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ABSTRACT: The utilisation of digital soil mapping has gained significant traction in the scientific 

community to construct statistical models that elucidate the intricate connections between environmental 

factors and soil characteristics.  A comprehensive understanding of the inherent spatial variability of soil 

physical and chemical properties is imperative to enhance the precision and effectiveness of site-specific 

soil nutrient management strategies. In this research endeavour, we explored the multifaceted domain of 

spatial variability of a wide range of soil physical and chemical properties, including pH levels, organic 

carbon content, and available nitrogen, phosphorus, potassium, and sulphur across diverse geographical 

locations within the Baramulla district. Soil samples were carefully collected from a depth of 0-15 cm, 

employing a randomized sampling technique with the aid of GPS technology, ensuring precise geospatial 

coordinates were recorded for each of the 120 sampling locations. The statistical analysis conducted on soil 

properties revealed that the pH levels exhibit a relatively low coefficient of variation (CV), measuring less 

than 15%. On the other hand, organic carbon, nitrogen, phosphorus, potassium, and sulphur display a 

substantial coefficient of variation, surpassing 20%. Although there has been a rise in the use of 

probabilistic and statistical analysis, there are still several obstacles to overcome when it comes to 

integrating the spatial variability inherent in soil parameters into prediction analysis. The geostatistical 

interpolation technique has successfully revealed a moderate spatial variability in the levels of pH, organic 

carbon, phosphorus, potassium, and sulphur. Additionally, it has indicated a weaker spatial variability in 

the levels of nitrogen. The soil variables were subjected to fitting models such as Exponential (N and K), 

Spherical (OC), and Gaussian (pH, P2O5, Sulphur) to analyse their semivariograms. This study 

demonstrates the versatility of the framework in analysing soil parameters throughout a wide range of 

variability, from low to high. These cartographic representations enable agricultural practitioners to 

evaluate the prevailing soil conditions on their farms, facilitating streamlined and optimised decision-

making processes. This, in turn, contributes to the preservation of productivity sustainability while 

ensuring enhanced operational efficiency. 

Keywords: Soil mapping, Geostatistics, Interpolation, Semivariogram, site-specific soil nutrient management. 

 

 INTRODUCTION 

The significance of soil as the fundamental basis for life 

and biodiversity cannot be overstated, as its overall 

quality has a direct impact on crucial processes such as 

nutrient cycling and the well-being of human 

populations (Fitter et al., 2005; Bogunović et al., 2017). 

Sustainable soil management, when coupled with a 

comprehensive comprehension of soil properties, has 

the potential to enhance both food quality and security 

(Brevik and Sauer 2015). Additionally, it plays a crucial 

role in preserving or enhancing soil fertility levels and 

mitigating the widespread issue of soil degradation, 

which has global implications (Thapa and Yila 2012; 

Zhao et al., 2013). In recent decades, the agricultural 

sector has witnessed the implementation of soil 

management practices that are deemed unsustainable. 

These practices have resulted in a range of detrimental 

effects on soil quality, leading to significant soil 

degradation. The consequences of such degradation are 

far-reaching, particularly in terms of soil productivity. 
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This issue has been extensively studied and 

documented by researchers such as Nawaz et al. (2013) 

and Keesstra et al. (2016). Soil degradation processes 

primarily arise from the synergistic effects of various 

factors, including parent material, climate, physical, 

chemical, and biological processes occurring within the 

soil, as well as human and animal activities (Goovaerts 

1998; Ji et al., 2006). Moreover, it is important to note 

that soil degradation can significantly influence the 

capacity of soil to sustain its crop cultivation 

capabilities. Hence, it is imperative to acquire 

knowledge about the existing state of soil properties 

and the precise measurements of the impact of different 

factors on soil properties. This knowledge serves as a 

fundamental requirement for making informed 

decisions regarding soil management, with the ultimate 

goal of ensuring the sustainable utilisation of soil 

resources (Plant 2001; McBratney et al., 2014). In order 

to effectively implement sustainable soil management 

practices, it is imperative to possess a comprehensive 

understanding of the spatial distribution of soil 

properties. This knowledge allows for the identification 

of specific areas that necessitate intervention, as well as 

the determination of the appropriate level of 

intervention required (Behera et al., 2018). 

