 
result, some transformation is required, and the original 
series' information is thus lost. 
Dynamic models are a straightforward way to deal with 
linear and nonlinear data without the need to transform 
or alter the response variable, accounting for covariates 
with naturally time-varying behaviour. Thus, in this 
study, we attempt to apply the Bayesian dynamic 
seasonal model to model AES cases. The aim of this 
study is as follows: 
•  To establish a simple Bayesian dynamic seasonal 

model for AES cases and compare its model 
adequacy with the Bayesian seasonal ARIMA model 
via the WAIC technique. 

•  To investigate prediction ability of the Bayesian 
dynamic seasonal model with the help of an 
appropriate cross-validation technique. 

The Bayesian approach offers a basis for projecting 
future AES with uncertainty measures. The current study 
shall help the policymakers know the disease spread for 
the AES cases. Prior knowledge of the disease outbreak 
is a primary and essential step in minimizing the disease 
risk and mortality and enhancing health services, 
vaccination programs, and other public health initiatives. 
The rest of the paper is structured as follows. Section 2 
presents the SARIMA, dynamic Poisson and seasonal 
harmonic model for modelling AES; it also introduces 
the particle filtering which is applied for AES estimation 
in the paper. Data and software used in the paper are also 
discussed in the same section. Section 3 provides the 
Bayesian analysis of AES and its results, respectively. 
Section 4 concludes the paper and discusses its strengths 
and weaknesses. 

DATA AND MODELS 

The Gorakhpur division has seen a seasonal outbreak of 
AES with high fatalities since 1978 (Mahima and Komal 
2014), with 875 cases and 278 deaths reported in 1988 

(Rathi et al., 1993). According to the NVBDCP report of 
2019, a total of 2,871 cases of AES were reported, out of 
which 2,389 were in the Gorakhpur region (NVBDCP, 
2019). The monthly AES cases are taken for the study 
from 2012 to 2017 from the NVBDCP, India, reports. 
The Gorakhpur region is near rivers, lakes, irrigation 
canals, and rice fields. This flood-prone area is more 
favourable for AES cases. Therefore, we chose AES 
cases from Gorakhpur for further analysis in this study. 
Before an appropriate model is considered for AES data, 
the stationary behaviour of AES data is checked with a 
unit-root test. Through the ADF (Augmented Dickey-
Fuller) test of unit-root, we found that the p-value is 0.01, 
which is less than the critical value of 0.05. The null 
hypothesis is rejected against the alternative hypothesis 
(stationary time series). Thus, we found that the AES 
case data is stationary in trend. Further, Fig. 1 presents 
the time series plot of the AES data.  
Fig. 2, which shows the ACF and PCF of AES data, 
supports the fact that AES case data is seasonal. ACF and 
PACF both have cyclic behaviour; ACF has significant 
lag effects at 4,5,6,7,8,11,12,13,17,18, and so on. PACF 
decays gradually. Even if the data shows stationary 
behaviour, the seasonal or cyclic behaviour of time-
series data is not predictable without transformation, 
such as in trend non-stationary behaviour analysis (Rob 
and George 2018). Thus, we may treat AES data as non-
stationary, with no trends or seasonal behaviour. 
Therefore, for the purposes of analysing AES case data, 
we have tried dynamic seasonal models. As per the 
literature, there has been little work done on modelling 
the AES data. We applied seasonal ARIMA models for 
comparison purposes. 

 

Fig. 1. AES cases data of Gorakhpur, Uttar Pradesh, 
India during Jan-12 to Nov-17. 

SARIMA Models: ARIMA models are also used to 
analyse seasonal data. The ARIMA model was altered to 
model seasonality by incorporating additional seasonal 
terms. The seasonal ARIMA or SARIMA model 
followed by Hyndman et al., (2018) is ARIMA (p,d,q) 
(P,D,Q) s. 
Where, the terms p, d, and q are the non-seasonal order 
of auto-regressive, difference and moving-average 
respectively. The terms P, D, and Q are the seasonal 
order of auto-regressive, difference and moving-average 
respectively. The term s is the number of seasonal cycles. 
Given a dependent time series, ��: 1 < � <
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�mathematically the ARIMA seasonal model is written 
as: 

�1 − 
���1 − 

���� = � + ��
��
�

�
��
��
�

� ��  

The Box-Jenkins approach for AR, MA, ARMA, 
ARIMA and SARIMA models with their identification 

of order describe in book (Burnham et al., 2004). The 
detail with their orders such as AR(1), AR(2), MA(1), 
MA(2), etc. in univariate and multivariate respect given 
by William (2006). The time-series analysis with 
introduction and applications in different fields such as 
econometric and biology etc (Peter and Richard 2002; 
Chris, 2003; Rob and George 2018). 

