

Biological Forum – An International Journal

15(5): 699-707(2023)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

Effects of Nitrogen, Phosphorous and Potassium Level on Yield Attributes and Economics of Gladiolus (Gladiolus grandiflorus L.) cv. Nova Lux

Jyoti Singh^{1*}, Jitendra Kumar², Vinay Joseph Silas³, Neha Negi⁴ and Aneeta Yadav⁵ ¹Research Scholar, Department of Horticulture, Rama University, Kanpur (Uttar Pradesh), India. ²Assistant Professor, Department of Horticulture, Faculty of Agricultural Sciences and Allied Industries, Rama University, Kanpur (Uttar Pradesh), India. ³Teaching Associate, Department of Horticulture, Faculty of Agricultural Sciences and Allied Industries, Rama University, Kanpur (Uttar Pradesh), India. ⁴Research Scholar Department of Agriculture, SGRR University, Dehradun (Uttarakhand), India. ⁵Associate Professor, Department of Genetics & Plant Breeding, Faculty of Agricultural Sciences and Allied Industries, Rama University, Kanpur (Uttar Pradesh), India.

(Corresponding author: Jyoti Singh*) (Received: 09 March 2023; Revised: 15 April 2023; Accepted: 22 April 2023; Published: 20 May 2023) (Published by Research Trend)

ABSTRACT: Gladiolus (Gladiolus grandiflorus L.) is a significant flower crop in India. The crop's yield and productivity have been significantly lower than both regional and national standards due to various factors. The primary factor is the lack of location-specific fertilizer recommendations, among others. Thus, a field experiment was conducted for two consecutive seasons at the Horticulture Research Farm, Faculty of Agriculture Sciences and Associated Industries, Rama University, Kanpur, during the academic years 2020-2021 and 2021-2022. (U.P.). A Randomized Block Design was utilized in the experiment, with 13 treatments and three replications with various doses of N, P₂O₅, and K₂O. The main objectives of the experiment were to evaluate how N, P₂O₅, and K₂O affected the yield characteristics and economics of Gladiolus (Gladiolus grandiflorus L.) Cv. Nova Lux. According to the results of the current study, Treatment T₁₁(NPK @150:100:120) had the best effects on yield attributes like Number of Spikes [1.29 (202021), 1.31 (2021-22) and 1.30 (Pooled)], Weight of Spike [57.54 (2020-21), 59.02 (2021-22) and 57.85 (Pooled)] g, Number of florets per spike [17.33 (2020-21), 17.49 (2021-22) and 17.41 (Pooled)], Fresh weight of florets [3.32 (2020-21), 3.44 (2021-22) and 3.38 (Pooled)] g, dry weight of florets [0.73 (2020-21), 0.76 (2021-22) and 0.74 (Pooled)] g, Yield of Spikes per hectare [49.48 (2020-21), 52.49 (2021-22) and 50.99 (Pooled)] q/ha, Vase life of Spike [7.83 (2020-21), 7.92 (2021-22) and 7.88 (Pooled)] days, Number of Corms per plant [2.10 (2020-21), 2.11 (2021-22) and 2.10 (Pooled)] & Diameter of corms [5.42 (2020-21), 5.49 (2021-22) and 5.46 (Pooled)] cm. Treatment T₁₁ (NPK @150:100:120) was also found with highest gross returns (370000.02 Rs/ha), Net returns (270893.02 Rs/ha) & B:C ratio of 2.73 when compared to the other treatments. However, Lowest Benefit Cost ratio (1.92) was recorded in treatment T₀, i.e., control.

Keywords: Economics, Gladiolus, Gladiolus grandiflorus L., Nitrogen, Nova Lux, Phosphorous, Potassium, Yield.

INTRODUCTION

When it comes to commercially grown flower crops around the world, gladiolus (Gladiolus grandiflorus L.) is a major player in the cut flower industry. The "queen of bulbous flower," belonging to family Iridaceae, is most well known by its common names "sword lily", "maize flag" and "gladioli". Gladiolus aurantiacus L., Gladiolus blansus L., Gladilous byzantinus L., Gladiolus primulinus L., Gladiolus tristis L., etc., are only a few of the many species in this genus. It is believed that there are roughly 260 different species. with about 250 natives to sub Saharan Africa (mostly South Africa) and 10 to Eurasia (Ameh et al., 2011). It Singh et al.,

is a popular herbaceous plant for borders, beds, rockeries, containers, and bouquets (Satapathy et al., 2016).

Gladiolus is mostly grown in the United States (specifically the states of Florida and California), the Netherlands, Italy, France, Bulgaria, Brazil, Australia, Israel, and India (Kumar et al., 2017). The northern plains of Delhi-including the states of Haryana, Punjab, and Uttar Pradesh-as well as Maharashtra and Karnataka are where it is most cultivated in India for commercial uses (FAO, 2013). India dedicates gladiolus farming, 11,16,000 ha to vielding 102,911,000 tons (NHB, 2014-15).

