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ABSTRACT: The farm power availability at present scenario is 2.5 kW ha
-1

 and it is predicted to be higher 

in upcoming years. Several attempts were made to bridge the gap between farmers and machinery 

utilization, to increasing efficiency and reducing drudgery to the farmers, but it cannot be achieved 

completely and still the gap is more and widening. The lack of skilled labors and shortage of agricultural 

workers are the serious problem faced by the farmers in this era of agriculture. The various inventions of 

farm machineries and processing industries led the way of food production for our population. But in 
many cases the farmers are facing a lot of unpredictable factors and losing their interest in farming. In this 

scenario, the idea of artificial intelligence is that, machines can readily imitate human intellect and carry 

out tasks ranging from the most basic to the most complex, will able to sort out all those gaps. The major 

aims of AI are learning, predicting, and decision making. In agriculture sector the use of artificial 

intelligence (AI) is to enhance a diverse range of agricultural operations to make sustainable food supply 

chain. These responsibilities consist of crop production, pest management, monitoring of soil and growth 

conditions, data organization for farmers, and workload assistance. With the help of systematic data 

collection and understanding the functionality of farming operations, the AI helps to increase the adoption 

rate of mechanization. Despite the numerous benefits, the adoption of AI in farm mechanization is not 

without challenges. Issues such as high initial investment costs, technical complexity, and the need for 

robust data infrastructure pose significant barriers to widespread implementation. Additionally, there are 

concerns regarding data privacy, cybersecurity, and the displacement of the agricultural workforce. To 
overcome these challenges, it is essential to foster collaboration between stakeholders, including farmers, 

researchers, technology developers, and policymakers. Investing in training and capacity-building 

programs can equip farmers with the necessary skills to leverage AI technologies effectively. Furthermore, 

developing affordable and scalable AI solutions tailored to the specific needs of smallholder farmers can 

accelerate the adoption of AI-driven mechanization. 
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INTRODUCTION 

The use of artificial intelligence (AI) in agricultural 

mechanization has given rise to various technologies 

and applications that aid farmers in achieving more 

precision to control over their farming operations 
(Basso and Antle 2020). These technologies and 

software provide assistance to farmers in a number of 

activities, such as control of pests, application of 

fertilizer, rotation of crops, perfect planting of 

seedlings, irrigation management and timely harvesting 

of crops (Hamilton et al., 2022). By integrating 

machine learning algorithms, satellite/drone imagery, 

temperature data, precipitation, wind speed, solar 

radiation with artificial intelligence (AI)-enabled 

technologies perform various tasks such as weather 

forecasting, crop sustainability evaluation, farm 

inspection pertaining to pests, diseases and 

undernourished plants (Wang et al., 2019). Currently, 

farmers may reap the benefits of artificial intelligence 

by using a smart phone that supports SMS and the 

Sowing App, even if they do not have access to the 
internet. On the other hand, farmers who have access to 

Wi-Fi may employ AI apps to get a customized plan for 

their crops on a constant basis (Sarker et al., 2019). 

Through the utilization of App solutions that are driven 

by the Internet of Things with artificial intelligence, 

farmers will not only be able to increase their revenue, 

and also reduce their impact on the environment, and 

provide food all over the world. Farmers will become 

agricultural scientists in the future with the assistance of 

artificial intelligence. Agricultural Robots that use 

artificial intelligence (AI) to perform a range of tasks 
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well in agricultural environments. For example:  
Special robot has been specifically programmed for 

controlling the weeds. The robots are programmed to 

spot weeds and conduct quality inspections of crops 

throughout the sorting and eradicating processes. The 

problems that agriculture faces like labour forces may 

likewise be addressed by this kind of robots. On other 

hand, the biggest problems for farmers is pests, which 

may ruin the crops. Artificial intelligence systems 

enable farmers to combat pests by analyzing satellite 

images, comparing them with historical data, detecting 

their presence and type of landed insects (e.g., 
grasshoppers, locusts, etc.). These systems then notify 

farmers through smartphone alerts, allowing them to 

take necessary precautions and apply pest control as 

needed. 

