

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

Effect of *Mentha piperita* and *Cymbopogon citratus* Essential Oils on Feed Intake and Nutrient Digestibility in Crossbred Calves

Gautami Sarma¹, Jyoti Palod^{1*}, Anita Arya², S. K. Singh¹, Shive Kumar¹, Sanjay Kumar¹, R.K. Sharma¹, Sumit Gangwar¹ and Gyan Deepak Kumar¹

¹Department of Livestock Production Management, College of Veterinary and Animal Sciences, GBPUA&T, Pantnagar (Uttarakhand), India. ²Department of Livestock Products Technology, College of Veterinary and Animal Sciences, GBPUA&T, Pantnagar (Uttarakhand), India.

(Corresponding author: Jyoti Palod*) (Received: 12 July 2025; Revised: 19 August 2025; Accepted: 29 September 2025; Published online: 03 October 2025) (Published by Research Trend)

ABSTRACT: A study was conducted to evaluate the effect of *Mentha piperita* and *Cymbopogon citratus* essential oils on feed intake and nutrient digestibility in crossbred calves. 18 healthy calves aged 15 to 90 days, were randomly allotted to 3 treatment groups in a completely randomized design. The treatments included a control diet (T_0) and diets supplemented with *M. piperita* essential oil @ 0.2% of calf starter (T_1) , *C. citratus* essential oil @ 0.2% of calf starter (T_2) , Feed intake and digestibility coefficients of nutrients were determined through a digestion trial at the end of 90 days. Results indicated that supplementation with *M. piperita* and *C. citratus* essential oils significantly (P<0.01) improved digestibility percentage of dry matter compared to the control. No adverse effects were observed on palatability or health status of the calves. The findings suggest that *M. piperita* and *C. citratus* essential oils may serve as effective natural feed additives to enhance nutrient utilization efficiency in crossbred calves.

Keywords: Crossbred calves, *Cymbopogon citratus* essential oil, Feed intake, *Mentha piperita* essential oil, Nutrient digestibility.

INTRODUCTION

The livestock industry faces growing challenges in maintaining animal productivity and health under the increasing restrictions on antibiotic usage as growth promoters. The misuse of antibiotics in animal production systems contributes to the emergence of antibiotic-resistant bacteria, posing serious threats to human and animal health (Coimbra et al., 2022). Consequently, there is a global shift toward identifying natural feed additives that can enhance growth performance and nutrient utilization without promoting antimicrobial resistance. Among these alternatives, essential oils (EOs), derived from aromatic plants, have attracted attention due to their antimicrobial, antioxidant, and anti-inflammatory properties that can support rumen fermentation and improve nutrient digestibility (Tarigan and Harahap 2016; Nehme et al., 2021; Tarasing et al., 2025).

Mentha piperita essential oil (MPEO) is rich in menthol, menthone, and other bioactive compounds that exert modulatory effects on rumen microbiota, enhancing fiber degradation and nutrient absorption while reducing methane emissions (Patra et al., 2019). Similarly, Cymbopogon citratus essential oil (CCEO), primarily composed of citral and limonene, exhibits potent antimicrobial and antioxidant properties that

support gut health and improve feed efficiency (Kiani *et al.*, 2022). Both EOs may enhance ruminal fermentation efficiency by modulating microbial populations, thus improving nutrient digestibility and animal performance.

Despite promising evidence, the effects of MPEO and CCEO on nutrient utilization and feed intake remain inconsistent and dependent on factors such as dosage, diet composition, and rumen microbial adaptation. Therefore, the present study was designed to evaluate the influence of *Mentha piperita* essential oil (MPEO) and *Cymbopogon citratus* essential oil (CCEO) supplementation on feed intake and nutrient digestibility in crossbred calves. It was hypothesized that dietary inclusion of these essential oils at optimal levels could enhance nutrient digestibility without adversely affecting feed intake.