Biological Forum – An International Journal 15(5): 699-707(2023)

The three most important nutrients for a crop's vegetative growth, flower yield, and quality attributes are nitrogen, phosphorus, and potassium. Recent ideas about environmentally friendly technologies, the rising price and inconsistent availability of inorganic fertilizers, and the selective use of chemicals that has resulted in declining soil fertility and health all present challenges (Sathyanarayana et al., 2017). Gladiolus growth and development are profoundly impacted by the macronutrients like nitrogen, phosphorus, and potassium. However, the crop may not yield as expected if these nutritional components are used in extremely low or excessive concentrations. In addition, the high dose application of these nutrients raises the cost of production and decreases the farm's net profit. The key to fruitful cut flower growing is the careful balancing of these three nutrients. Application of a precise dose of nitrogen, phosphorus, and potassium greatly improves the growth, development, flower features, and vase life of gladiolus (Dhakal et al., 2017).

Chopde et al. (2015) while testing the effect of nitrogen and potassium on gladiolus corm growth and production found that the corm weight (66.48 g) and cormel weight (8.04 g) were substantially highest with 450 kg nitrogen/ha and 225 kg potassium/ha respectively. Zamin et al. (2020) while conducting an experiment in Islamabad, Pakistan also found that combination of nitrogen and potash @100N + 200K kg/ha resulted in the maximum number of florets per spike (11.42). However, 100kg/ha nitrogen resulted in the longest spike (88.10cm). Sabastian et al. (2017) also conducted an experiment with Gladiolus grandiflorus cv. "White Prosperity" and observed minimum days to spike emergence (60.65), first opening of florets (78.13) and maximum floret size (10.22 cm) with incorporation of Phosphorous @ 200 kg/ha. In a similar experiment, Kumar et al. (2019) used Gladiolus (Gladiolus grandiflorus) cv. white prosperity to determine the effects of integrated nutrition management on vase life and corm production in which T_{12} (75% RDF + VC +Azotobacter +PSB) was found to have the best response in terms of spike length, floret opening rate, floret droop, floret opening time, and spike longevity.

Farmers in Uttar Pradesh are increasingly interested in growing gladiolus bulbs because of the significant profits they may generate from doing so. However, farmers don't know how much synthetic fertilizer to use to grow healthy corms and cormels of the highest grade. Not even flower cultivating farmers use synthetic fertilizer when starting new plants from seed. Because of this, they can't get their hands on properly sized corms and cormels for use in flower cultivation. Hence, there is a significant chance of increasing the yield of robust gladiolus corm and cormel production under the agro-ecological conditions of Uttar Pradesh by utilizing a suitable amount of N, P2O5 and K2O fertilizers. As a result, researchers have placed a premium interest on finding ways to increase gladiolus production. Yet, there are scant few studies on optimizing NPK fertilizers in Uttar Pradesh's agro-climatic conditions.

Therefore, in light of the foregoing, the current study, named "Effects of Nitrogen, Phosphorous and Potassium level on yield attributes and economics of Gladiolus (*Gladiolus grandiflorus* L.) cv. Nova Lux" was carried out at Rama University, Kanpur, Uttar Pradesh.

MATERIALS AND METHODS

This research was conducted in 2020–2021 and 2021-22 on Gladiolus (*Gladiolus grandiflorus* L.) cv. Nova Lux at a planting distance of 30 cm×50 cm. It was conducted at the main experimental station Rama University Kanpur, Uttar Pradesh, India. The Kanpur district lies at latitudes of $25^{\circ}34'$ and 26° 11' and longitudes of $81^{\circ}S19'$ and $82^{\circ}27'$ and has an altitude of 137 Mt. from mean sea level.

The experiment was set up in a randomized block design, with three replicates for each of the thirteen different treatment permutations. Table 1 details the treatments combinations. N, P_2O_5 , and K_2O were administered in different proportions in each treatment. Yield attributes like Number of Spikes, Weight of Spike (g), Number of florets per spike, Fresh weight of florets (g), dry weight of florets (g), Yield of Spikes per hectare (q/ha), Vase life of Spike (days), Number of Corms per plant, Diameter of corms (cm) were all successfully measured and economics of each treatment was estimated to determine the best treatment combination for gladiolus cultivation.

RESULTS AND DISCUSSION

The yield attributes of Gladiolus (*Gladiolus* grandiflorus L.) Cv. Nova Lux were studied statistically and economics of each treatment were estimated. The results showed that the incorporation of N, P₂O₅, and K₂O significantly improved all the parameters. The evidence suggests that the variances were statistically significant since F Cal > F Tab.

A. Yield Attributes

Number of spikes: During both the years (2020-21 and 2021-22) of study (Table 2, Fig. 1), it was observed that the treatment T_{11} (NPK @150:100:120) recorded the maximum Number of spikes per plant [1.29 (2020-21), 1.31 (2021-22) and 1.30 (Pooled)] over all other treatments where-as T₀ (Control) had the lowest recorded Number of spikes per plant, which was [0.98] (2020-21), 0.95 (2021-22) and 0.97 (Pooled)] during both the years of study as well as pooled analysis. The rise in the number of spikes per plant may be attributable to the optimum concentration of N, P₂O₅, and K₂O. Dalvi et al. (2008) showed that a higher nitrogen content led to more vegetative growth and storage of food stores that are redirected for flower bud differentiation, resulting in an increase in spikes per plant. Potassium on the other hand initiates the phosphorous availability to the plants there by helping in increasing the number of spikes per plant indirectly (Thompson, 2011). Similar results were also reported by Dhakal et al. (2017); Chandana and Dorajeerao (2014) on gladiolus.

