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ABSTRACT: The study of mortality rates has a long history which has been used in the literature of fitting 

and forecasting. For Part-1, I have modelled mortality rates for 21 countries in Europe using the models: 

Lee Carter Model this model estimates parameters which contribute in calculating mortality. The dataset 

comprises available data from male and female aged 0-99 from the years 1985-2014. The comparison 

between the fitted mortality rates of the model and the actual mortality formula has been based on total 

mortality rate for each specific gender. This paper focuses on investigating the evaluation of this model 

based on different errors.  
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INTRODUCTION 

Social networks have been intensively studied by social 
scientists for several decades in order to understand 

both local phenomena, such as relationship formation 

and their dynamics, as well as network-wide processes, 

such as transmission of information. The recent 

substantial interest in the structural and functional 

properties of complex networks has been partially 

stimulated by attempts to understand the characteristics 

of social networks. In everyday social life or 

professional collaborations, people tend to form 

relationships, the existence of which is a prominent 

characteristic of social networks. Network formation 

has been studied in many research fields with their 
different focuses. Modelling social networks serves at 

least two purposes. Firstly, it helps us understand how 

social networks form and evolve. Secondly, in studying 

network-dependent social processes by simulation, such 

as diffusion or retrieval of information, successful 

network models can be used to specify the structure of 

interaction (Amati et al., 2018). 

The field of statistics has seen significant advancement 

in recent years, particularly in the area of social 

network analysis through stochastic modelling. 

Researchers have made considerable progress in 
creating statistical models that can represent the overall 

structure and formation of social networks. These 

networks are primarily shaped by two key elements: the 

evolving relationships among individuals, and 

demographic factors like age, gender, population size, 

and country of origin, which are typically captured by 

statistical models of mortality (Snijders, 2011). 

Death rates play a vital role in shaping population 

changes and are essential to understand in various 

disciplines, including economics, population studies, 

and social sciences. Initially, mortality tables were fixed 

and did not account for changes over time or 

differences between individuals. However, as 

populations age more quickly in recent years, 
researchers have increasingly focused on developing 

models to predict future mortality rates. This shift in 

focus also includes efforts to better understand and 

quantify the uncertainties associated with these 

mortality predictions. 

Initial efforts to model mortality were limited in scope, 

as they did not consider potential future improvements 

in death rates. These early models simply extrapolated 

from historical and current data, assuming that future 

mortality patterns would remain unchanged. A 

significant advancement in the field came with the 

introduction of age-continuous mortality models, which 
were based on early mortality laws. These laws 

involved fitting mathematical formulas to mortality 

data. The pioneering attempt to represent mortality 

using a continuous mathematical formula date back to 

1725, when Abraham De Moivre proposed his 

groundbreaking approach �� = � �1 − �86�  for 12 ≤ � ≤ 86 

where ��  represents the count of surviving individuals at 
a specific age denoted by x. The letter k functions as a 

normalizing constant in the equation. A key premise of 

this model is that the entire population is assumed to 

have passed away by the time they reach 86 years of 

age. 

Earlier mortality models were largely based on 

subjective interpretations rather than data extrapolation, 

reflecting a heavy reliance on the modelers' personal 

judgments. Obtaining precise mortality rates has proven 

to be a challenging, if not impossible, task. In recent 

decades, however, the most effective approach to 
mortality modelling has been the extrapolative method. 

This technique capitalizes on the increasing availability 

of relevant data, allowing for more accurate and data-

driven predictions. 
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A pivotal development in early survival modelling 

occurred in 1825 with Gompertz's law, which 

introduced the concept now known as the "force" of 

mortality. A significant shift in approach took place in 

the early 1990s when researchers began using time 

series analysis to project future mortality trends based 

on historical data. These models operate on the premise 

that patterns observed in past data will persist into the 

future. Among these approaches, the Lee-Carter 

mortality model 

(https://en.wikipedia.org/wiki/Lee%E2%80%93Carter_

model) stands out as the first and most widely 

recognized. It employs a one-factor stochastic model to 

represent the evolution of mortality rates over time 

(Booth and Tickle 2008). Over the past 10 years, the 

model and its variants have been used by actuaries for a 

wide range of purposes, from the forecasting of 

mortality reduction factors Renshaw and Haberman 

(2003) to the assessment of retirement income 

adequacy (Chia and Tsui 2003). Other applications in 

demographic science include population projections 
(Booth and Tickle 2003), the forecasting of sex 

differentials in mortality (Lee and Carter 1992b), and 

the projection of mortality patterns for the “oldest-old” 