MATERIAL AND METHODS

A. Experimental Site and Animals

The present study was conducted on thirty (n = 18) crossbred calves aged between 15 and 90 days at the *Instructional Dairy Farm (IDF)*, *Nagla*, College of Veterinary and Animal Sciences, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India. All experimental procedures were

approved by the *Institutional Animal Ethics Committee* (*IAEC*) of the University.

B. Experimental Design and Dietary Treatments

The calves were randomly distributed into three treatment groups, each consisting of six animals, following a completely randomized design. The dietary treatments were as follows: T_0 : Basal feed only (control); T_1 : Basal feed + *Mentha piperita* essential oil (MPEO) @ 0.2% of calf starter; T_2 : Basal feed + *Cymbopogon citratus* essential oil (CCEO) @ 0.2% of calf starter.

The experiment was conducted for 90 days. All calves were maintained under uniform management and hygienic conditions. Each calf was housed in an individual well-ventilated pen and identified using numbered ear tags for accurate record keeping. Animals were provided free access to clean drinking water, and for exercise and sunlight exposure, calves were allowed in an open paddock during the morning hours.

Digestion Trial. A digestion trial of 7 days duration was conducted at the end of the 90-day experimental period to evaluate nutrient digestibility. Twenty calves (four from each treatment group) were selected randomly for the trial. The selected calves were housed individually for complete collection of faeces and feed residues. Prior to the collection period, a 3-day adaptation period was provided. During the 7-day collection phase, daily records were maintained for feed offered, refusals, and faeces voided. Representative samples of feed, leftovers, and faeces were collected every 24 hours for dry matter determination.

Sampling of Feed, Fodder, and Residues. Representative samples of feed offered, residues, and faeces were collected daily. Samples were dried in a hot-air oven at $100 \pm 5^{\circ}\text{C}$ for 24 hours to determine dry matter (DM) content. At the end of the digestion trial, dried samples from each animal were pooled across the collection period, ground to pass through a 1-mm sieve, and stored in airtight plastic containers for subsequent chemical analysis.

Collection and Sampling of Faeces. Total faecal output from each calf was collected manually every 24 hours into pre-weighed, labelled plastic buckets with lids. A representative aliquot (1/20 of total faeces) was collected daily in duplicate for DM estimation. For nitrogen (N) analysis, a separate aliquot (1/200 of total faeces) was preserved in wide-mouth polypropylene bottles containing 25% $\rm H_2SO_4$ to prevent nitrogen loss. After the trial, the bottles were weighed to determine the faecal sample weight with acid, and nitrogen estimation was performed using the Kjeldahl method.

Proximate Analysis. Representative samples of feed, fodder, residues, and faeces were analyzed for proximate principles: dry matter (DM), crude protein (CP), crude fiber (CF), ether extract (EE), nitrogen-free extract (NFE), and total ash, following the standard procedures of the AOAC (2005).

C. Statistical Analysis

Data obtained during the experiment were subjected to statistical analysis using SPSS version 21.0. Results were expressed as mean \pm standard error (SE). Treatment means were compared using one-way analysis of variance (ANOVA) followed by Duncan's multiple range test (DMRT) to assess significant differences among treatments. Significance was accepted at P < 0.05 and P < 0.01 (Snedecor and Cochran 1994).

RESULTS AND DISCUSSION

A. Feed Intake and Dry Matter Intake

The mean feed intake (FI) and dry matter intake (DMI) of crossbred calves are presented in Table 1. The average feed intake across the treatment groups (T_0-T_2) ranged from 6.52 ± 0.05 to 6.60 ± 0.05 kg/day, while DMI varied between 2.30 ± 0.01 and 2.34 ± 0.01 kg/day. The DMI, expressed as a percentage of body weight, ranged from 2.02 ± 0.02 to 2.06 ± 0.07 kg/100 kg BW. No significant differences were observed among treatments, indicating that supplementation with MPEO (0.2%) or CCEO (0.2%) had no adverse effect on feed palatability or intake.