Weight of Spike (g): It was observed that the treatment T₁₁(NPK @150:100:120) recorded the maximum weight of spike (g) per plant (Table 3, Fig. 2) [57.54 (2020-21), 59.02 (2021-22) and 57.85 (Pooled)] g over all other treatments during both the years of study as well as pooled analysis. However, treatment T₀ (Control) had the lowest recorded weight of spike (g), which was [39.64 (2020-21), 37.66 (2021-22) and 38.65 (Pooled)] g during both the years of study as well as pooled analysis. It is well established that potassium has little impact on spike weight or overall yield. However, high nitrogen & phosphorous applications had an impact on spike weight (Mukesh et al., 2001). Due to increased carbohydrate accumulation and a rapid rate of photosynthesis in both the vegetative and reproductive sections of gladiolus plants, the highest weight of spike was attained. Talukdar and Sangita (2003); Sharma et al. (2007) also reported similar outcomes.

Number of florets per spike: The maximum Number of florets per spike (Table 4; Fig. 3) [17.33 (2020-21), 17.49 (2021-22) and 17.41 (Pooled)] was found under treatment T₁₁(NPK @150:100:120) over all other treatments where-as T₀ (Control) had the lowest recorded Number of florets per spike, which was [14.79 (2020-21), 14.71 (2021-22) and 14.75 (Pooled)] during both the years of study as well as pooled analysis. The increase in the number of florets per spike may be related to the nitrogen concentration and its effect on vegetative properties, since nitrogen is a major component of chlorophyll and is involved in vital physiological processes such as photosynthesis. Sharma et al. (2003) reported comparable results. Similar results were obtained by Dhakal et al. (2017); Chandana and Dorajeerao (2014); Sharma et al. (2007) when working on Tuberose and gladiolus, respectively. Fresh weight of florets (g): The data regarding Fresh weight of florets (g) is shown in Table 5, Fig. 4. From the data it was observed that, treatment T₁₁(NPK @150:100:120) recorded the maximum fresh weight [3.32 (2020-21), 3.44 (202122) and 3.38 (Pooled)] g where-as T₀ (Control) had the lowest recorded fresh weight [2.68 (2020-21), 2.56 (2021-22) and 2.62 (Pooled)] g during both the years of study as well as pooled analysis. It is possible that this can be attributed to the role that nitrogen plays as a primary element in amino acids, proteins, vitamins, hormones, and enzymes, all of which have the ability to immediately affect cell division, cell elongation, and increase in meristematic activity. This would have resulted in an increase in size of florets and hence the fresh weight of florets. Similar result was also concluded by McAfee (2008).

Dry weight of florets (g): Table 6, Fig. 5 displays the collected data in terms of dry weight of florets (g) during the year 2020-21 and 2021-22, it was observed that, treatment T_{11} (NPK @150:100:120) recorded the maximum Dry weight of florets (g) [0.73 (2020-21), 0.76 (2021-22) and 0.74 (Pooled)] g over all other treatments where-as T_0 (Control) had the lowest recorded dry weight of florets (g), which was [0.59]

(2020-21), 0.56 (2021-22) and 0.58 (Pooled)] g during both the years of study as well as pooled analysis. Potassium helps in water economy, energy metabolism and enzymes activity, which have positive effect on flower weight. Zhao *et al.* (2001) also found Potassium deficiency reduced dry matter accumulation. The experiment conducted by Bajwa and Rehman (2005) also showed that balance dose of potassium with other nutrients (Like N and P) increase fresh and dry flower weight of zinnia because luxury consumption of K does not increase yield if the accompanying N and P are not sufficient.

Yield of Spikes per hectare (q/ha): The data regarding Yield of Spikes per hectare (q/ha) is shown in Table 7; Fig. 6. T₁₁(NPK @150:100:120) recorded the maximum yield of spikes per hectare (q/ha) [49.48 (2020-21), 52.49 (2021-22) and 50.99 (Pooled)] q/ha over all other treatments. However, treatment T₀ (Control) had the lowest recorded yield of spikes per hectare (q/ha), which was [25.91 (2020-21), 23.86 (2021-22) and 24.88 (Pooled)] q/ha during both the years of study as well as pooled analysis. Basnet et al. (2018) also discovered extremely comparable results. Phosphorus is also required for the process of cell division, the formation of meristematic tissues, and the creation of robust root systems, all of which contribute to enhanced plant growth, as demonstrated by the preceding facts. Phosphorus is required for the process of cell division; therefore, its application could have also affected the length and weight of the spikes and hence yield of spike. The addition of potassium to the soil may also have contributed to the increased length and weight of the gladiolus plants' spikes. Deshmukh et al. (2012) on Tuberose, Chandana and Dorajeerao (2014) on Gladiolus, and Sharma et al. (2007) while working on Tuberose all achieved results that were similar.

Vase life of Spike (days): Treatment T_{11} (NPK @150:100:120) recorded the maximum vase life of spike (Table 8, Fig. 7) [7.83 (2020-21), 7.92 (2021-22) and 7.88 (Pooled)] days over all other treatments where-as T_0 (Control) had the lowest recorded vase life of spike, which was [5.59 (2020-21), 5.51 (2021-22) and 5.55 (Pooled)] days during both the years of study as well as pooled analysis. Application of phosphorus might have helped in increasing vase life of spikes. Phosphorus regulates root growth and is a component of nucleic acid phytin ATP, which plays a crucial function in a plant's healthy growth and development, resulting in increased flower production and vase life. These findings closely resemble those of Kumar and Singh (2011) for calendula, Khan et al. (2012); Verma et al. (2015) for gladiolus.