(Buettner, 2002). Intrinsically, the core assumption of 

this model is that changes in mortality rates over time 

are primarily influenced by a single dynamic factor, 

referred to as the mortality index. To predict future 

mortality trends, the model extrapolates this index using 

a suitable linear time-series statistical approach. This 

method allows for the forecasting of death rates based 

on the projected evolution of this key parameter 

Mortality models examine diverse influences on death 

rates: 

• Historical trends: These models analyze past 

mortality patterns and forecast future trends by 

considering how death rates change in relation to both 

age and time. 

• Contributing factors: accountable for differences in 

mortality that influence the likelihood of death 

The field of mortality modelling has seen significant 

expansion and increased sophistication since the 

introduction of the initial mortality law. An effective 

model offers a straightforward yet sufficient 

mathematical representation of how mortality varies 

with age and/or time. This paper aims to examine and 

compare two distinct extrapolative mortality models, 

focusing on summarizing their key parameters. 

FUNDAMENTALS 

A. Data Description 

Our research utilizes mortality data from 21 European 

countries spanning three decades, from 1985 to 2014. 

We sourced this information from two reputable 
databases: www.mortality.org and the Eurostat database 

(https://ec.europa.eu/eurostat/data/database). These 

sources primarily compile data published or distributed 

by national statistical offices, ensuring reliability. The 

dataset comprises population and death tables, which 

are available separately for males and females, covering 

ages 0 to 99. To better illustrate trends and patterns in 

our data, we have categorized it into distinct age groups 

and calculated the total mortality rate for each country. 

Table 1: This study incorporates mortality data from 21 European nations, utilizing the country 

abbreviations as defined by Eurostat. 

Countries Abbreviation 

Austria-AT Finland - FI Norway – NO 

Belarus - BY France – FR Poland - PL 

Belgium - BE Germany – DE Portugal – PT 

Bulgaria – BG Greece – EL Spain – ES 

Czechia – CZ Italy – IT Slovakia – SK 

Denmark -DK Lithuania - LT Sweden - SE 

Estonia - EE Netherlands -NL Switzerland -CH 

 

B. What is Mortality ? 

Mortality rates measure the proportion of deaths in a 

population, accounting for its size and age structure 

over a specific period (1985-2014). This metric 

provides a broad assessment of population health, 

essentially quantifying the frequency of deaths within a 

given timeframe. ���, �� =  � ��. ��� ��, �� =  Deaths ��, ��average Population ��, � � 

B. Age-group Mortality 

To analyze mortality patterns across different 

demographics, we've categorized the data into age-

group tables for both female and male populations. This 

approach allows us to account for varying population 

structures when comparing mortality rates. We've 

established five age categories: 0-19, 20-39, 40-59, 60-

79, and 80-99 years. Each category summarizes 

mortality data for the entire study period (1985-2014). 

Additionally, we've calculated the total mortality for 

each country by aggregating mortality rates across all 

age groups. This classification enables us to observe 

and compare mortality trends between genders and 

across different life stages within each country. 

Table 2 presents gender-specific mortality data for the 

21 countries in our study. The mortality rates exhibit 

significant variability, fluctuating both across different 

age groups and from one year to the next. For reference, 

the country abbreviations used in this table can be 

found in Table 1. 
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Table 2: Actual Mortality Rate–Age-group. 

