
Dogra   et al.,                         Biological Forum                             17(5): 27-36(2025)                                                                27 

 
 

  
    

 

Remote Sensing and Geographic Information Systems in Agriculture: 
Applications and Challenges 

Prerna Dogra1*, Ajay Kumar Yadav2, Chintada Vidhyashree Venkatarao3,  

Aparna4, Omprakash1, Ramesh Asiwal1 and Rajhans Verma1 
1Assistant Professor, Sri Karan Narendra Agriculture University, Jobner, Jaipur (Rajasthan), India. 

2Research Scholar, Department of Soil Science & Agricultural Chemistry,  

Sri Karan Narendra Agriculture University, Jobner, Jaipur (Rajasthan), India. 
3Assistant Professor, School of Agriculture, Mohan Babu University, Tirupati (Andhra Pradesh), India. 

4Assistant Professor, Jagannath University, Chaksu-Jaipur (Rajasthan), India. 

 (Corresponding author: Prerna Dogra*) 

(Received: 14 February 2025; Revised: 24 March 2025; Accepted: 15 April 2025; Published online: 08 May 2025) 
(Published by Research Trend) 

ABSTRACT: The agricultural sector faces numerous challenges, including climate change, resource 

scarcity and the growing need for food security. To address these challenges, the integration of Remote 

Sensing (RS) and Geographic Information Systems (GIS) has become increasingly essential in modern 

farming practices. RS provides critical data through satellite imagery, drones and aerial sensors, allowing 

for the monitoring of crop health, soil conditions and environmental factors. GIS, on the other hand, helps 

analyze, manage and visualize this spatial data, supporting decision-making processes related to crop 

management, irrigation and resource allocation. Together, these technologies enable precision agriculture, 

optimizing input usage, enhancing productivity and promoting sustainability. However, their 

implementation is not without challenges, including high costs, technical complexity and the need for 

specialized skills. This review explores the applications of RS and GIS in agriculture, discussing their roles 

in crop monitoring, pest management, yield prediction and environmental monitoring. It also addresses the 

current limitations and barriers to widespread adoption, such as data accuracy and accessibility.  
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INTRODUCTION 

The agricultural sector is facing unprecedented 
challenges, including climate change, declining natural 

resources and the need to increase food production to 

meet the demands of a growing global population 

(FAO, 2017). Traditional farming methods, which often 

rely on broad, generalized approaches, are becoming 

increasingly insufficient to address these challenges. To 

ensure food security and environmental sustainability, 

there is a pressing need for the integration of advanced 

technologies into agricultural practices. Among these 

technologies, Remote Sensing (RS) and Geographic 

Information Systems (GIS) stand out as powerful tools 
that can transform agricultural management by 

providing detailed, real-time insights into crop and land 

conditions. 

Remote Sensing (RS) refers to the process of obtaining 

data about the earth's surface without direct contact, 

typically through satellite or aerial platforms (Campbell 

& Wynne 2011). Thus, remote sensing provides a set of 

techniques for obtaining spatial, temporal, and spectral 

information using sensors that collect energy flows 

from electromagnetic spectrum bands for interpretation 

(Murillo-Sandoval and Carbonell-Gonzalez 2012). 

Remote sensing data in the optical, microwave, thermal 

and hyperspectral domains have proven to be powerful 
tools for assessing crop and soil properties across 

varying spatial and temporal scales, offering cost-

effective solutions for natural resource management. 

Geographic Information Systems (GIS), which 

integrate, manage, analyze and visualize spatial data, 

have a critical role in enhancing agricultural 

productivity (Longley et al., 2015). The application of 

GIS in agriculture enables farmers to precisely manage 

and monitor their lands, improving decision-making in 

areas like crop rotation, fertilization strategies, 

irrigation management and pest control (Bishop et al., 
2013) thus reducing costs and enhancing sustainability. 

By combining RS and GIS, farmers can monitor crop 

growth in real-time, predict yields, assess soil health 

and manage water resources more efficiently, resulting 

in sustainable agricultural practices. 