Number of Corms per plant: The data regarding Number of Corms per plant is shown in Table 9, Fig. 8. It was observed that, treatment T_{11} (NPK @150:100:120) recorded the maximum number of corms per plant [2.10 (2020-21), 2.11 (2021-22) and 2.10 (Pooled)] over all other treatments. However, treatment T_0 (Control) had the lowest recorded number of corms per plant, which was [1.64 (2020-21), 1.60 (2021-22) and 1.62 (Pooled)] during both the years of study as well as pooled analysis. Additional corm production can be achieved with the use of phosphorus and potassium, which stimulate vegetative growth by increasing cell division, cell elongation, and chlorophyll synthesis. It is found consistent with the findings of Kumar and Mishra (2011) in gladiolus and Kadu et al. (2009) in tuberose Cv. Single

Diameter of corms (cm): According to the data mentioned at Table 10, Fig. 9, it was observed that, treatment $T_{11}(NPK @150:100:120)$ recorded the maximum diameter of corms (cm) [5.42 (2020-21), 5.49 (2021-22) and 5.46 (Pooled)] cm over all other treatments where-as T₀ (Control) had the lowest recorded diameter of corms (cm), which was [3.95 (2020-21), 3.91 (2021-22) and 3.93 (Pooled)] days during both the years of study as well as pooled analysis. Corm diameter may have increased as a result of improved plant development and subsequently higher photosynthetic activity. This improvement resulted from appropriate fertilisation. Yadav (2018); Mahadik and Chopde (2015) also came to similar conclusive conclusions.

Economics: The economics of treatments is an important goal in determining the best treatments that improve income and are acceptable. Table 11 shows the cost of cultivation, gross returns, net returns, and B: C ratio as affected by various treatments. Because of the variable application of N, P2O5 and K2O, the cost of cultivation varied from 102815 Rs./ha to 87600 Rs/ha. Treatment T₁₁ (NPK @150:100:120) had the highest gross returns (370000.02 Rs/ha) when compared to the other treatments where-as Treatment T₀, i.e., Control, had the lowest gross returns (256000.01 Rs./ha) when compared to the other treatments Highest Net returns (270893.02 Rs./ha) was recorded in treatment T_{11} (NPK @150:100:120) whereas both treatment T_{11} and T_{10} were found with same B:C ratio of 2.73. However, Lowest Benefit Cost ratio (1.92) was recorded in treatment T₀, i.e., control. Similar results on economics and cost benefit ratio were also found by Avilala et al. (2020); Bolagam et al. (2019); Beck et al. (2018); Tirkey et al. (2017) while working on gladiolus.

Fig. 1. Effect of N, P₂O₅ and K₂O on number of spikes of Gladiolus.

Table 1: Effect of N, P₂O₅ and K₂O on number of spikes of Gladiolus.

Highest value, i- lowest value

T	Number of spikes					
Treatment Symbol	2020-21	2021-22	Pooled			
T_0	0.98i	0.95i	0.97i			
T_1	1.07h	1.17h	1.12h			
T_2	1.11g	1.19gh	1.15gh			
T ₃	1.13fg	1.20fg	1.17fg			
T_4	1.10gh	1.19gh	1.15gh			
T ₅	1.16ef	1.22ef	1.19ef			
T_6	1.20d	1.25d	1.23d			
T_7	1.21cd	1.26cd	1.24cd 1.22de			
T_8	1.19de	1.24de				
T9	1.24bc	1.28bc	1.26bc			
T10	1.28a	1.30ab	1.29ab			
T11	1.29a	1.31a	1.30a			
T12	1.27ab	1.30ab	1.28ab			
F-test	**	**	**			
S.E. (m) (±)	0.01	0.01	0.01			
C.D. @ 5%	0.04	0.02	0.05			
C.D. @ 1%	0.05	0.03	0.07			
Treatment*Year		**				

Table 2: Effect of N, P₂O₅ and K₂O on Weight of Spike (g) of Gladiolus.

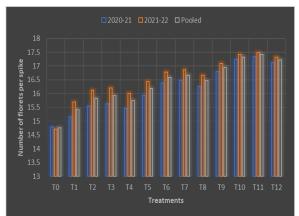

The state of Charles	Weight of Spike (g)					
Treatment Symbol	2020-21	2021-22	Pooled			
T_0	39.64g	37.66j	38.65j			
T_1	42.87f	46.60i	44.74i			
T_2	45.38e	49.33gh	47.36gh			
T ₃	46.08e	50.09g	48.08g			
T_4	44.86e	48.67h	46.76h			
T ₅	48.13d	51.78f	49.96f			
T_6	50.98c	54.00de	52.49de			
T ₇	51.59c	54.91d	53.25d			
T ₈	50.24c	53.51e	51.87e			
T ₉	53.75b	56.57c	55.16c			
T10	56.68a	59.02ab	57.85ab			
T11	57.54a	60.11a	58.82a			
T12	55.99a	58.37b	57.18b			
F-test	**	**	**			
S.E. (m) (±)	0.54	0.43	0.77			
C.D. @ 5%	1.57	1.26	2.4			
C.D. @ 1%	2.12	1.71	3.37			
Treatment*Year		**				

Fig. 2. Effect of N, P₂O₅ and K₂O on weight of spikes (g) of Gladiolus.