The spatial characterization of soil properties 

necessitates the examination of numerous 

interconnected field data, which can be acquired 

through a range of direct and indirect techniques. These 

methods encompass sampling and chemical analysis, 

proximal and remote sensing, as well as geophysical 

approaches (Bogunović et al., 2017). The field data that 

is gathered frequently yields intricate multivariate data 

sets in terms of both spatial and temporal dimensions. 

These data sets often exhibit varying coverage rates and 

spatial densities. To enhance the comprehensiveness 

and perceptibility of the data sets, it is imperative to 

employ resilient spatial statistical techniques (Trevisani 

and Fabbri 2010; Vasu et al., 2017; Behera et al., 

2018). The application of geostatistical methodologies 

in the field of soil sciences has a rich and extensive 

history. The geostatistical methodology, utilising the 

family of best linear unbiased interpolators commonly 

referred to as "kriging", presents a diverse range of 

mapping techniques. The assessment of spatial and 

temporal variations of soil properties can be effectively 

conducted by employing tools that take into account 

autocorrelation and random variation components. This 

approach enables the generation of maps depicting the 

spatial distribution of the studied soil property, while 

also providing an assessment of the associated 

uncertainty. Notable studies in this field include those 

conducted by Bogunović et al. (2014), Pereira et al. 

(2015), and Rosemary et al. (2017) Geostatistical 

techniques have been employed in numerous 

investigations to examine the spatial heterogeneity of 

soil properties such as pH (Bogunović et al., 2014; 

Zhang et al., 2018), organic matter content (Byrne and 

Yang 2016), phosphorus levels (Behera et al., 2016; 

Wilson et al., 2016), and potassium concentrations 

(Bogunović et al., 2014; Behera and Shukla 2015). 

Furthermore, it is worth noting that geostatistical 

methods have been utilised in the context of site-

specific management of plant nutrients (Fraisse et al., 

2001; Moshia et al., 2014) as well as in the realm of 

process-based land use planning and environmental 

modelling (Oliver 2010). By employing geostatistical 

techniques, researchers can generate estimations that 

exhibit enhanced accuracy while simultaneously 

minimising the associated error. Geo-statistics is a field 

of study that focuses on the examination of variables 

that exhibit spatial structure or possess a continuous 

spatial distribution. One of the fundamental principles 

in the field of geo-statistics is that the degree of 

similarity between samples tends to decrease as the 

distance between them increases (Isaaks and Srivastava 

1989; Goovaerts 1997). According to Kresic (1997) 

findings, the geostatistics technique emerges as the 

most reliable, robust, and comprehensive approach for 

interpolation. Kresic (1997) acknowledged that 

geostatistics is a strategic method that takes into 

account the spatial variability, location, and distribution 

of samples. Based on recent scientific investigations 

and the establishment of a spatial connection between 

soil characteristics and plant distribution in various 

ecosystems, it has been determined that understanding 

the spatial variability of soil properties is crucial for 

practical applications and the advancement of 

modelling techniques (Sovik and Aagaard 2003). The 

present study aimed to examine the spatial variability of 

soil physicochemical characteristics within the 

Baramulla agroecosystem, located in the lesser 

Himalayas. 

MATERIALS AND METHODS 

A. Study Area 

The focused region under investigation encompasses 

the Baramulla district, situated within the esteemed 

union territory of Jammu and Kashmir. The 

geographical coordinates of the specified area 

correspond to a latitude of 34.1595°N and a longitude 

of 74.3587°E. Baramulla, situated at an elevation of 

1593 metres above mean sea level, encompasses a land 

area spanning 2398 hectares. The climatic conditions 

prevailing in the region are characterised by a temperate 

climate, exhibiting mild summers and cold winters. The 

average annual maximum temperature recorded stands 

at 30°C, while the minimum temperature hovers around 

18°C. Furthermore, the area experiences an average 

yearly precipitation of approximately 710 mm. 