Big Data Technologies. IoT devices and sensors play a 

crucial role in data collection by monitoring various 

parameters like soil moisture, temperature, and crop 

health in real-time. These devices provide continuous 

and precise data, enabling farmers to make timely and 

informed decisions (Wolfert et al., 2017). Cloud 

platforms are essential for storing and processing the 
vast amounts of data generated by IoT devices and 

other sources. They offer scalable storage solutions and 

computational power necessary for big data analytics 

(Sundmaeker et al., 2016). Big data analytics enables 

real-time monitoring of crop health and early detection 

of diseases. By analyzing historical and current data, 

predictive models can forecast disease outbreaks, 

allowing farmers to take preventive measures (Fang et 

al., 2019). Big data helps in optimizing the agricultural 

supply chain by providing insights into market trends, 

demand forecasting, and logistics management. This 

ensures efficient distribution of agricultural products, 
reducing losses and improving profitability (Kamble et 

al., 2020). The useful information to support data-

driven decision-making for satisfying the applicable 

food production and supply. Through analysis of vast 

amounts of data from many criteria that may be 

combined with information about agriculture from other 

sources. The integrated farm models, crop growth 

models, water balance models, soil nutrition models, 

farm optimization models, and risk assessment models 

are generated as decision models.  

Machine Learning in Agriculture. Machine learning 
(ML), which has emerged along with the availability of 

vast quantities of data and high-performance 

computers, has generated new potential for the 

understanding, quantification, and decipherment of 

data-intensive processes in agricultural operational 

settings (Van Loon et al., 2020). The notion that 

machine learning (ML) is the domain of computer 

science that empowers computers to acquire new 

knowledge autonomously, without requiring human 

guidance, is a widely held belief. This is a common 

understanding of machine learning. Supervised learning 

and unsupervised learning are the two fundamental 
types of machine learning tasks. The learning signal 

that the system utilizes to identify these two types of 

learning is what defines them. By providing data with 

sample inputs and associated outcomes, supervised 

learning aims to construct a general rule that maps 

inputs to outputs. In a constantly changing 
environment, it is not uncommon for certain inputs to 

be partly accessible while some of the desired outputs 

are either absent or provided just as feedback for the 

actions taken (reinforcement learning). When labels are 

missing from test data, the trained model use its 

knowledge to fill in the gaps in a supervised setting. 

Unsupervised learning, on the other hand, uses 

unlabeled data without dividing it into training and test 

sets. The learner looks at incoming data to uncover 

hidden patterns. 

Data Transmission. In order to increase crop yields 
and quality with less human effort, the agricultural 

sector will greatly benefit from the ultra-fast generation 

network. Farmers may increase their knowledge and 

output with the help of smart and precision farming. 

The arrival of 5G will bring about considerable changes 

to the agricultural and farming-related industries. The 

5G network provides cloud computing services that are 

founded on the internet of things (IoT) and provide 

adaptable and efficient solutions for intelligent farming. 

Over time, this will enable unmanned farms to carry out 

the planting, ploughing, and management phases of 
agricultural production with little to no assistance from 

humans. The equipment for this procedure will be 

energy-efficient, environmentally responsible, safe, and 

trustworthy. This is because 5G has more bandwidth 

than 4G, it can also link billions of devices. In terms of 

uploading and downloading speeds, 5G will be up to 

100 times faster than the present 4G and 4G LTE 

standards. This indicates that a two-hour movie would 

download in less than four seconds over 5G, compared 

to six minutes on 4G. The ITU is responsible for 

creating the technical standards for 5G (IMT-2020). 

Uplink peak data rates per mobile station are 10 GBPS, 
while downlink peak data rates are 20 GBPS. 

Precision Agriculture with Automation. Drones, 

UAVs, and UGVs will able to work together to build a 

smart integrated system that can automatically spray 

nutrients and inputs into crops, receive photographs of 

crop health in real time for analysis and insights. Crop 

productivity and agricultural efficiency are increased by 

using this application in farming. The machine vision 

for smart farming device automation and guiding can be 

combined with tractors. The independent robots 

deployed for the tasks like harvesting, planting, 
weeding, etc. It assists in separating the best crop 

produce from the worst harvests, determining which 

produce are stable for longer logistics, and determining 

produce crops that can be sold locally which has less 

shelf life. Artificial Intelligence have the capability to 

gather and analyze vast quantities of data from public 

and government sources in order to resolve a variety of 

confusing matters by utilizing machine learning. 