Treatment Symbol	Number of florets per spike				
Treatment Symbol	2020-21	2021-22	Pooled		
T_0	14.79g	14.71g	14.75g		
T_1	15.15f	15.69f	15.42f		
T_2	15.54e	16.12e	15.83e		
T ₃	15.62e	16.21e	15.92e		
T_4	15.47e	16.01e	15.74e		
T ₅	15.94d	16.44d	16.19d		
T_6	16.39c	16.77c	16.58c		
T_7	16.48c	16.86c	16.67c		
T_8	16.26c	16.67c	16.47c		
T9	16.80b	17.09b	16.95b		
T10	17.23a	17.41a	17.32a		
T11	17.33a	17.49a	17.41a		
T12	17.12a	17.32a	17.22a		
F-test	**	**	**		
S.E. (m) (±)	0.1	0.07	0.1		
C.D. @ 5%	0.3	0.21	0.31		
C.D. @ 1%	0.4	0.29	0.43		
Treatment*Year		**			


Table 3: Effect of N, P₂O₅ and K₂O on Number of florets per spike of Gladiolus.

Fig. 3. Effect of N, P₂O₅ and K₂O on Number of florets per spike of Gladiolus.

Table 4: Effect of N, P ₂ O ₅ and K ₂ O on Fresh weight
of florets (g) of Gladiolus.

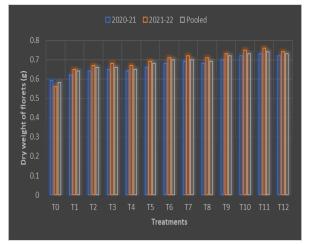
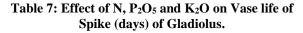

	Fresh weight of florets (g)					
Treatment Symbol	2020-21	2021-22	Pooled			
T_0	2.68i	2.56j	2.62i			
T_1	2.83h	2.97i	2.90h			
T_2	2.92g	3.06h	2.99g			
T ₃	2.95fg	3.09gh	3.02fg			
T_4	2.90gh	3.04h	2.97g			
T ₅	3.02ef	3.15fg	3.09ef			
T_6	3.11d	3.22e	3.17d			
T ₇	3.13cd	3.26de	3.19cd			
T_8	3.09de	3.21ef	3.15de			
T ₉	3.20bc	3.31cd	3.26bc			
T10	3.29a	3.39ab	3.34a			
T11	3.32a	3.44a	3.38a			
T12	3.27ab	3.37bc	3.32ab			
F-test	**	**	**			
S.E. (m) (±)	0.03	0.02	0.03			
C.D. @ 5%	0.07	0.06	0.11			
C.D. @ 1%	0.1	0.08	0.15			
Treatment*Year		**				

Fig. 4. Effect of N, P₂O₅ and K₂O on Fresh weight of florets (g) of Gladiolus.

Table 5: Effect of N, P₂O₅ and K₂O on Dry weight of florets (g) of Gladiolus.

True for and Samula 1	Dry weight of florets (g)					
Treatment Symbol	2020-21	2021-22	Pooled			
T_0	0.59i	0.56j	0.58i			
T_1	0.62h	0.65i	0.64h			
T_2	0.64g	0.67h	0.66g			
T ₃	0.65fg	0.68gh	0.66fg			
T_4	0.64gh	0.67h	0.65g			
T ₅	0.66ef	0.69fg	0.68ef			
T_6	0.68d	0.71e	0.70d			
T ₇	0.69cd	0.72de	0.70cd			
T_8	0.68de	0.71ef	0.69de			
T ₉	0.70bc	0.73cd	0.72bc			
T10	0.72a	0.75ab	0.73a			
T11	0.73a	0.76a	0.74a			
T12	0.72ab	0.74bc	0.73ab			
F-test	**	**	**			
S.E. (m) (±)	0.01	0.004	0.007			
C.D. @ 5%	0.02	0.01	0.02			
C.D. @ 1%	0.02	0.02	0.03			
Treatment*Year		**				


Fig. 5. Effect of N, P₂O₅ and K₂O on Dry weight of florets (g) of Gladiolus.

Treatment Symbol	Yield of Spikes per hectare (q/ha)						
-	2020-21	2021-22	Pooled				
T_0	25.91h	23.86j	24.88j				
T_1	30.58g	36.35i	33.47i				
T_2	33.60f	39.14gh	36.37gh				
T_3	34.71f	40.07g	37.39g				
T_4	32.89f	38.61h	35.75h				
T ₅	37.22e	42.12f	39.67f				
T ₆	40.79d	45.00de	42.89de				
T_7	41.63d	46.12d	43.87d				
T_8	39.86d	44.23e	42.04e				
T ₉	44.44c	48.28c	46.36c				
T10	48.37ab	51.14ab	49.76ab				
T11	49.48a	52.49a	50.99a				
T12	47.39b	50.58b	48.99b				
F-test	**	**	**				
S.E. (m) (±)	0.66	0.47	1.03				
C.D. @ 5%	1.94	1.38	3.18				
C.D. @ 1%	2.63	1.87	4.46				
Treatment*Year		**					

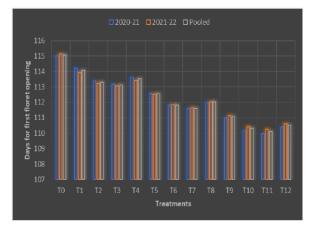

Table 6: Effect of N, P₂O₅ and K₂O on Yield of Spikes per hectare (q/ha) of Gladiolus.