B. Sampling 

The samples were collected in a systematic manner 

utilising the Randomised Grid Sampling technique from 

diverse locations situated within the Baramulla district. 

The selection of sampling points was conducted 

strategically, employing the use of a Geographical 

Positioning System (GPS) to augment the accuracy and 

precision of the sampling process in field studies. To 

ensure a comprehensive and unbiased sampling 

approach, a systematic randomised grid design was 

implemented in the selection process of 120 sites. The 

widely recognised Geographic Information System 

(GIS) software, ArcGIS, was utilised to facilitate this 

procedure. The selection of these sites was conducted 

with meticulous care, taking into consideration a depth 



Javed et al.,               Biological Forum – An International Journal     15(11): 298-305(2023)                                            300 

range spanning from 0 to 20 centimetres. This 

deliberate approach was employed to guarantee a 

comprehensive and all-encompassing representation of 

the study area. The UTM coordinates of the soil 

samples were carefully recorded to facilitate their 

utilisation in the spatial analysis of soil characteristics. 

 

Fig. 1. Land-use land cover map of the Study Area. 

C. Laboratory Analysis 

The samples underwent a process of air-drying and 

subsequent passage through a 2 mm sieve to adequately 

prepare them for subsequent analysis. The pH 

measurement was conducted using a pH meter with a 

soil-to-water ratio of 1:2.5. The quantification of soil 

organic matter (OM) was conducted using the modified 

Walkley–Black method (Nelson and Sommers 1983). 

The determination of available phosphorus (AP) was 

conducted using Olsen's method (Olsen and 

Sommers,1982). The extraction of available potassium 

(AK) was conducted using a solution of 1 mol/L 

NH4Ac (International Soil Science and Conservation 

Agricultural Society (ISSCAS) in 1978). Subsequently, 

the concentration of potassium was determined using an 

atomic absorption spectrometer. The measurement of 

available nitrogen (AN) was conducted using the 

Alkaline KMnO4 method (Subbiah and Asija 1956). 

The determination of available sulphur was conducted 

using the turbidimetric method (Chesnin and Yien 

1951). The methodology employed in this study is 

visually depicted in the subsequent flowchart. 

 

Fig. 2. Methodology employed in this study 

D. Geostatistical Analysis 

The investigation of soil properties involved the 

examination of their spatial and temporal variation, 

which was regarded as a stochastic process. The 

efficacy of geostatistics as a means of investigating the 

spatial variability and patterns of soil properties has 

been demonstrated by Wang (1999). Geostatistics is a 

scientific discipline that revolves around the analysis of 

spatial correlation among samples. This correlation is 

quantitatively represented by a mathematical construct 

known as a "variogram". The variogram, in the context 

of spatial analysis, is a mathematical function that 

characterises the spatial variability of a given variable. 

It is commonly defined using the following formula: 

 
The variable N(h) represents the count of sample pairs 

that exhibit a specific spatial separation distance, 

denoted as h. Z (xi) and Z (xi+ h) represent the values 

of a regionalized variable at two distinct locations, 

namely xi and xi+ h, respectively. 

The semivariogram, denoted as γ(h), is a measure that 

characterises the spatial dependence of attribute values 

within a given dataset. It is mathematically defined as 

one-half of the variance of the differences between 

attribute values at all pairs of points that are separated 

by a distance h. The semivariograms were analysed 

using four variogram models, namely spherical, 

exponential, linear, and Gaussian. The model that 

provided the best fit was determined based on the 

criteria of minimising the residual sum of squares 

(RSS) and maximising the coefficient of determination 

(R2) between the predicted variances and the observed 

variances.  

Following the computation of the variogram, it 

becomes imperative to proceed with the fitting of a 

theoretical model. This step is crucial to facilitate the 

process of generalising deductions and estimating 

variables from unsampled points. The Kriging method 

was employed for spatial interpolation and spatial 

mapping of soil characteristics. The Kriging method, in 

essence, is a statistical estimator that assigns statistical 

weights to individual observations. This weighting 

process aims to ensure that the resulting linear structure 

is unbiased and possesses the minimum possible 

estimation variance. The estimator under consideration 

exhibits a notable degree of applicability owing to its 

ability to minimise error variance while simultaneously 

providing unbiased estimation, as highlighted by 

Pohlmann in 1993. 