Despite their promising potential, the adoption of RS 

and GIS in agriculture is not without challenges. High 

costs, data complexity, the need for specialized training 

and limited access to the required infrastructure remain 

significant barriers (Mulla, 2013). Furthermore, data 

accuracy, resolution and integration across various 

platforms and scales continue to pose technical 
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challenges (Dandois et al., 2015). As these technologies 

evolve, new advancements such as the integration of 

artificial intelligence (AI) and machine learning (ML) 

hold the potential to further enhance the precision and 

predictive power of RS and GIS in agriculture (Liakos 
et al., 2018). 

Geospatial tools have been employed efficiently for soil 

resource mapping, generating digital soil information 

systems and conducting spatial soil property 

assessments. These tools are particularly effective for 

monitoring soil environmental degradation, conducting 

quality assessments at varying spatial scales and 

covering large areas. Furthermore, geospatial 

applications have transformed the field of Agri-

informatics, Agro-meteorology by facilitating crop 

monitoring, including crop classification, health 

monitoring, nutrient management, irrigation 
management, stress monitoring and yield mapping. 

These applications are also crucial for precision 

agriculture and supply chain management, where they 

contribute to optimized resource allocation. Advances 

in spectral sensing, through polar and geostationary 

satellites, offer the opportunity to capture near-real-

time, synoptic and continuous coverage of crop 

conditions throughout the growing season. This 

capability enhances agro-meteorological advisory 

services, integrating satellite-derived agro-

meteorological products and value-added information 
into existing frameworks to offer location-specific 

recommendations. 

In India, programs such as Forecasting Agricultural 

Output using Space, Agro-meteorology and Land-based 

observations (FASAL) and the National Agricultural 

Drought Assessment and Monitoring System 

(NADAMS) utilize remote sensing and other data 

sources for agricultural monitoring and drought 

management (Ray et al., 2014). Crop insurance 

schemes such as the Pradhan Mantri Fasal BimaYojana 

(PMFBY) and Yield Estimation Crop Insurance 

Scheme (YES-TECH) are crucial initiatives in India 
that rely on remote sensing technology.  

Unprecedented demands are being placed on the 

world’s soil re- sources ( FAO-ITPS, 2015). At the 

same time, there is an increased evidence that world’s 

soil are under threat (Montanarella et al., 2016) and 

there is an urgent need to put the soil at the crossroad of 

the sus-tainable development goals (SGDs) (e.g  

Bouma, 2019); putting soils and their governance in the 

global agenda is more urgent than ever (Montanarella, 

2015). Understanding the importance of geospatial 

tools for four major contributors to food security and 
sustainable production-soil resource mapping, Agri-

informatics, soil environmental monitoring and satellite 

agro-meteorology—has become a pressing need. This 

review aims to document the applications of space-

based technologies in agriculture and soil assessment, 

promoting the sustainable development of agriculture.  

Methodology for Standard Soil Survey and 

Mapping. A standard soil survey systematically 

collects information about soils, focusing on their 

origin, distribution, capabilities, limitations, and 

predicting their behavior for particular uses, as well as 

classifying them. The process of standard soil survey 

and mapping typically follows these steps. 

1. Preliminary reconnaissance of the area to investigate 

the major soils and their pattern of occurrence. 

2. Procurement of required base maps. Aerial 
photographs, satellite imagery and topographical     

maps are useful references and used as basemaps.  

3. Preparation of mapping legend based on the 

preliminary field studies.  

4. Stereoscopic study of aerial photographs and satellite 

imagery for the identification and delineation of land 

forms (hills, valley, terraces, flood plains, coastal 

plains, sand dunes etc.) based on the differences in tone, 

relief, vegetation etc.  

5. Plotting of soil boundaries, mostly by RS data and 

verified by observations.  

6. Classification of soils and naming of map units. 
7. Preparation of final legend and finalization of soil 

map. 

Soil survey and mapping have traditionally been done 

through fieldwork and manual sampling, but 

advancements in remote sensing (RS) and geographic 

information systems (GIS) have greatly enhanced the 

efficiency and accuracy of this process. The following 

outlines are standard methodology for soil survey and 

mapping using remote sensing and GIS: 

Remote Sensing Data Acquisition 

Satellite Imagery: Obtain satellite imagery from 
sources like Landsat, MODIS or Sentinel, which 

provide multispectral data (e.g., visible, near-infrared 

and thermal bands) that can be used to analyze soil 

properties. 

Aerial Photography: High-resolution aerial imagery 

can be used for detailed soil mapping, especially in 

smaller areas or complex terrains. 