Table 1: Effect of supplementation of *Mentha piperita* and *Cymbopogon citratus* EOs on feed intake and dry matter intake of crossbred calves.

Parameter	T_0	T_1	T_2
FI (kg/day)	6.56±0.04	6.60±0.05	6.52±0.05
DMI (kg/day)	2.33±0.01	2.34±0.01	2.30±0.01
DMI (kg/100kg BW)	2.04±0.04	2.06±0.07	2.02±0.02
DMI (kg/BW ^{0.75})	0.065±0.001	0.066±0.001	0.067±0.001

FI: Feed intake; DMI: Dry matter intake; BW: Body weight; T0: Control (Basal diet); T1: Basal diet + *Mentha piperita* essential oil (MPEO) @ 0.2% of calf starter/calf/day; T2: Basal diet + *Cymbopogon citratus* essential oil CCEO @ 0.2% of calf starter/calf/day

The lack of significant effect on feed intake in the present study corroborates earlier findings of Ishfaq *et al.* (2019), who reported non-significant changes in DMI in sheep supplemented with *Mentha piperita* EO. Similarly, Soares *et al.* (2023) and Del Valle *et al.* (2024) observed no alteration in feed or nutrient intake in steers and sheep fed with lemongrass EO.

However, some studies have reported increased DMI with EO supplementation (Liu *et al.*, 2020; Terre *et al.*, 2007; Hashemzadeh-Cigari *et al.*, 2015), suggesting that these effects may depend on the EO source, dosage, diet composition, and rumen microbial adaptation (Vakili *et al.*, 2013). The present findings indicate that both MPEO and CCEO at 0.2% inclusion levels neither depressed nor enhanced feed intake,

suggesting good dietary acceptability and tolerance among crossbred calves.

B. Nutrient Digestibility

The apparent digestibility coefficients of dry matter (DM), crude protein (CP), ether extract (EE), crude fiber (CF), nitrogen-free extract (NFE), and organic matter (OM) have been presented in Table 2.

Supplementation of MPEO (T_1) and CCEO at 0.2% (T_2) significantly (P<0.01) increased dry matter digestibility compared to the control (T_0) group. However, no significant (P>0.05) differences were observed among treatments for CP, CF, EE, NFE, or OM digestibility.

Table 2: Effect of supplementation of *Mentha piperita* and *Cymbopogon citratus* EOs on digestibility coefficients of dry matter and nutrients of crossbred calves.

Digestibility%	T0	T1	T2
Dry Matter**	69.73±0.15°	70.50±0.17b	71.74±0.11 ^a
Crude protein	77.14±0.41	77.37±0.57	78.26±0.58
Crude fiber	76.26±0.12	76.50±0.15	76.65±0.32
Ether extract	64.89±0.43	64.68±0.63	65.69±0.46
Organic matter	73.79±0.20	73.93±0.15	74.31±0.10
NFE	76.17±0.30	76.54±0.28	76.99±0.35

NFE: Nitrogen free extract; T_0 : Control (Basal diet); T_1 : Basal diet + *Mentha piperita* essential oil (MPEO) @ 0.2% of calf starter/calf/day; T_2 : Basal diet + *Cymbopogon citratus* essential oil (CCEO) @ 0.2% of calf starter/calf/day; Means bearing different superscripts vary significantly (**P<0.01) across the row (a,b,c) showing treatment effect

The improvement in DM digestibility in MPEO and CCEO-supplemented calves may be attributed to enhanced rumen fermentation efficiency and microbial balance, as CCEO possesses strong antimicrobial properties that selectively inhibit pathogenic bacteria while supporting fibrolytic microbial activity (Wanapat et al., 2008; Kiani et al., 2022). Similar improvements in digestibility with EO supplementation have been reported by Ando et al. (2003) and Wanapat et al. (2008), who observed significant increases in DM digestibility with peppermint and lemongrass EOs, respectively. Consistently, Soares et al. (2023) also observed non-significant effects of CCEO on OM and CP digestibility. Del Valle et al. (2024) reported a tendency toward decreased CP digestibility with lemongrass essential oil supplementation in sheep diets, although the apparent digestibility of other nutrients remained unchanged.