Additionally, it improves water assessment and 

availability, which boosts agricultural yields. Artificial 

intelligence is going to make farming more of hybrid, 

and biological expertise in future. This will benefit 
farmers in many ways, including reduced post-harvest 

losses and increased productivity. According to United 

Nations Estimates, two-thirds of the global population 

will reside in urban areas by 2050; thus, farmers will be 

obligated to decrease their labour intensity. The use of 
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artificial intelligence in the agricultural sector holds 
promise for the automation of diverse procedures, 

mitigation of risks, and provision of farmers with better 

farming experience characterized by increased 

efficiency (Panpatte, 2018). An analogous evaluation 

was conducted to assess the efficacy of support vector 

machines (SVM) and artificial neural networks (ANN) 

in weed identification with a help of moment-invariant 

shape data and Fourier descriptors. According to the 

data, SVM produced a greater accuracy of 96.67 

percent for weeds and sugar beets, whereas ANN 

produced a lesser accuracy of 93.33 percent 
(Bakhshipour and Jafari 2018). Using the Haar wavelet 

filter's textural properties, artificial neural networks can 

distinguish between sugar beets and weeds. By 

including textural data into the ANN architecture, the 

findings showed an accuracy of 89.3% for sugar beets 

and 88.0 % for weeds (Bakhshipour et al., 2017). Using 

a fuzzy classifier, a robotic model for weed detection in 

sugarcane fields was developed. With the help of this 

algorithm, which extracts textural features and weed 

identification accuracy was found 92.9 percent 

(Sujaritha et al.,  2017). A strategy for optimizing the 
robot and its workspace (the tree design) 

simultaneously created and tested for various training 

methods. The robot system design optimization was 

mainly emphasized, and the best training method was 

determined by minimizing robot's overall time (Bloch 

et al., 2018). In order to distinguish between weeds in 

maize fields, a combination of the SVM and carefully 

chosen colour characteristics was used. Over the course 

of three years of testing, it was found that the chosen 

colour indices maintained consistent accuracy of 

90.19%, 92.36%, and 93.87% regardless of the weather 

(Zheng et al., 2017). Spectral data that may be used to 
distinguish wheat from other winter grasses and 

broadleaf weeds. A total accuracy of 85% was shown 

using a four class discriminating model, which included 

broadleaf, grasses, soil, and wheat (Herrmann et al., 

2013). Through the use of different sensors such as 

temperature, humidity, and soil moisture, it would be 

able to identify illnesses in huge fields of crops at an 

early stage and then make recommendations about the 

use of fertilizers. A training and test dataset may be 

created using the aforementioned technique. When the 

testing phase is over, it will look for photos in the 
trained dataset that match the ones in the test samples. 

The next step is to remove the illness photos in the pre-

processing stage. The pre-processing step employs a k-

means clustering technique to split the picture into a 

substantial number of parts. Following this, Support 

Vector Machine (SVM) classifiers are implemented to 

classify each component. The genetic algorithm is used 

for edge identification, which yields good results. 

Monitoring, detection, and service quality are the three 

aims of this dissertation to be assessed in the suggested 

system (Zheng et al., 2017). The Single Shot MultiBox 

Detector (SSD) architecture is the foundation of the 
YOLOv2 algorithm, which offers a quicker recognition 

rate while maintaining an accuracy level that is 

equivalent of the SSD500 method. Using the VOC 

2007 dataset, its maximum achievable precision (mAP) 

is 76.6 percent and its maximum recognition speed is 

67 fs
-1

. With its 19 convolutional layers and 5 
maximum pool layers, YOLOv2 improves upon the 