 
The estimated variable at location Xo, denoted as 

Z*(Xo), represents the values of the investigated 

variable at location Xi. The statistical weight, i, is 

assigned to the sample Z(Xi) which is located near Xo. 

The variable N represents the total count of 

observations within the vicinity of the estimated point. 

The accuracy assessment of interpolation was 

conducted through the utilisation of cross-validation 

methods, as outlined by Goovaerts in 1997. The geo-

statistical analysis in this study was conducted using the 

software package ArcGIS version 10.5. 
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RESULTS AND DISCUSSION 

The summary statistics of soil characteristics are 

presented in Table 1. The coefficient of variation is a 

statistical measure utilised to express the relative 

magnitude of variability in a dataset. It is commonly 

employed to assess the degree of dispersion or spread to 

the mean value. Among the variables that were 

examined, it was found that organic carbon had the 

highest coefficient of variation, which amounted to 

46.69%. The obtained outcome aligns with the findings 

reported by Delbari et al. (2019) in their research study. 

The coefficient of variation for pH was observed to be 

the lowest at 5.05%. This finding suggests that the pH 

values in the region exhibited a high degree of 

uniformity. This uniformity may be attributed to the 

consistent conditions prevailing in the area, including 

minimal variations in slope and direction, which likely 

contributed to the homogeneity of the soil in this 

particular region. Similar findings were also reported by 

Cambardella et al. (1994), Tagore et al. (2014).  

Table 2 and Fig. 3 presents the semivariogram model 

and a selection of geostatistical parameters of soil 

chemical properties. The selection of theoretical 

semivariogram models for achieving a significant fit of 

soil chemical properties is determined by the lowest 

root mean square error (RMSE) (Robertson 1998). The 

semivariogram analysis of nitrogen and potassium 

revealed that an exponential model exhibited the most 

optimal fit. The utilisation of the spherical model 

yielded the most optimal alignment with the 

semivariogram to the organic carbon (OC%), while the 

Gaussian model exhibited the most favourable 

conformity with the semivariogram associated with pH, 

phosphorus and sulphur. Numerous research studies 

have indicated that the exponential model exhibits the 

highest suitability in evaluating the spatial 

heterogeneity of soil chemical properties (Reza et al. 

2010; Venteris et al., 2014). This preference is 

primarily attributed to its ability to effectively account 

for the maximum variability observed within the spatial 

dataset (Lark 2000; Tripathi et al., 2015). Plotted 

variograms on 0°, 45°, and 135° directions for all soil 

variables and found uniform effective range and sill, no 

anisotropy, and isotropic soil features (Fig. 3 and Fig. 

4). This illustrates that variables vary equally in both 

directions and fluctuate with sample distance 

(Mohammadzamani and Auubi 2007). The nugget-sill 

ratio (C0/C0+C) shows spatial autocorrelation. The 

geographical dependency of the variable is strong if the 

ratio is below 25%, moderate if it is 25–75%, and weak 

if it is 75% (Cambardella et al., 1994). In the 

designated study area, it was observed that the spatial 

dependence of soil characteristics exhibited variations. 

The spatial dependence of nitrogen was found to be 

weak, as indicated by the R2 value of <0.50 (Vasu et 

al., 2017). The pH, organic carbon, nitrogen, 

phosphorus, potassium and sulphur, levels exhibited a 

moderate range, aligning with the findings presented in 

the research conducted by Cambardella et al. (1994). 

Table 1: Study area soil property statistics. 

Soil Properties Units Mean SD Skewness Kurtosis CV % 

pH -log [H+] 6.94 0.35 -0.22 -0.58 5.05 

Organic Carbon % 1.25 0.58 0.77 -0.63 46.69 

Av. Nitrogen kg ha-1 325.28 64.09 0.55 -0.82 19.70 

Av. Phosphorus kg ha-1 19.21 4.70 0.56 -0.64 24.45 

Av. Potassium kg ha-1 194.33 47.63 0.21 -0.82 24.51 

Av. Sulphur mg kg-1 11.48 2.63 -0.18 -0.49 22.9 

 

Table 2: Computed  semivariogram soil parameter characteristics. 