 
Fig. 2. ACF (left) and PACF (right) plots of AES cases. 

Dynamic Poisson Model: The Poisson distribution is a 
very simple model for modelling count data that assumes 
that a small number of events occur randomly in a given 
time interval or location. The Poisson distribution may 
be used to model AES count data. There are several 
studies that used the Poisson model for modelling count 
data Mike (2013); Alexander et al., (2016), etc. For the 
dynamic Poisson model, the natural logarithm is often 
chosen as the link function; that is, ����� = log ����. A 
dynamic Poisson model in a dynamic form consisting of 
observation and state equations is as follows: 

����|��� = ��  �!"#�"#$#

%#! ,              (1) 

'(����� =  �� + )�,              (2) 

where, the term �� is the observed AES cases. The term 
��is the mean and variance of the 
Poisson model. The term )�  is the seasonal component. 
Dynamic Harmonic Seasonal Models: There has been 
different forms of harmonic or trigonometric 
representation of seasonal component, )� . Here for the 
harmonic seasonal model we follow the from given by 
Claus and Soren (2006) with g(.) as a link function: 

��+,��-� = �� + )�,               (3) 

��./ = �� + 0� , 0�~2�0, 4�567�,��                           (4) 

)�./ = ��8(9 :;<

 �= + >�9?� :;<


 �=,                           (5) 

�� = ��!/ + @A,� , @A,� ~2�0, BA,��                           (6) 

>� = >�!/ + @C,� . @C,�~2�0, BC,��              (7) 

Where, the term �� is the level or trend component of a 
time series, the terms )�, and 0� are seasonal and random 
components, respectively. The terms ��  and >� are 
harmonic coefficients. The terms @A,�  and @C,�  are the 
errors or white-noise components in the process ��  and 
>� underlying the data, respectively. Also assumed to be 
Gaussian distribution with mean zero and variances BA,� 

and BC,� , respectively. The term 9 is the number of 
seasons, for monthly time series it is 12, for weekly, 7, 
etc. AES cases are count data. Hence Poisson 
distribution may be used to model the AES count data. 
There were several studies uses Poisson model for count 
data, Mike (2013); Alexander et al. (2016), etc. 
Bayesian Computation Problem: We know that the 
computation of posterior distribution and related 
Bayesian problems are often computationally difficult 
and technically costly. Hence the MCMC method may 
be applied for true solutions to Bayesian computation 
problems in long run. 
Under this study, we utilized particle Markov Chain 
Monte Carlo (PMCMC) methods (Christophe et al., 
2010) for inference purpose. A variety of SMC methods 
currently exist, including the bootstrap filter (Neil et al., 
1993), auxiliary particle filter (Michael and Neil 1999), 
Liu and West filter (Jane and Mike 2001); Storvik filter 
(Geir, 2002), particle learning algorithm (Carlos et al., 
2010) and others. In addition, algorithms such as Particle 
MCMC (PMCMC) have been developed that place SMC 
methods within a broader MCMC framework. Particle 
filters may be known as an alternative of the Kalman 
filter when analytic solution is not possible for 
generalized linear models and for unknown parameters 
such as error variances are unknown or they are time-
variant. Christophe et al. (2010) gave the three types of 
PMCMC algorithm, namely, particle independent 
Metropolis-Hastings (PIMH), particle marginal 
Metropolis-Hastings (PMMH) and particle Gibbs 
sampler. For the present study we used PMMH 
algorithm. The PMMH algorithm is an MCMC 
algorithm that provides a good approximation in state 
estimation problems. It uses the marginal Metropolis-
Hastings update, along with particle filters to draw 
samples. More details on SMC and PMMH can be found 
in Arnuad et al. (2000); Sanjeev et al. (2002); Arnaud 
and Adam (2009); Andrieu et al. (2010); Murray (2010); 
Lisa and Chris (2013), etc. 
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But the execution of MCMC or particle MCMC is time-
consuming. To the letter, quick software and packages 
that deal with MCMC simulations are available. The 
NIMBLE interface with R (R Core Team 2018) is one 
such piece of software. It is free to download from the 
internet at www.r-nimble.org. The programming 
language of the software is quite easy to handle, and a 
direct arrangement of many Bayesian models is 
thinkable. The advantage of using NIMBLE (Nimble, 
2019) is that it converts BUGS code into the model 
object; after that, we may use any algorithms of our 
interest, such as the bootstrap filter, particle filtering, 
Monte Carlo expectation maximisation, and some other 
tools. In this study, an application of the NIMBLE 0.9.0 
version is used to carry out particle MCMC simulation 
for analysis purposes. 
In the present study, model selection is made using 
WAIC (Sumio and Manfred 2010). The advantage of 
WAIC is that it can be calculated easily without having 
information on the true distribution. The selection rule 
for choosing the best-performing model is that the lower 
the value of the criterion, the better the fit of the model. 
The Widely Applicable Information Criterion (WAIC), 
as given by Andrew et al. (2014), is as follows: 