 
0-19 20-39 40-59 60-79 80-99 Total 

F M F M F M F M F M F M 

AT 0.17 0.26 0.18 0.46 1.07 2.23 7.45 13.81 83.65 100.55 92.52 117.31 

BE 0.17 0.26 0.21 0.48 1.17 2.13 7.33 14.28 77.18 99.19 86.06 116.34 

BG 0.37 0.51 0.3 0.7 1.63 4.09 12.97 20.95 105.12 114.83 120.39 141.08 

BY 0.29 0.45 0.4 1.51 2.05 6.3 12.78 25.29 85.61 101.83 101.13 135.38 

CH 0.16 0.23 0.18 0.44 0.88 1.62 5.88 11.43 74.46 93.95 81.56 107.67 

CZ 0.18 0.27 0.2 0.53 1.39 3.3 11.09 19.84 99.46 116.9 112.32 140.84 

DE 0.16 0.23 0.19 0.42 1.13 2.27 7.84 14.45 80.23 94.29 89.55 111.66 

DK 0.2 0.23 0.3 0.44 1.83 2.28 11.69 15.14 90.88 98.19 104.9 116.28 

EE 0.68 0.81 0.4 1.37 1.77 4.77 11.45 23.96 48.84 122.36 63.14 153.27 

EL 0.18 0.26 0.17 0.47 0.85 1.89 7.48 12.41 75 85.94 83.68 100.97 

ES 0.16 0.23 0.18 0.49 0.83 1.98 5.98 12.17 71.84 88.36 78.99 103.23 

FI 0.14 0.22 0.2 0.59 1.04 2.55 7.44 14.94 81.27 100.12 90.09 118.42 

FR 0.16 0.24 0.22 0.56 1.04 2.45 5.66 12.14 67.15 90.42 74.23 105.81 

IT 0.16 0.23 0.16 0.41 0.88 1.73 6.55 12.54 72.74 92.32 80.49 107.23 

LT 0.3 0.46 0.37 1.44 1.89 5.7 10.2 20.63 84.5 92.46 97.26 120.69 

NL 0.16 0.22 0.18 0.3 1.12 1.71 7.35 14.08 77.9 99.16 86.71 115.47 

NO 0.33 0.23 0.21 0.42 1.24 1.72 10.36 13.05 99.25 97.13 111.39 112.55 

PL 0.28 0.41 0.23 0.77 1.57 4.23 10.5 20.05 87.78 101.23 100.36 126.69 

PT 0.23 0.35 0.24 0.71 1.08 2.49 7.86 14.39 79.16 98.53 88.57 116.47 

SE 0.13 0.17 0.16 0.35 0.96 1.56 6.83 11.93 76.28 98.26 84.36 112.27 

SK 0.26 0.36 0.22 0.64 1.54 4.20 11.53 21.25 98.93 116.2 112.48 142.65 

 

Analysis of the data reveals consistent patterns across 

all countries studied: male mortality rates exceed those 
of females, with the highest mortality observed in the 

80-99 age group and the lowest in the 0-39 range, 

aligning with typical demographic trends.Comparing 

mortality rates among countries, we find that Bulgaria 

exhibits the highest female mortality, surpassing 

Estonia (which has the lowest) by 62.39%. For males, 

Estonia shows the highest mortality rate, exceeding 

Greece (the lowest) by 41.14%. To facilitate a more 
standardized comparison of the mortality data presented 

in Table 1, we've normalized the total mortality rates to 

a scale of 0 to 1, as illustrated in Fig. 1. This 

normalization allows for a clearer visualization of 

relative differences in mortality rates across countries 

and genders. 

 
Fig. 1. Normalized Actual Mortality for Females/Males. 

FITTING MORTALITY MODEL 

A. Lee-Carter Model 

The Lee-Carter model, introduced in 1992, pioneered 

stochastic longevity modelling by analysing historical 

mortality data and treating time trends as a stochastic 

process. Its key advantage is its objective approach, 

relying on data rather than subjective assessments or 

specific mortality causes. This model has since become 
the standard against which other stochastic mortality 

models are evaluated. By incorporating both age-

specific and time-dependent mortality dynamics, it 

bases its projections on observed trends across age 

groups and time periods (Chavhan and Shinde 2016).                   log ��( =  )� + +��( + ,�(  

Typically, x, represents the age at completion, and t, 

denotes year n in death and population matrices. The 

Singular Value Decomposition (SVD) method, a 

factorization technique for real or complex matrices, is 

employed to estimate the parameters +� and�( of the 

Lee-Carter (LC) model. Lee and Carter aim to 

summarize an age-period surface of log-mortality rates 

using log ���, ��vectors where a capture the overall 

mortality trend across different ages, and b indicates the 

rate of change in mortality relative to variations in �( . The mortality index �( reflects the period effect, 

illustrating the relationship between time-dependent 

events and mortality rates. The error term ,�(  accounts 

for random historical fluctuations not explained by the 

model. This error term is assumed to be an independent 
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and identically distributed Gaussian random variable 
with a mean of 0 and variance σ2 (Lee  and Carter 

1992). 

To ensure unique parameter estimates in the Lee-Carter 

model, two constraints are applied to +� and �(. This 

approach addresses the identification problem that 

occurs when multiple solutions exist for parameter 

estimates. Specifically, the model requires that +� 

components add up to 1 (unity), while the sum of �( 

components equal 0. These constraints guarantee that 

the model produces a single, distinct set of parameter 

values. 