YOLO's detection speed while increasing its accuracy, 

according to the Darknet-19 network model. Using the 

VOC 2007 dataset, the YOLOv2 model outperforms 

Faster ReCNN in terms of detection accuracy and can 

reach a speed of 40 fs
-1

 with images having a resolution 

of 544 * 544 pixels (Redmon and Farhadi 2016). In 

detection algorithm, the field photos were analyzed for 

spectral reflectance to identify six different types of 

weeds, in soybean plants. With an overall accuracy of 

84%, the optimal spectral band combination (BSBC) 
outperformed all three methodologies, such as principal 

component analysis (PCA), linear discriminant analysis 

(LDA), and three-year datasets. The fruit number 

counting approach was used to capture images of 

mangoes that were shot at night using artificial 

illumination. Practicality concerns may arise about the 

approach owing to the need of using lighting equipment 

during daylight imaging as a consequence of the 

artificial illumination system (Qureshi, 2016). By using 

the multi-viewpoint technique, the mango occlusion 

issue was resolved. The tracking and localization of 
fruits was accomplished by analyzing the picture 

sequences from various perspectives. Unfortunately, 

this method's real-time performance was subpar, and it 

required complex auxiliary equipment (Herrmann et al., 

2013). One such design is MangoNet, which uses deep 

convolutional neural networks (CNNs) to identify 

mangoes by semantic segmentation. It outperformed 

various topologies of fully convolutional networks 

(FCNs), according to the various trials (Kestur et al., 

2019). Using smart sensing of airbag inflators, an 

autonomously deployable front-mounted rollover 

protection system (ROPS) for narrow tractors was 
designed and tested. This system allowed for the 

simultaneous expansion of the ROPS's top breadth and 

height. As a result of the twofold modification of the 

ROPS geometry, it is possible to reduce the height of 

the ROPS, bending moments at critical sections, and the 

sections of the ROPS beams. Additionally, the 

continuous rolling risk is reduced, and safety zone is 

expanded laterally (Ballesteros et al., 2015). The 

purpose of an electronic system that is intended to 

monitor the stability of a tractor on sloped terrain is to 

provide the operator with a series of warnings as the 
risk of instability and rollover. A variety of tractor types 

are compatible with the IncliSafe device, which is 

available for purchase as an aftermarket addition 

(Dtaebt, 2015).  

Prediction Algorithms in Mechanization. A fuzzy 

control technique, in which the ideal steer angles for a 

steering controller are determined using posture 

information. This approach considers errors related to 

location and orientation. The purpose of constructing 

kinematic modelling of a differential-drive vehicle was 

to simulate and evaluate the durability of the controller. 

Tracking performance was determined to be significant 
after implementation of this technique (Kumar et al., 

2012). An application designed specifically for 

smartphones and used to transmit data from the 

accelerometer as well as gyroscope sensors that are 

incorporated in smartphone to a computer via the usage 
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of a wireless network. The Safe Driving app 
demonstrated the feasibility of using a mobile phone to 

gather data for a tractor's stability evaluation while it is 

in motion. These programmes show the operator 

potential danger spots and how to stay out of harm's 

way (Liu and Koc 2015). Using a cascaded estimator 

technique, the impact of hitch point loading on tractor 

dynamics was examined. The experimental findings 

demonstrate that the capability to adjust the controller 

gain for consistent yaw dynamic control of the tractor is 

provided by the online estimate of system changes 

(Gartley and Bevly 2008). A controller that tracks 
trajectories and simulates autonomous vehicle path-

following systems using sliding mode control showed 

promising results when tested with a high beginning 

position inaccuracy (Solea and Nunes 2007). The 

steering controller architecture was enhanced with a 

new path-tracking algorithm that improves tracking 

performance by minimizing transient overshoots at 

curve beginnings and ends. The system is based on 

estimating sliding parameters like slip and steering 

angle (Lenain et al., 2006). To avoid collisions while 

working together, a master robot and a slave robot, 
which use a wireless local area network to broadcast the 

slave robot's GPS location to the master robot. Two 

robot tractors could be safely avoided from colliding by 

using the safety technique, but it was unable to detect 

anything else (Noguchi et al., 2004). The results 

indicated that the use of a dynamic route search 

technique in tractor resulted a moderate improvement in 

path tracking, with a lateral variation of less than 0.1 

metre, while the tractor followed straight or slightly 

curved tracks at speeds of up to 3.5 metres per second. 