LiDAR Data: Light Detection and Ranging (LiDAR) 

provides elevation data that can assist in interpreting 

soil types based on topography. 

Soil Spectral Signatures: Remote sensing imagery is 

analyzed for specific spectral bands that correspond to 
soil characteristics (e.g., organic matter content, 

moisture, texture). 

Field Survey for Ground Truthing 

Sampling Locations: Select ground truthing locations 

based on a stratified random sampling approach. The 

points should represent the variability of soil types 

across the area. 

Soil Sample Collection: Collect soil samples from 

each location to analyze physical, chemical and 

biological properties such as pH, texture, organic matter 

content and nutrient levels. 
Georeferencing: Record precise coordinates using 

GPS to ensure that soil samples correspond to the 

correct locations in the remote sensing imagery. 

GIS Database Creation 

Georeferencing of Remote Sensing Data: Correct 

for spatial distortions in the satellite or aerial imagery 

and align it with the local coordinate system for 

accurate mapping. 

Layer Creation: Create GIS layers for each relevant 

variable, such as vegetation indices (NDVI, for 

instance), elevation and land cover. 
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Soil Classifications: Develop soil maps based on the 

field observations and laboratory analysis of samples. 

Use standard classification systems, such as FAO or 

USDA soil classification systems, to categorize soils. 

Data Integration and Analysis 
Multispectral Analysis: Spectral indices like the 

Normalized Difference Vegetation Index (NDVI) and 

the Soil-Adjusted Vegetation Index (SAVI) can be 

utilized to differentiate various soil properties. 

Spatial Analysis: Use spatial analysis tools in GIS to 

integrate remote sensing data with field data, creating 

predictive models of soil distribution. 

Classification: Apply machine learning or statistical 

classification techniques such as supervised 

classification, k-means clustering or random forests to 

generate a thematic map of soil types. 

Soil Map Generation 
Map Validation: Validate the resulting soil map 

using ground truth data and assess accuracy using 

metrics such as confusion matrices and kappa statistics. 

Map Refinement: Refine the map based on feedback 

and recalibrate the models as necessary. The map 

should be integrated with environmental variables like 

vegetation and climate data to provide a comprehensive 

understanding of soil characteristics. 

Visualization and Reporting 

Map Visualization: Produce high-resolution maps for 

presentation, considering both thematic and topographic 
features. 

Interpretation: Interpret the soil data in terms of 

practical applications (e.g., agricultural suitability, 

erosion risk or land degradation). 

Reporting: Generate reports that summarize the 

methodology, results, limitations and recommendations 

based on the soil mapping. 

Final Deliverables 

Soil Maps: Provide digital maps in common formats 

such as GIS shape files or geodatabases. 

Soil Properties Data: Include tabular data for each 

soil unit with its corresponding properties. 
Metadata: Ensure that metadata is provided for all 

datasets, including remote sensing data, soil properties 

and mapping techniques used. 

Application of Geospatial Technology in Soil 

Resource Mapping  

Soil mapping refers to the systematic process of 

understanding and predicting the spatial distribution of 

soils. This procedure entails the collection of field 

observations—such as detailed soil profile 

descriptions—the laboratory analysis of soil properties, 

the characterization of landscape features, and the 
subsequent production of soil maps. Soil resource 

inventories provide comprehensive information on the 

types, attributes, and geographic distribution of soils 

within a specified area. Traditionally, soil mapping has 

relied on the development of a conceptual framework 

based on soil-forming processes to predict the spatial 

distribution of various soil classes. However, with 

advancements in geostatistics and the widespread 

availability of digital information concerning terrestrial 

features, it is now possible to map soil properties more 

effectively by integrating existing soil data with 

auxiliary information on environmental variables. This 

modern approach enables the transformation of legacy 

soil data into digital products, enhancing their 

accessibility and practical application. Furthermore, in 

alignment with initiatives such as Digital India and the 
Soil Health Mission, the creation of digital soil maps 

for different regions of the country is both timely and 

essential. 

Use of Satellite RS for Soil Resource Mapping  

Satellite remote sensing has become a powerful tool in 

conducting soil resource surveys and generating 

critical data to support sustainable land-use planning. 

This technology is applicable across scales—from 

regional to micro-level studies—making it 

indispensable in modern soil analysis and 

environmental monitoring. 