BEFG =  −2�'IIJ − IBEFG� 

Where, the term 'IIJ is log point-wise predictive 
density or log-likelihood. The term IBEFG is the 
effective number of parameters.  
For checking the predictive ability of above models a 
cross validation technique is applied. The usual 
split/train test cross validation (cv) technique, because of 
its randomness, is not suitable for time series data 
models. For time series data, their chronological order or 
temporal structure affects the analysis. To overcome all 
these issues, a new cross validation technique, namely, 
`evaluation on rolling forecast origin' is proposed by Rob 

and George (2018). As per the methodology described in 
Rob and George (2018), initially, the training data size is 
considered 50, with 21 sets of training data preceding 
each observation (51, 52), up to 70. The one-step-ahead 
forecast is calculated based on this data. For the accuracy 
measurements of a predicted model with the CV 
technique, the mean absolute percentage error is 
calculated here used by Pooja and Richa (2022). For the 
convergence of chains, we used Gelmen. diagnostic. 
Following section presents analysis and results obtained 
from Bayesian time series SARIMA and harmonic-
seasonal models with the dynamic Poisson model. 

DATA ANALYSIS AND RESULT 

We use AES case data from Gorakhpur, India from Jan-
2012 to Nov-2017 as observed data, ��. The Bayesian 
SARIMA time-series modelling for AES cases is 
performed with R via the bayes forecast package (Asael 
et al., 2021), version 1.0.1. We found that there is no 
trend in the data, so the non-seasonal difference is taken 
to be 0. For the non-seasonal order part, the seasonal 
difference is taken from the previous season. The ACF 
and PACF plots are shown in Fig. 3 after adjusting for 
seasonal differences. The PACF plot clearly shows the 
spike at lag 1 and lag 11, so the AR(1) term may be 
included in the non-seasonal term. Thus, we choose 
ARIMA (1, 0, 0) (0, 1, 0) for modelling AES time series 
data. Also, the ACF plot shows a seasonal spike at lag 12 
with a negative cluster, and the PACF plot has spikes at 
lags 12 and 14, which shows some seasonal MA(1) may 
be used for the model. Therefore, another model that we 
choose is ARIMA (1,0,0) (0,1,1) for the AES cases. 
After discarding 500 initial iterations of the two chains 
and in-built prior values N(0,0.5) for AR and MA 
nonseasonal and seasonal coefficients, 30000 samples 
were considered for the time series analysis. 

 
Fig. 3. ACF(left) and PACF(right) plots after seasonal difference of AES cases. 