The constraint placed on the mortality index implies a 

balanced distribution of the time-dependent parameter. 

This distribution is structured in such a way that the 

positive and negative values offset each other, resulting 

in a net sum of zero when all time-dependent 

parameters are added together. This approach ensures 
that the model captures relative changes in mortality 

over time, rather than absolute levels. 

MORTALITY MODELLING RESULTS 

A. Lee-Carter 

(i) Estimating Parameters. This part of the study 

presents the findings from the Lee-Carter model 

parameter estimation. Table 3 shows the calculated 

values of the age-dependent parameter )�, which covers 

ages 0 to 99. The estimated parameter vector )� is 
calculated by taking the average of the logarithm of 

mortality rates across all time periods considered in the 

study. - +� = � 1  and - �( = 0(  

Table 3: Age-dependent parameter ax. 

 
ax 

 
ax 

 
ax 

F M F M F M 

AT -609.77 -548.76 DK -563.80 -550.81 LT -562.43 -481.68 

BE -604.20 -547.19 EE -554.87 -469.88 NL -611.14 -565.65 

BG -558.38 -500.26 EL -617.60 -555.68 NO -581.27 -559.83 

BY -554.00 -473.10 ES -622.16 -555.33 PL -582.86 -508.65 

CH -622.34 -564.52 FI -609.55 -540.07 PT -595.60 -528.39 

CZ -589.05 -524.97 FR -614.38 -546.28 SE -621.70 -572.40 

DE -607.35 -551.65 IT -623.07 -562.24 SK -580.37 -510.25 

 

(ii) Mortality Rate. Table 4 displays the aggregate 

mortality results generated by the Lee-Carter (LC) 

model, encompassing all ages from 0 to 99 and 

covering the years 1985 to 2014. When compared to the 

actual mortality data presented in Table 4, the LC 

model's output shows mortality trends that closely align 

with the observed historical patterns. 

The graph displays red circles scattered across it, 

representing the observed mortality rates. These points 

are used to illustrate the discrepancy between the actual 
data and the predictions made by the LC model. 

Table 4: LC mortality rate. 

 F M  F M  F M 

AT 92.36 116.81 DK 104.00 115.68 LT 96.74 119.78 

BE 85.93 115.90 EE 63.14 149.11 NL 86.62 115.26 

BG 119.12 139.31 EL 83.39 100.72 NO 110.73 112.01 

BY 100.45 134.58 ES 78.91 103.08 PL 100.20 126.39 

CH 81.43 107.28 FI 89.77 117.42 PT 88.40 116.07 

CZ 112.04 139.91 FR 74.15 105.69 SE 84.27 112.01 

DE 89.38 110.96 IT 80.37 107.06 SK 111.92 140.43 

 
Fig. 2. Female’s LC Mortality – Spain. 

The Lee-Carter (LC) model predicts a slightly lower 

overall mortality rate for females, with a 0.1% 

reduction compared to actual data. Fig. 2 reveals that 

the LC model's peak mortality rate occurs in 1986 for 
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99-year-olds, while actual data shows the highest 
mortality in 1999 for the same age group. Conversely, 

the LC model indicates the lowest mortality rate in 

2014 for 8-year-olds, whereas actual data places this 

minimum in 2010 for the same age. 

The LC model underestimates total male mortality by 

0.15% compared to actual data. According to the figure, 

the LC model predicts peak mortality for males in 2014 

at age 99, whereas actual data shows it occurred in 

1999 at the same age. Both the LC model and actual 
data indicate the lowest mortality rate in 2014, but at 

different ages - age 11 for the LC model and age 9 for 

actual data. 

Fig. 4 illustrates the standardized disparities in 

mortality rates between the Lee-Carter model 

predictions and the observed mortality data for males 

and females. 

 
Fig. 3. Male’s LC Mortality – Spain. 

 
Fig. 4. Comparison between LC & Actual mortality- Female/Male (Normalized). 

 

MEASURING FITTING ERRORS 

Calculating errors is crucial for assessing model 

accuracy. To identify which model performs best, we 
evaluate four distinct error types. The initial step in 

error estimation involves computing the discrepancy 

between the mortality rates predicted by the models and 

the observed mortality rates. This difference represents 

the deviation of estimated values from actual values. 