More precise assessment of slippage on curved 

pathways is necessary, nevertheless and since accuracy 
decreased when going on such paths, particularly in 

very abrupt bends (Zhang and Qiu 2004). In order to 

test the autonomous harvesting of a field that was 

opened up by a human operator, an automated self-

propelled windrower system was developed. This 

system used either an inertial sensor combined with a 

differential global positioning system (DGPS) or a 

camera. Two cameras are mounted on the side of the 

cab of an autonomously driven windrower. When 

shadow correction was complete, the difference in 

reflectance was used to find the boundaries between the 
parts that had been cut and those that had not been cut. 

It was also found that there were obstacles at the very 

end of the crop row, where there was no longer any 

edge (based on their different colour). The position was 

determined by using additional sensors in conjunction 

with the data from the 5 Hz DGPS. A speed range of 

1.5–2.0 metres per second is achievable for the system. 

The inaccuracy of the DGPS varied from 40 to 60 

millimetres, but the error determined by eyesight was 

between 50 and 300 millimetres (Pilarski et al., 2002). 

Using the leakage percentage of the fast Fourier 

transform, it was able to differentiate between fruit and 
background objects in digital photographs that were 

taken outdoors in natural colour. In the sixty images 

that was used for validation, eighty-two percent of the 

vegetables and fruits were properly identified (Bansal et 

al., 2011). It is necessary to create two artificial neural 

network (ANN) models in order to predict the amount 
of moisture present in paddy fields, which had a much 

lower amount of meteorological data. Following the 

examination of both observed and forecasted soil 

moisture levels, both models were followed by 

confirmation and verification. Initially, the ANN model 

was constructed in order to estimate ET. The air 

temperature's lowest, average, and maximum readings 

were utilized. The second model was created using data 

on air temperature, precipitation, and solar radiation. 

With minimum use of time, effort, and weather data, 

both of these algorithms were able to reliably estimate 
soil moisture in rice fields (Arif et al., 2012). Soil 

compaction could be diminished by using a decision 

support system that plans routes for agricultural 

vehicles with time-dependent loads. Furthermore, the 

investigation in which soil compaction causes higher 

energy demands, higher CO
2
 emissions, and worse 

yields (Bochtis et al., 2012). Similarly, the detected 

HLBs using two sets of aerial multispectral and 

hyperspectral pictures. Several techniques were 

implemented, including mixture tuned matched filtering 

(MTMF), spectral angle mapping (SAM), and linear 
spectral un-mixing. It was achieved an 87% detection 

accuracy with multispectral photos and 80% accuracy 

with hyperspectral images for the test locations. 

Possible erroneous ground truthing was a major cause 

of inaccuracy in the sample coordinates. Results were 

better with MTMF than with SAM. A range of 

vegetation indicators were used to mitigate the 

occurrence of false positives. These indicators included 

the anthocyanin reflectance index, the carotenoid 

reflectance index (CRI), and the air resistance 

vegetation index (ARVI) (Kumar et al., 2012). A 

computer vision system that is able to identify rows of 
growing crops. It was composed of two distinct 

subsystems: a processing subsystem that was both slow 

and accurate, and a processing subsystem that was both 

speedy and accurate, producing results quickly (robust 

crop row detection). Through the use of this method in 

a variety of contexts, an average of eighty percent of 

the crops were accurately identified. According to 

(Burgos-Artizzu et al., 2011) a machine vision system 

that makes use of a one-of-a-kind algorithm called 

"Parse and Add" with number of different stages of 

photo processing. A debris mass map was created from 
the field experiment photographs. With this map, could 

be pinpoint the main causes of debris and identifying 

the positioning of fruits for future harvests with less 

mess (Bansal et al., 2011). The idea of chained systems 

is used to construct the cornering and sliding mode 

controllers. Based on the information that was 

broadcast, the suggested observer and controller 

demonstrated remarkable resilience against time-

varying lateral disturbances and incorrect side-slip 

angles (Fang et al., 2011). An algorithm for path-

tracking that is appropriate for controlling the headland 

turning of a farm tractor was developed via a simulation 
research that used a neural network and the pure pursuit 

approach. Finding the best way for an agricultural 

equipment to change heads-of-field was shown to be 

viable using the pure pursuit strategy in the simulation 

results. Nevertheless, the method for optimising the 
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algorithm's parameters in order to achieve headland 
turning in simulation was left out (Burgos-Artizzu et 

al., 2011). For the purpose of identifying the early crop 

rows, a method called least squares was implemented. 