Satellites equipped with various sensors and cameras 
capture both analog and digital data by detecting 

electromagnetic radiation (EMR) emitted or reflected 

by Earth’s surface. The energy used in these 

observations comes from the electromagnetic 

spectrum (EMS), which includes a range of 

wavelengths and frequencies. 

Non-photographic sensors are capable of detecting 

EMR across a wide range of wavelengths—from 

ultraviolet (UV) light with wavelengths shorter than 

0.38 µm to microwaves with wavelengths over 100 cm. 

Different remote sensing (RS) techniques utilize 
specific EMS regions such as: 

Visible light (0.4–0.7 µm) 

Infrared (0.7–3 µm) 

Thermal infrared (3–5 µm and 8–14 µm) 

Microwave (0.1–30 cm) 

Regardless of the technique used, the core principle 

involves acquiring information based on the radiation 

reflected or emitted by objects on Earth’s surface. 

Two key advantages of satellite imaging are: 

1. Wide-area coverage for large-scale assessments 

2. Repetitive imaging, allowing for regular monitoring 

of the same location over time 
This makes satellite imagery ideal for reconnaissance 

and semi-detailed surveys, such as those used in 

regional planning and district-level soil studies. 

Through systematic interpretation of satellite images, 

researchers can accurately delineate soil boundaries. 

Advanced digital image processing techniques, 

including supervised and unsupervised classification 

(using the maximum likelihood method), are widely 

employed in digital soil mapping. 

In supervised classification, "training sets" of pixels 

with known soil properties (collected through 
fieldwork) are used to generate precise soil maps. 

In unsupervised classification, clusters of pixels with 

similar digital numbers (DNs) are grouped, and field 

verification is performed to determine the soil 

composition of each cluster. This ground-truth data is 

then used to finalize the soil maps. 

Role of Geographical Information Systems (GIS) 

and Soil Information System (SIS) in Soil Resource 

Mapping   

A Soil Information System (SIS) is a computerized 

database designed to manage extensive data related to 
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soil and land resources. It enables the organization, 

storage, retrieval, analysis, and processing of soil 

information, presenting it to users in formats like maps 

and tables. The SIS is built upon a database compiled 

from remote sensing (RS) data and ground surveys, 
integrated with Geographic Information Systems (GIS) 

and Decision Support Systems (DSS). Initially the 

mapping was carried out manually and the generated 

resource maps were overlaid to study the soil resources 

in an integrated form. The various sources of locational 

information give us spatial data in different scale, time 

and format. This spatial data with location and shape of 

features along with its descriptive information in form 

of attributes are integrated to derive meaningful 

interpretation and assist the user for planning using the 

GIS tool. The concept of SIS is depicted in Fig. 1. 

 
Fig. 1. Soil information system (SIS)-Concept (ref: 

Fundamentals of Soil Science, 2002). 

SIS helps in easy handling of voluminous data; 

reproduction of maps derived suitability and other 

interpretative maps; Linkage with other georeferenced 
coverage to generate new composite overlays; Cost 

effective and time-saving periodic updating of 

map/information and quick monitoring and impact 

assessment of development measures. All of these make 

the SIS a useful tool for generating action plan and its 

implementation for land resource management of a 

region or watershed.  

Digital Soil Mapping (DSM). Digital Soil Mapping 

(DSM) has its roots in the state-factor soil formation 

model introduced by Jenny (1941), which explains how 

soil formation and distribution are influenced by 
specific soil-forming factors. When the connection 

between soil profile features and these factors is 

established, it becomes possible to predict the 

distribution of soil characteristics based on the spatial 

distribution of the forming factors. Today, soil maps 

and spatial soil information systems are developed 

using mathematical models that incorporate spatial and 

temporal variability in soil properties, drawing on 

environmental proxies for soil-forming factors. This 

approach represents the modern paradigm in soil 

mapping (Mcbratney et al., 2002).  

Stages in DSM. The DSM process characteristically 
involves three stages (Fig. 2).  

Stage I is concerned with development and assessment 

of inputs. 

Stage II is where the choice of methods and tools is 

made. 

Stage III is where the spatial inference system is 

developed and applied. 

 
Fig. 2. Processes in DSM (Omuto et al., 2013). 