Fig. 6. Effect of N, P₂O₅ and K₂O on Yield of Spikes per hectare (q/ha) of Gladiolus.

True for and South al	Vase life of Spike (days)					
Treatment Symbol	2020-21	2021-22	Pooled			
T_0	5.59i	5.51g	5.55i			
T_1	6.27h	6.11f	6.19h			
T_2	6.56g	6.42e	6.49g			
T ₃	6.64fg	6.53e	6.59fg			
T_4	6.48gh	6.36e	6.42gh			
T ₅	6.85ef	6.78d	6.82ef			
T_6	7.14d	7.13c	7.14d			
T ₇	7.24cd	7.22c	7.23cd			
T ₈	7.06de	7.03c	7.05de			
T ₉	7.45bc	7.47b	7.46bc			
T10	7.74a	7.81a	7.77a			
T11	7.83a	7.92a	7.88a			
T12	7.66ab	7.72a	7.69ab			
F-test	**	**	**			
S.E. (m) (±)	0.08	0.08	0.05			
C.D. @ 5%	0.22	0.24	0.16			
C.D. @ 1%	0.3	0.33	0.21			
Treatment*Year		NS				

Fig. 7. Effect of N, P₂O₅ and K₂O on Vase life of Spike (days) of Gladiolus.

Table 8: Effect of N, P₂O₅ and K₂O on Number of corms per plant of Gladiolus.

	Number of corms per plant					
Treatment Symbol	2020-21	2021-22	Pooled			
T_0	1.64h	1.60h	1.62g			
T_1	1.73g	1.74g	1.74f			
T_2	1.79f	1.81fg	1.80ef			
T ₃	1.80f	1.82efg	1.81ef			
T_4	1.77fg	1.79fg	1.78ef			
T ₅	1.84e	1.88def	1.86de			
T ₆	1.90d	1.94cd	1.92cd			
T ₇	1.91cd	1.96bcd	1.94cd			
T_8	1.88de	1.93cde	1.91cd			
T ₉	1.95bc	2.01bc	1.98bc			
T10	2.00a	2.07ab	2.04ab			
T11	2.10a	2.11a	2.10a			
T12	1.99ab	2.06ab	2.03ab			
F-test	**	**	**			
S.E. (m) (±)	0.01	0.02	0.01			
C.D. @ 5%	0.04	0.06	0.04			
C.D. @ 1%	0.05	0.08	0.05			
Treatment*Year		NS				

Fig. 8. Effect of N, P₂O₅ and K₂O on Number of corms per plant of Gladiolus.

Singh et al.,

Biological Forum – An International Journal 15(5): 699-707(2023)

Fig 9. Effect of N, P₂O₅ and K₂O on diameter of corms (cm) of Gladiolus.

Table 9: Effect of N, P₂O₅ and K₂O on diameter of corms (cm) of Gladiolus.

	Diameter of corm (cm)					
Treatment Symbol	2020-21	2021-22	Pooled			
T_0	3.95i	3.91i	3.93i			
T_1	4.28h	4.61h	4.45h			
T_2	4.51g	4.77g	4.64g			
T ₃	4.55fg	4.83fg	4.69fg			
T_4	4.44gh	4.73gh	4.59gh			
T_5	4.71ef	4.95ef	4.83ef			
T_6	4.92d	5.11d	5.02d			
T_7	4.98cd	5.16cd	5.07cd			
T_8	4.87de	5.07de	4.97de			
T ₉	5.14bc	5.28bc	5.21bc			
T10	5.37a	5.45a	5.41a			
T11	5.42a	5.49a	5.46a			
T12	5.30ab	5.40ab	5.35ab			
F-test	**	**	**			
S.E. (m) (±)	0.06	0.05	0.05			
C.D. @ 5%	0.17	0.13	0.16			
C.D. @ 1%	0.23	0.18	0.23			
Treatment*Year		*				

Table 10: Effect of N, P₂O₅ and K₂O on economics of Gladiolus.

Treatments	T ₀	T 1	T2	T ₃	T ₄	T5	T ₆	T ₇	T ₈	T 9	T ₁₀	T ₁₁	T ₁₂
Cost of cultivation (Rs/ha)	87600	93722	95864	97889	101597	94177	96319	98344	102052	94940	97082	99107	102815
Approx number of spikes	64666.67	74666.67	76666.67	78000.00	76666.67	79333.34	82000.00	82666.67	81333.34	84000.00	86000.00	86666.67	86000.00
Selling price per spike=Rs 3	194000.01	224000.01	230000.01	234000.01	230000.01	238000.01	246000.01	248000.01	244000.01	252000.01	258000.01	260000.01	258000.01
Additional corm produced (Total number of corms- number of corms planted)	41333.34	49333.34	53333.34	54000	52000	57333.34	61333.34	62666.67	60666.67	65333.34	69333.34	73333.34	68666.67
Selling price per corm=Rs 0.5	62000.00	74000.00	80000.00	81000.00	78000.00	86000.00	92000.00	94000.00	91000.00	98000.00	104000.01	110000.01	103000.01
Gross return (Rs)	256000.01	298000.01	310000.02	315000.02	308000.02	324000.02	338000.02	342000.02	335000.02	350000.02	362000.02	370000.02	361000.02
Net Return (Rs)	168400.01	204278.01	214136.02	217111.02	206403.02	229823.02	241681.02	243656.02	232948.02	255060.02	264918.02	270893.02	258185.02
B:C	1.92	2.18	2.23	2.22	2.03	2.44	2.51	2.48	2.28	2.69	2.73	2.73	2.51