By use of categorising the feature points that were 

obtained as the centres of the crop rows and clusters 

were successfully formed. It was ascertained that the 

crop line could be generated by implementation of the 

least squares method to suit the feature points. The 

sensitivity of the least squares approach to weed noise 

is a factor that is responsible for the reduction in crop 

line detection accuracy (Si et al., 2010).  
Agricultural Machinery Hiring System. AMHS 

system is aimed to provide bridge between the 

mechanization and the farmers. It also acts as a Farm 

Machinery Rental Fleet Business. It acquires a group of 

tractors, implements, harvesters etc., and hired drivers 

with the specific region using the Internet of Things 

preinstalled in the machinery. Customers or farmers can 

use the AMHS system to pre book the machineries are 

made available for them at their preferred location and 

time through web portal and smartphones. In this digital 

technological era it’s a great chance in online industry 
to move whole commercial business into an app-based 

integration. Hereby, AMHS works as a mediator 

between the customers and Agricultural Machinery 

owners. AMHS connects operators, owners and farmers 

via a mobile application through GPS and the 

authorized agreement, privacy terms provided in 

software and well as security management. This 

enhanced precision streamline of machinery 

management, minimizes energy requirements for 

cultivation practices. In the rush to mechanize farm 

operations, contracting is the only useful way to 

familiarize, quality mechanization to small and 
marginal farmers. By acquiring data from different 

sensors, GPS, IMUs which allows the machine learning 

algorithm to process and predicts the cost of operation 

on that particular region. Thus minimizes the excessing 

costing and helps farmers to save their time and money. 

The data acquisition and analysis gives a positive 

connection between the societal value construction and 

economic output, also it depicts the application and web 

based model can have better on marketing potential. 

This AMHS creates the better farm mechanization 

opportunities to small /marginal farmers and uplifting 
their lives. 

CONCLUSIONS 

The integration of Artificial Intelligence (AI) in farm 

mechanization represents a transformative shift in 

modern agriculture, offering unprecedented 

opportunities for enhancing productivity, efficiency, 

and sustainability. This review has comprehensively 

examined the various AI-driven technologies and 

methodologies being employed in farm mechanization, 

highlighting their impact on different agricultural 

operations. AI technologies, such as machine learning, 

computer vision, and robotics, are revolutionizing 
traditional farming practices by enabling precise and 

efficient field operations. The application of AI in 

machinery, such as autonomous tractors, drones, and 

harvesters, has demonstrated significant improvements 
in field productivity and resource management. These 

smart machines are capable of performing tasks with 

high precision, reducing human labor and minimizing 

input wastage, thus contributing to cost savings and 

environmental conservation. The use of AI in predictive 

analytics and decision support systems has shown great 

promise in enhancing farm management strategies. By 

leveraging large datasets and sophisticated algorithms, 

farmers can make informed decisions regarding crop 

selection, planting schedules, irrigation, and pest 

control. This data-driven approach not only optimizes 
resource utilization but also mitigates risks associated 

with climate variability and market fluctuations. 

Moreover, AI-driven mechanization facilitates real-time 

monitoring and management of farm operations. 

Through the deployment of IoT devices and sensors, 

farmers can continuously monitor soil health, crop 

growth, and machinery performance. This real-time 

data collection and analysis enable timely interventions, 

ensuring optimal growing conditions and reducing the 

likelihood of crop failure. In conclusion, the integration 

of AI in farm mechanization holds immense potential to 
revolutionize agriculture, making it more efficient, 

sustainable, and resilient. While challenges remain, 

continued advancements in AI technologies, combined 

with supportive policies and collaborative efforts, can 

pave the way for a data-driven agricultural future. By 

embracing AI, the farming community can achieve 

higher productivity, better resource management, and 

improved economic outcomes, ultimately contributing 

to global food security and sustainable development. 
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