Spatial prediction methods for DSM  

Spatial prediction methods are broadly categorized into 

three primary groups: non-geostatistical, geostatistical, 

and hybrid techniques. The non-geostatistical category 

includes methods like Nearest Neighbors, Inverse 

Distance Weighting (IDW), Natural Neighbors, 

Triangular Irregular Networks (TIN), Splines, Trend 

Surface Analysis, Classification and Regression Trees, 

Kalman Filters, and Regression Models. It also 
encompasses several kriging variants such as Simple, 

Ordinary, Universal Kriging, Cokriging, Kriging with 

an External Drift, and Block Kriging, along with 

Bayesian Maximum Entropy. Geostatistical approaches 

consist of Indicator Kriging, Factorial Kriging, 

Principal Component Kriging, Disjunctive Kriging, and 

Multivariate Factorial Kriging. The mixed or integrated 

methods combine elements from both previous 

categories, including Regression Kriging, Linear Mixed 

Models, combinations like Kriging with Regression 

Trees, or Trend Surface Analysis, as well as Bayesian 
Maximum Entropy within hybrid frameworks. 

Global Soil Mapping Initiatives  

Global efforts in soil mapping focus on producing 

updated soil maps, standardizing global soil data 

systems, and maintaining and sharing international soil 

databases. 

1. Globalsoilmap.net (www.globalsoilmap.net) is an 

international collaboration established to create a high-

resolution digital soil map of the planet. Leveraging 

modern and innovative mapping technologies, this 

project aims to estimate soil characteristics at a detailed 

spatial scale of approximately 100 meters. The initiative 
is led by the Digital Soil Mapping Working Group 

under the International Union of Soil Sciences (IUSS). 

2. Global Soil Information Facilities (ISRIC) 
provides a range of soil data products, such as 

SoilGrids250m, which offers predictive soil property 

and classification maps. These are also available in 

generalized forms at 1 km and 5 km resolutions. 

Additional resources include the WoSIS Soil Profile 

http://www.globalsoilmap.net/
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Database and the harmonized WISE v3.1 Global Soil 

Profile Dataset. 

Digital Database on Soils of India  

Some available digital soil databases of India are, Soil 

and terrain digital database (SOTER), National natural 
resource information system (NRIS) by the Department 

of Space, Govt. of India, National informatics centre 

(NIC) by the planning commission, Agricultural 

resource information system (AGRIS) by the National 

Bureau of Soil Survey and Land Use Planning 

(NBSS&LUP).  

Soil Site Suitability Assessment  

Soil site suitability assessment is a crucial step in 

agricultural planning and decision-making. Geospatial 

technology plays a significant role in analyzing soil 

characteristics and determining the suitability of a site 

for specific crops by integrating various data sources, 
creating detailed soil maps, conducting spatial analysis, 

applying multi-criteria evaluation techniques and 

supporting decision support systems. These capabilities 

enable farmers and agronomists to identify suitable 

areas for crop cultivation, optimize resource allocation, 

and make informed decisions regarding land use and 

agricultural practices. Geospatial analysis enhances the 

efficiency, accuracy and sustainability of crop area site 

suitability assessments, contributing to improved 

agricultural planning and management. 

GEOSPATIAL TECHNOLOGY FOR AGRI-

INFORMATICS  

The integration of geospatial applications and Agri-

informatics can enhance decision-making, increase 

productivity, and improve sustainability. For example, 

the use of GIS software can help to map crop health, 

optimize irrigation, fertilizer use, monitor and manage 

pests and diseases (Singh et al., 2020). RS can provide 

early warning of crop stress, monitor crop growth and 

development and assess soil properties and water 

availability. GPS can enable precision farming, track 

and optimize the movement of vehicles and machinery 

and monitor and control pest and disease outbreaks 
(Thenkabail & Knox 2016). Unmanned Aerial Vehicles 

(UAV) can provide high-resolution images of crops and 

fields, which can be used to assess crop health, detect 

weeds and count plants. RS data can be combined with 

ground-based data such as soil moisture measurements 

to provide more accurate information on crop stress 

factors. By combining these data sources, farmers can 

make more informed decisions about when to apply 

irrigation or fertilizer and in what quantity.  