In contrast, other studies reported either no effect or reduced digestibility with higher EO inclusion levels (Zulfa *et al.*, 2019). Such variations may result from differences in EO composition, dose-dependent antimicrobial action, and animal adaptation to bioactive compounds (Castillejos *et al.*, 2006; Froehlich *et al.*, 2017). The improved DM digestibility observed in the current study at 0.2% inclusion of CCEO indicates that moderate EO supplementation can enhance nutrient utilization without negatively affecting rumen fermentation.

Overall, the results suggest that MPEO and CCEO supplementation at 0.2% of the calf starter diet maintained normal feed intake while improving dry matter digestibility, particularly with CCEO. These findings support the potential of essential oils as natural feed additives to enhance nutrient utilization efficiency and reduce reliance on synthetic growth promoters in calf nutrition systems.

CONCLUSIONS

In conclusion, supplementation with MPEO and CCEO at 0.2% inclusion levels showed no adverse effect on feed intake, indicating good palatability and tolerance in crossbred calves. The improved dry matter digestibility suggests enhanced rumen fermentation efficiency and microbial activity, contributing to better nutrient utilization and overall feed efficiency.

FUTURE SCOPE

Further studies can be conducted on optimizing essential oil combinations and dosages to maximize rumen fermentation and nutrient utilization. Long-term trials across different production stages and environmental conditions are needed to evaluate growth performance, immune response, and methane mitigation potential, establishing essential oils as sustainable feed additives in livestock nutrition.

Acknowledgement. The authors gratefully acknowledge Dean, College of veterinary and Animal Science, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, and the Instructional Dairy Farm, Pantnagar, for their valuable support and facilities to carry out the research work.

REFERENCES

Ando, S., Nishida, T., Ishida, M., Hosoda, K. and Bayaru, E. (2003). Effect of peppermint feeding on the digestibility, ruminal fermentation, and protozoa. Livestock Production Science, 82(2-3), 245-248.

AOAC (2005). Official Methods of Analysis. 18th Edn., Association of Official Analytical Chemists, Washington, DC., USA.

Castillejos, L., Calsamiglia, S. and Ferret, A. (2006). Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in *in vitro* systems. *Journal of Dairy Science*, 89(7), 2649-2658.

- Coimbra, A., Miguel, S., Ribeiro, M., Coutinho, P., Silva, L., Duarte, A. P. and Ferreira, S. (2022). *Thymus zygis* essential oil: Phytochemical characterization, bioactivity evaluation and synergistic effect with antibiotics against *Staphylococcus aureus*. *Antibiotics*, 11, 146-162.
- Del Valle, T. A., Facco, F. B., Garcia, T. M., Capucho, E., Campana, M. and Morais, J. P. (2024). Lemongrass essential oil in silage and as a feed additive has limited effect on animals feed intake and rumen fermentation. New Zealand Journal of Agriculture Research, 67, 1-12.
- Froehlich, K. A., Abdelsalam, K. W., Chase, C., Koppien-Fox, J. and Casper, D. P. (2017). Evaluation of essential oils and prebiotics for newborn dairy calves. *Journal of Animal Science*, 95, 3772-3782.
- Hashemzadeh-Cigari, F., Rasoulinezhad, S., Kateb, F. and Hosseini-Ghaffari, M. (2015). Effects of Specific Essential Oil Compounds on Feed Intake, Blood Metabolites and Body Condition Score in Early Lactating Dairy Cows. *Biological Forum*, 7(1), 1173-1177.
- Ishfaq, A., Bhat, A. R., Ganai, A. M., Beigh, Y. A. and Sheikh, G. G. (2019). Effect of Pudina (Mentha piperita) supplementation on nutrient utilization and blood biochemical parameters of sheep. Indian Journal of Animal Nutrition, 36, 146-152.
- Kiani, H. S., Ali, A., Zahra, S., Hassan, Z. U., Kubra, K. T., Azam, M. and Zahid, H. F. (2022). Phytochemical composition and pharmacological potential of lemongrass (*Cymbopogon*) and impact on gut microbiota. *Journal of Applied Chemistry*, 2(4), 229-246.
- Liu, T., Chen, H., Bai, Y., Wu, J., Cheng, S., He, B. and Casper, D. P. (2020). Calf starter containing a blend of essential oils and prebiotics affects the growth performance of Holstein calves. *Journal of Dairy Science*, 103(3), 2315–2323.
- Nehme, R., Andrés, S., Pereira, R. B., Ben Jemaa, M., Bouhallab, S., Ceciliani, F., López, S., Rahali, F. Z., Ksouri, R., Pereira, D. M. and Abdennebi-Najar, L. (2021). Essential oils in livestock: from health to food quality. *Antioxidants*, 10, 330-366.
- Patra, A. K., Park, T., Braun, H. S., Geiger, S., Pieper, R., Yu,