 

 

 

 

 

 

 
 

Variable Model Nugget 

(C0) 

Partial 

sill (C1) 
Sill 

(C0+ 

C1) 

Range 

(m) 

DSD (%) 

(Nugget / sill) 

SD RMSE RMSSE 

pH (1:2.5) Gaussian 0.066 0.042 0.108 8025.1 61.11 Moderate 0.29 1.014 
Organic Carbon (%) Spherical 0.098 0.153 0.251 1972.4 39.04 Moderate 0.51 1.070 
Av. Nitrogen (kgha-1) Exponential 1183.0 334.8 1517.8 1036.7 77.9 Weak 58.3 1.492 
Av. Phosphorus (kgha-1) Gaussian 11.43 12.36 23.79 14973.3 48.04 Moderate 3.81 1.019 
Av. Potassium (kgha-1) Exponential 742.3 909.3 1651.6 5541 44.9 Moderate 38.03 1.021 

Av. Sulphur (mg kg
-1

) 
Gaussian 2.30 1.61 3.92 3306 58.6 Moderate 1.99 1.072 
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Fig. 3. Semivariograms of a) pH b) Organic Carbon c) Nitrogen d) phosphorus e) potassium f) Sulphur. 
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E                                                                           F 

Fig. 4. Ordinary kriging maps of a) pH b) Organic Carbon c) Nitrogen d) phosphorus e) potassium f) Sulphur. 

The observed moderate spatial dependence of soil 

characteristics suggests that the distribution of soil pH, 

organic carbon, phosphorus, potassium and sulphur in 

the study area is primarily influenced by a combination 

of structural and random factors. Yan et al. (2019) 

reported comparable findings in their study. The spatial 

dependencies exhibited notable variability, with a range 

spanning from 1036.7 metres for available nitrogen to 

14973 metres for available phosphorus (P2O5). This 

suggests that the ideal sampling interval can differ 

significantly depending on the specific soil properties 

being assessed. The determination of range values 

allows for the assessment of the correlation between 

various sampling locations, as well as the identification 

of the maximum distance of spatial dependence 

between them (Akpa et al., 2014). The observation of 

fluctuations in the range, varying with different lag 

sizes, suggests that the spatial structure cannot be 

adequately captured by a single model for the 

semivariogram (Silva et al., 2018). The disparity in 

question may not hold significant relevance when 

conducting semivariance calculations; however, it may 

hold significance when the objective is to comprehend 

the inherent spatial patterns within the dataset (Chung 

et al., 2014). The obtained outcomes can be utilised to 

formulate suggestions concerning optimal agricultural 

practices and the development of soil-plant interaction 

models for forthcoming research endeavours. 

CONCLUSIONS 

The geostatistical interpolation technique effectively 

determined that the exponential, spherical, and 

Gaussian models exhibited optimal conformity with the 

semivariograms, contingent upon the specific soil 

chemical variable. In a broader sense, these models 

demonstrated a relatively weak to moderate degree of 

spatial dependency across all variables. The utilisation 

of kriging maps for soil chemical properties has proven 

to be highly effective in elucidating the spatial 

distribution patterns of soil properties in areas where no 

samples were taken, solely relying on the available 

sampled data. The assessment of spatial heterogeneity 

in soil physical and chemical attributes is an essential 

step in implementing targeted soil and crop 

management strategies. The soil property maps, along 

with their corresponding spatial structures, have 

successfully delineated the priority management zones 

that should be addressed in the future to enhance soil 

quality. These maps can also be utilised to develop 

more effective sampling designs for making informed 

management decisions. 

FUTURE SCOPE 

The utilization of spatial distribution of soil properties 

holds great promise in enhancing soil sampling 

procedures and implementing site-specific management 

strategies in the designated study area, taking into 

account the specific needs of management and 

reclamation efforts. 
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