Fig. 4 presents the AES cases as a trend, seasonal, 
remainder, or irregular components. 
We can easily see all three time-series components 
present in the Fig. 4. The trend component changes at the 
local level, but the overall trend looks constant. 
For the analysis the terms 0�, @A,�  and @C,� were the error 
variables in the state equation, following normal density 
with mean zero and unknown covariance matrices 

4�567�,� = K�567�, BA,� = KA and, BC,� = KC 
respectively for each t.  
We considered the random walk model as the state 
equation for AES cases. The terms ��  and )�  refer to the 
local level or trend, as well as the seasonal component of 
AES cases. Since the error variances of the model are 
unknown, we consider particle filtering for estimation 
purposes. For simplicity of calculation, we consider 
precision parameters as the inverses of variance 
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parameters in the analysis, with assumed prior densities 
for these parameters as gamma densities with 
hyperparameters of 0.01 and 0.01, respectively. The 
coefficients ‘a’ and ‘b’ of the harmonic model for state 
variables were chosen to have a Gaussian distribution (0, 
0.01). We considered 600,000 samples and discarded 
10,000 observations as a burn-in period. Furthermore, 15 
particles were used to ensure MCMC chain convergence; 
two chains with the thin value 15 are considered. 
Results: The WAIC criterion is used for checking the 
best fitted model. The Bayesian time series SARIMA 
models and dynamic harmonic models WAIC values are 
shown in Table 1. For both Bayesian 
SARIMA(1,0,0)(0,1,0)[12] and 
SARIMA(1,0,0)(0,1,1)[12] models WAIC are 597.2 and 
591.6, respectively. The seasonal harmonic Poisson 
model is the least WAIC value 490.38.  

Table 2 shows the posterior estimates of parameters 0, 
KA and KC respectively for the seasonal harmonic Poisson 
model. It can be seen that the posterior means of K, KA 
and KC are 0.03, 0.32, and 0.04, respectively, which is 
desirable for a good prediction. But the 95% credible 
intervals are wide bound. As a result, prediction 
uncertainty may be high. 

Table 1: WAIC values of Bayesian time-series 
ARIMA, dynamic Poisson seasonal harmonic models. 

 
Models WAIC values 

SARIMA(1,0,0)(0,1,0)[12] 597.2 

SARIMA(1,0,0)(0,1,1)[12] 591.6 

Dynamic Poisson 490.38 

 

  

 
Fig. 4. AES cases decompose into time-series components. 

Table 2: Posterior estimates of parameters for dynamic Poisson seasonal harmonic model. 

Variables 

 Mean Median St. Dev. 95%CI-lower 95%CI-upper 

σ = 1/η 0.0300 0.0101 0.0612 0.0026 0.247 

σa = 1/φ.a 0.3284 0.3497 0.1761 0.0064 0.6476 

σb = 1/φ.b 0.0404 0.0076 0.0971 0.0020 0.3724 

η 122.7869 98.9431 101.3146 4.0494 385.7594 

φ.a 17.2771 2.8596 46.7097 1.5442 156.7568 

φ.b 160.1579 131.9295 132.0945 2.6850 490.4584 
 

Fig. 5 shows the estimation and observed values of AES 
cases for the years Jan. 2012–Nov. 2017 for SARIMA 
(1, 0, 0) (0, 1, 1) [12] and the dynamic Poisson seasonal 
harmonic model. The Poisson model fits the AES cases 
better than SARIMA (1, 0, 0) (0, 1, 1) [12]. For SARIMA 
(1, 0, 0) (0, 1, 1) [12] 95% values in the estimated CI, the 
observed values within the CI interval are calculated for 
the estimation period. Whereas, for the dynamic Poisson 
model, all (100%) values are in the estimated CI. The 
prediction accuracy of the model is explored via the CV 
technique (rolling forecast origin). Fig. 6 shows the 
comparison of observed and predicted AES cases for 
SARIMA (1, 0, 0) and (0, 1, 1) [12] dynamic Poisson 

models. The dynamic Poisson model's CI variability is 
high, but it contains all observed values. The observed 
values are within the CI interval for SARIMA (1, 0, 0) 
(0, 1, 1) [12], with a predictive CI of 66%. The mean 
absolute percentage errors (MAPE) are calculated based 
on the particle MCMC simulations. For the dynamic 
Poisson model, MAPE is 63%, and for SARIMA (1, 0, 
0) (0, 1, 1) [12], it is approximately 111%. This shows 
that the dynamic Poisson model is better for prediction 
in comparison to SARIMA. 
The posterior estimates of trend plots for AES cases are 
presented in Fig. 7. The trend plot shows that from 
January 2012 to September 2012, the trend component 
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was greater than or equal to 3.5. For the year Non-2012 
to May-2013, the trend is greater than 3.5. After that, it 
is approximately equal to 3.5. Fig. 8 presents the 
posterior estimates of the seasonal component plot. The 
seasonal component is high in September. As a result, 
there is a high likelihood of AES cases being reported in 