CONCLUSIONS

From the results of the current experiment, it can be inferred that Treatment T_{11} (NPK @150:100:120), had the best effects. It was deemed to have the best yield attributes including Number of Spikes, Weight of Spike (g), Number of florets per spike, Fresh weight of florets (g), dry weight of florets (g), Yield of Spikes per hectare (q/ha), Vase life of Spike (days), Number of Corms per plant and Diameter of corms (cm).

Also, Highest Net returns (270893.02 Rs/ha) was recorded in treatment T_{11} (NPK @150:100:120) whereas both treatment T_{11} and T_{10} were found with same B:C ratio of 2.73. However, Lowest Benefit Cost ratio (1.92) was recorded in treatment T_0 , i.e., control.

FUTURE SCOPE

The primary objectives of gladioli growers are to optimize yield, increase daughter corm production, and maximize net returns. This study presents novel empirical findings regarding the reactions of varying concentrations of Nitrogen, Phosphorous, and Potassium. To optimize the yield and cost benefit ratio of gladiolus cv. Nova Lux cultivation in the prayagraj agro-climate, it is recommended to utilize NPK @150:100:120. Our experiments have shown that this particular combination resulted in the most significant increases. The following methods and outcomes are expected to improve Gladiolus production while minimizing the impact on cultivated land degradation.

In light of the dynamic nature of cultivated Gladiolus varieties, it is recommended that the experimental design be replicated in the coming years to assess the impact of fertilization on novel and sought-after varieties in the market.

Acknowledgement. The author would like to give special thanks to the members of the Department of Horticulture at the Rama University Kanpur (Uttar Pradesh), India (both teaching and non-teaching staff). Conflicts of Interest. None.

REFERENCES

- Ameh, S.J., Obodozie, O.O., Olorunfemi, P.O., Okoliko, I. E. and Ochekpe, N. A. (2011). Potentials of gladiolus corms as an antimicrobial agent in food processing and traditional medicine. Journal of Microbiology and Antimicrobials, 3(1), 8-12.
- Avilala, D. P., Lakshmi, K.S., Nagaraju, R. and Reddy, D. D. (2020). Economics of different Gladiolus cultivars grown under open field conditions in Southern Zone of Andhra Pradesh. Plant Archives, 20(1), 670-672.
- Bajwa, M. I. and Rehman, F. (2005). Soil Science. Chap. Soil and Fertilizer Potassium. Pp 318- 320. National Book Foundation Islamabad, Pak
- Basnet, M., Shakya, S. M., & Pant, S. S. (2018). Effect of different nitrogen and phosphorous doses on gladiolus yield in Ilam, Nepal. Nepalese Journal of Agricultural Sciences 2018, volume 17, 32.
- Beck, S. K., Singh, D. and Agrawal, P. (2018). Comparative study on effect of different spacing and application of organic and inorganic fertilizers on growth, flowering and yield of gladiolus (Gladiolus grandiflorus L.). Bioved, 29(1), 163-167.
- Bolagam, R. and Natarajan, S. (2019). Economics of cut gladiolus (Gladiolus grandiflorus L.) production with application biostimulants. J. Pharmacogn. Phytochem, 8, 1276-1279.
- Chandana, K. and Dorajeerao, A. V. D. (2014). Effect of graded levels of nitrogen and phosphorus on growth and yield of gladiolus (Gladiolus grandiflorus L.) cv. white Prosperity in coastal AP, India. Plant Archives, 14(1), 143-150.
- Chopde, N., Nehare, N., Maske, S. R., Lokhande, S. and Bhute, P. N. (2015). Effect of foliar application of zinc and iron on growth, yield and quality of gladiolus. Plant Archives, 15(1), 417-419.
- Dalvi, N. V., Rangwala, A. D. and Joshi, G. D. (2008). Effect of spacing and graded levels of fertilizers on yield attributes of gladiolus. J. Maharashtra Agric. Univ., 33(2), 167-170.
- Deshmukh, R. N. (2012). Effect of Various Irrigation Methods on Growth, Flowering and Yield of Tuberose (Polyanthes tuberose L.). Journal Horticulture Science, 7(1), 94-97.
- Dhakal, K., Khanal, D. and Ayer, D. P. (2017). Effect of Nitrogen and Phosphorous on Growth, Development and Vase Life of Gladiolus. Research & Reviews: *Journal of Agricultural Science and Technology*, 6(3)
- FAO. (2013). Cut Flower Production in India-Narendra K. Dadlani (online). Available at http://www.fao.org/docrep/005/ac452e/ac452e04.htm
- Kadu, A. P., Kadu, P. R. and Sable, A. S. (2009). Effect of nitrogen, phosphorus and potassium on growth, flowering and bulb production in tuberose Cv. Single. J of Soils and Crops, 19, 367-370.
- Khan, F. N., Rahman, M. M., Karim, A. J. M. S. and Hossain, K. M. (2012). Effects of nitrogen and potassium on

growth and yield of gladiolus corms. Bangladesh Journal of Agricultural Research, 37(4), 607-616.