Error = Models Mortality�012 � −Actual Mortality 

(03) 
A. Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) measures the 

average magnitude of prediction errors, calculated as 
the standard deviation of the residuals. Residuals 

represent the distance between actual data points and 

the regression line. Table 5 presents the RMSE values 

for each model, broken down by gender and country, 

allowing for a comparison of model accuracy across 

different demographics. 

4567 =  8- ��92 − �:�;<=
>?@  

where, N = number of data points, 3000(100 ages × 30 

years) 

 

Table 5: RMSE Fitting error. 

 LC 

F M 

AT 0.148 0.245 

BE 0.134 0.218 

BG 0.389 0.385 

BY 0.259 0.199 

CH 0.148 0.226 

CZ 0.173 0.293 

DE 0.178 0.275 

DK 0.336 0.26 

EE 0.442 0.576 

EL 0.2 0.164 

ES 0.109 0.13 

FI 0.208 0.327 

FR 0.098 0.107 

IT 0.114 0.119 

LT 0.251 0.259 

NL 0.109 0.148 

NO 0.31 0.244 

PL 0.141 0.164 

PT 0.16 0.204 

SE 0.109 0.179 

SK 0.254 0.444 

 

The table reveals that Estonia (EE) exhibits the highest 

RMSE error for the model across both genders. In 

contrast, France (FR) demonstrates the lowest error 

rates for both females and males when using the Lee-

Carter (LC) model. 
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B. Mean Relative Error (MRE) 
The Mean Relative Error (MRE) is a measure that 

accounts for the scale of the variable being assessed, 

making it useful for comparing accuracy across 

different magnitudes. Table 6 presents the MRE values 

for each model, categorized by country and gender, 

allowing for a comparison of model performance that 

takes into account the relative size of the mortality rates 

being predicted. 

547 =  1< - ��92 − �:��:
=

:?@  

Table 6: MRE Fitting error. 

 
LC 

F M 

AT 0.025 0.015 

BE 0.017 0.012 

BG 0.015 0.011 

BY 0.016 0.016 

CH 0.036 0.02 

CZ 0.017 0.011 

DE 0.003 0.004 

DK 0.022 0.029 

EE 0.053 0.028 

EL 0.025 0.014 

ES 0.006 0.006 

FI 0.039 0.031 

FR 0.003 0.003 

IT 0.005 0.005 

LT 0.031 0.021 

NL 0.011 0.007 

NO 0.031 0.031 

PL 0.004 0.003 

PT 0.015 0.01 

SE 0.029 0.021 

SK 0.026 0.018 

 

Table 6 indicates that for females, the Lee-Carter (LC) 

model performs best in France (FR), showing the 

lowest Mean Relative Error (MRE). Conversely, the 

same model exhibits the highest MRE for females in 

Estonia (EE), suggesting less accurate predictions for 
this country. 

CONCLUSIONS 

In recent years, significant research has focused on 

understanding complex systems, particularly social 

networks. These networks exhibit intricate community 

structures where individuals typically belong to groups 

or communities characterized by dense internal 

connections and loose external links. This arrangement 

creates a hierarchy of nested social ties.A key feature of 

statistical models used to analyze social networks is 

their capacity to directly represent the underlying 

mechanisms that generate dependencies between 
network connections. Mortality statistics serve as a 

valuable tool for assessing social relationships, with age 

composition playing a crucial role in shaping various 

social networks, including family, work, and friendship 

circles. Mortality significantly influences population 

dynamics and holds great importance in fields such as 
economics, demography, and social sciences. This 

thesis delves into various mortality models, examining 

their contributions to accurately fitting predicted values 

to observed mortality rates. 

Among the various stochastic mortality models 

available, the Lee-Carter model, introduced in 1992, 

stands out as the most widely adopted. Its popularity 

stems from two key advantages: firstly, it employs a 

relatively small number of parameters compared to 

alternative models, and secondly, it demonstrates 

notable robustness. These features contribute to its 
frequent use in mortality analysis and forecasting. 

Lee-Carter model remains a cornerstone in mortality 

forecasting due to its balance of simplicity and 

effectiveness. While it is not without limitations, its 

widespread use and continuous refinement attest to its 

enduring value. As demographic patterns continue to 

evolve, the Lee-Carter model and its extensions will 

likely play a crucial role in understanding and 

predicting mortality trends, thereby informing critical 

decisions in both public policy and private sector 

planning. 
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