September and in the future. Also, the seasonal 
component is negatively associated with AES cases from 
January to June. Hence, AES cases might occur in these 
months with no seasonal effect. From July to November, 
the seasonal component is positive. Thus, these seasons 
may be positively associated with the disease. 

 
Fig. 5. Estimation and fitting of observed AES cases for SARIMA(1,0,0)(0,1,1)[12] (top) and dynamic Poisson 

seasonal harmonic (bottom) model. 
 

 
 

 
Fig. 6. Comparison of predicted and observed AES cases for SARIMA(1,0,0)(0,1,1)[12] (top) dynamic Poisson 

seasonal harmonic (bottom) model. 
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Fig. 7. Trend plot of AES cases for dynamic Poisson seasonal harmonic model. 
 

 
Fig. 8. Seasonal plot of AES cases for dynamic Poisson seasonal harmonic model. 

DISCUSSION  

We have applied the dynamic seasonal Poisson model 
for AES cases. For comparison purposes, we used 
SARIMA models. The best-fit model is chosen based on 
the WAIC value. The dynamic model is found to be the 
best, with a lower WAIC than the Bayesian SARIMA 
models. The dynamic Poisson model is found to be 
superior to SARIMA models in the estimation and 
prediction of observed AES cases. With the help of 
dynamic seasonal models, the AES case data revealed 
some trends that the SARIMA models were unable to 
capture. We find that the predictive ability of the MAPE 
dynamic Poisson model is better than SARIMA. But it is 
high for prediction accuracy in general, which shows that 
covariates may be needed for better accuracy in 
prediction. 
Serdar et al. (2021) compared the different models under 
the state space model (SSM) via the Kalman filter: a 
hybrid model integrating the logistic regression and SSM 
models; the seasonal autoregressive integrated moving 
average (SARIMA); exponential smoothing with the 
state space model (ETS); and exponential smoothing the 

state space model with the Box-Cox transformation 
(ARMA errors, trend, and seasonal components) 
(TBATS). They discovered that the SSM model 
outperformed the SARIMA model. In AES cases, our 
study found similar results.  
Rajnish et al. (2012); Nagabhushana (2012); Sourish and 
Anirban (2016), and others investigated AES cases using 
questionnaires and surveys. Statistical modelling may be 
more useful to gain a better understanding of the data. 
Praveen et al. (2021) applied GAM models for AES 
cases in Gorakhpur with predictors as meteorological 
variables. They explored the monthly relationship 
between AES cases with the help of log transformation. 
So, all results are not based on the original AES cases. 
Because of the transformation, the observed series is not 
the original series any longer. In theory, a series can be 
differenced an arbitrary number of times. But recovering 
the original series requires the inverse operation, which 
may not be possible after analysing the series Joseph 
(1993). In our study without transformation, AES cases 
are analysed in a dynamic framework, and we find that 
most AES incidences occur from June to September. 



Kushwaha  & Vatsa           Biological Forum – An International Journal     15(3): 534-542(2023)                                       541 

CONCLUSIONS 

In our analysis, we found a clear seasonal peak in 
September. August and October months are also 
positively associated with the disease. The dynamic 
seasonal harmonic Poisson model modelled non-
stationarity in seasonal data better than SARIMA 
models. However, the limit of our study is that it is based 
only on trends and seasonal effects, with no other 
explanatory variables included in the study. But this may 
be seen as an opportunity. In all circumstances, one 
wants to know the disease pattern and its association 
with different months. The dynamic seasonal model may 
provide a better understanding than the SARIMA 
models. 

FUTURE SCOPE 

Some explanatory variables, e.g. literacy status, 
occupational status of parents, very hot and humid, 
temperature and under-nutrition, etc. may be included 
into the dynamic model for better accuracy in prediction 
of AES data. 
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