- Kumar, A. and Singh, A. K. (2011). Effect of spacing and nitrogen levels on vegetative growth, flowering behavior and yield of calendula (Calendula officinalis L.). Plant Archives, 11(2), 941-944.
- Kumar, K., Singh, C. N., Beniwal, V. S., Pinder, R., & Poonia, R. S. (2017). Effect of nitrogen fertilizer on different attributes of gladiolus (Gladiolus grandiflorous L.) cv. American Beauty. International Journal of Environment, Agriculture and Biotechnology, 2(1), 238637.
- Kumar, R. and Mishra. R. L. (2011). Studies on nitrogen application in combination with phosphorus or potassium on gladiolus Cv. Jester Gold. Indian J Hort., 68, 535-539.
- Kumar, R. L. (2009). Flowering of gladiolus cv. Jester Gold as affected by different doses of nitrogen, phosphorus and potassium. Environment and Ecology 27:607-610.
- Mahadik, M. K. and Chopde, N. (2015). Influence of Nitrogen and Potassium on growth and yield of gladiolus corms. Plant archives, 15(1), 193-196.
- McAfee, J. (2008). Potassium, A Key Nutrient for Plant Growth. Department of Soil and Crop Sciences.
- Mukesh, K., Chattappadhyay, T. K., Das, D. K. and Kumar, M. (2001). Effect of foliar application of zinc, copper and iron on the yield and quality of Gladiolus cv. Mirela. Journal of Interacademicia, 5, 300-303.
- N.H.B. National Horticultural Board database, 2014-15. Gurgaon, Haryana, India, http://nhb.gov.in/areapro/horst_galance_2015.pdf. Photosynthetica, 39(1), 103-109.
- Sabastian, K.S., Keditsu, R., Moyon, N.N., Dakho, J., Hemanta, L. (2017). Graded level of phosphorus on growth and flowering of gladiolus (gladiolus grandiflorus L.) cv. White Prosperity. International Journal of Technical Research & Science, 2(1), 62-64.
- Sathyanarayana, E., Patil, S., Chawla, S L. and Patel, D. (2017). Influence of integrated management on gladiolus (Gladiolus grandiflorus L.) cv. American beauty. International Journal of Current Microbiology and Applied Sciences, 6(8), 379-386.
- Satyapathy, S. P. Toppo, R., Dishri, M. and Mohanty, C. R. (2016). Impact of integrated nutrient management (INM) on flowering and corm production on gladiolus. Biometrics and Biostatistics International Journal. 4(7), 296-298.
- Sharma, J. R., Gupta, R. B., Panwar, R. D. and Kaushik, R. A. (2003). Growth and flowering of gladiolus as affected by N and P levels. Journal of Ornamental *Horticulture*, *6*(1), 76-77.
- Sharma, R. K., Dashora, L. K. and Mohammed, S. (2007). Effect of time of planting and nitrogen on growth and flower yield of tuberose (Polianthes tuberosa L.) cv. Double. Orissa J. Hort., 35(2), 108-113.
- Talukdar, M. C. and Sangita, M. (2003). Response of graded levels of N, P and K on yield and quality of tuberose (Polianthes tuberosa L.) cv. Single. J. Ornamental Hort., 6(4), 335340.
- Thompson, B. (2011). Efficient fertilizer use-potassium. Pp. 1-13.
- Tirkey, P., Kullur, L. R. and Prasad, V. M. (2017). Effect of organic and Inorganic source of NPK on growth and yield parameters of gladiolus (Gladiolus grandiflorus) cv. Jester. Journal of Pharmacognosy and Phytochemistry, 6(5), 1004-1006.
- Verma, R.P., Kumar, A., Verma, S. K., Verma, A. and Verma, P. K. (2015). Influence of nitrogen, planting
- Singh et al., Biological Forum – An International Journal 15(5): 699-707(2023)

706

geometry and corm size on vegetative growth and corm and cormel production of gladiolus cv. Nova Lux, *Environmental and Ecology*; 33(1), 199-201.

- Yadav, U. (2018). Water and Nutrient Management Studies on Gladiolus (*Gladiolus grandiflorus*) under Drip Environment. Thesis, M. Tech. Indira Gandhi Krishi Vishwa Vidyalaya, Raipur. p. 60-102.
- Zamin, M., Khan, A. Jan, I. and Rabbi, F. (2020). Effect of Nitrogen and Potash on the Yield and Quality of

Gladiolus (*Gladiolus grandiflorus* L) Flower. Sarhad Journal of Agriculture. April 2020, 36, Issue 2, Page 397

Zhao, D., Oosterhuis, D. M., & Bednarz, C. W. (2001). Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. *Photosynthetica*, 39, 103-109.

How to cite this article: Jyoti Singh, Jitendra Kumar, Vinay Joseph Silas, Neha Negi and Aneeta Yadav (2023). Effects of Nitrogen, Phosphorous and Potassium Level on Yield Attributes and Economics of Gladiolus (*Gladiolus grandiflorus* L.) cv. Nova Lux. *Biological Forum – An International Journal*, *15*(5): 699-707.