- Z. and Aschenbach, J. R. (2019). Dietary bioactive lipid compounds rich in menthol alter interactions among members of ruminal microbiota in sheep. *Frontiers in Microbiology*, 10, 2038.
- Snedecor, G. W. and Cochran, W. B. (1994). Statistical Methods. 8th Edn., Iowa State University Press, Iowa. USA. 491p.
- Soares, L. C. B., Pires, A. V., Junior, P. C. G. D., dos Santos, I. J., de Assis, R. G., Junior, F. P. and Polizel, D. M. (2023). Doses of lemongrass (*Cymbopogon citratus*) essential oil for Nellore steers fed with a forage-based diet. *Livestock Science*, 276, 105318.
- Tarasing, P. S., Mohi-ud-din, S., Gani, M., Firdoos, M., Srivastava, K. and Khan, A. A. (2025). Botanical insecticides: a sustainable alternative for eco-friendly insect pest management. *Biological Forum*, 17(7), 201-208
- Tarigan, S. I. and Harahap, I. S. (2016). Toxicological and physiological effects of essential oils against *Tribolium castaneum* (Coleoptera: Tenebrionidae) and *Callosobruchus maculatus* (Coleoptera: Bruchidae). *Journal of Biopesticides*, 9(2), 135-147.
- Terre, M., Calvo, M. A., Adelantado, C., Kocher, A. and Bach, A. (2007). Effects of mannan oligosaccharides on performance and microorganism fecal counts of calves following an enhanced-growth feeding program. *Animal Feed Science and Technology*, 137(1-2), 115-125.
- Vakili, A. R., Khorrami, B., Mesgaran, M. D. and Parand, E. (2013). The effects of thyme and cinnamon essential oils on performance, rumen fermentation, and blood metabolites in Holstein calves consuming high concentrate diet. Asian- Australian Journal of Animal Sciences, 26(7), 935-941.
- Wanapat, M., Cherdthong, A., Pakdee, P. and Wanapat, S. (2008). Manipulation of rumen ecology by dietary lemongrass (*Cymbopogon citratus* Stapf.) powder supplementation. *Journal of Animal Science*, 86, 3497-3503.
- Zulfa, I. H., Bachruddin, Z. and Kurniawati, A. (2019). Effects of lemongrass leaves as essential oil sources on rumen microbial ecology and nutrient digestibility in an *in vitro* system. *Pakistan Journal of Nutrition*, 18(3), 254-259.

How to cite this article: Gautami Sarma, Jyoti Palod, Anita Arya, S. K. Singh, Shive Kumar, Sanjay Kumar, R.K. Sharma, Sumit Gangwar and Gyan Deepak Kumar (2025). Effect of *Mentha piperita* and *Cymbopogon citratus* Essential Oils on Feed Intake and Nutrient Digestibility in Crossbred Calves. *Biological Forum*, *17*(10): 16-19.