Components of Agri-Informatics  

Agri-informatics involves crop monitoring that include 
crop classification, stress detection, crop yield mapping; 

precision agriculture and supply chain management. 

Geospatial tools and techniques are of enormous 

importance when large area crop monitoring is required 

at different spatial scale, for variable rate application of 

fertilizer and irrigation in precision farming. The 

methodologies with few practical applications are given 

in separate section for each of these Agri-informatics 

components. 

Crop Monitoring :Satellite data have been used to 

track a variety of elements of vegetation monitoring, 

including but not limited to: crop classification and 

assessment of crop acreage, estimation of biomass and 

yield, monitoring and detection of crop stress and 
assessment of crop phenology. 

Crop Classification :Crop classification using RS is a 

technique that uses satellite or drone data to identify 

and map different types of crops across a field or 

region. RS data can be used to distinguish between 

different crops based on their spectral characteristics. 

Each crop has a unique spectral signature, which can be 

identified using algorithms that analyse the reflectance 

of different wavelengths of light. Optical and 

microwave sensors play a vital role in crop 

classification, providing valuable information about 

vegetation characteristics and crop types. 
Optical sensors excel in capturing detailed spectral 

information, identifying crop types and assessing 

vegetation health. On the other hand, microwave 

sensors are effective in penetrating vegetation canopies, 

providing structural information and mapping soil 

moisture content. The most common approach for crop 

classification using RS is different types of supervised 

classification, including maximum likelihood, support 

vector machines, random forest (RF) and decision trees.  

Crop Yield Mapping: Pre-harvest prediction of a crop 

yield may prevent a disastrous situation and help 
decision-makers to apply more reliable and accurate 

strategies regarding food security. RS helps in large 

area yield estimation at different spatial scale using 

multispectral and hyper spectral data, radar and LiDAR 

data. There are several techniques for crop yield 

mapping using RS such as:  

1. Statistical empirical models that use spectral 

vegetation indices such as the normalized difference 

vegetation index (NDVI) or Enhanced Vegetation Index 

(EVI) or spectral profile characteristics, as the 

independent variable. Weather based regression model 

are also used for crop yield estimation where the 
weather data is derived from satellite input.  

2. RS based semi-physical models that uses mostly 

input data from satellite RS for crop yield estimation. 

The Input data for the semi-physical model for crop 

yield estimation are maximum radiation use efficiency 

(RUE max), photosynthetically active radiation (PAR), 

Fraction of absorbed PAR by the crop (FAPAR), 

temperature scalar, water scalar and Harvest index of 

the crop (Tripathy et al., 2021). There are several crop 

simulation models available for yield estimation, 

including the widely used WOFOST (World Food 
Studies), DSAAT series of models including CERES 

(Crop Environment Resource Synthesis), Cropsyst, 

Infocropetc (Singh et al., 2008).  

3. AI-ML based approaches involve the use of machine 

learning algorithms and techniques to analyse and 

model the relationships between input data (such as 

weather, soil, and management practices) and crop 

yield output. The advantages of AI-ML based 

approaches for crop yield estimation include their 

ability to account for the non-linear behaviour of the 

relationship between the crop yield and the factors of 
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crop production. However, this requires large good 

quality training dataset at the required spatial scale 

(Kumar et al., 2020).  

Crop Health Monitoring: The objective of crop health 

monitoring is to detect early signs of abiotic stress like 
water and nutrient stress or biotic stress like disease in 

crops. The data captured by these sensors is used to 

generate spectral indices that are indicative of crop 

health. The most widely used spectral index for crop 

health monitoring is the NDVI, EVI, the green 

chlorophyll index (GCI) and the normalized difference 

water index (NDWI). These indices capture different 

aspects of crop health, including biomass production, 

chlorophyll content and water stress. 

Geospatial Technology in Supply Chain 

Management  

Geospatial technologies enable the tracking of trucks 
and other vehicles transporting agricultural goods, 

offering real-time updates on their position and 

estimated delivery times. This data supports better 

logistics planning and helps minimize the risk of 

product spoilage or damage. GPS systems, when 

integrated with logistics platforms, allow continuous 

monitoring of vehicle locations and shipment statuses. 

This integration aids in route optimization and reduces 

transportation expenses. Additionally, sensors can track 

environmental conditions like temperature and 

humidity, helping to maintain the quality of agricultural 
products throughout the shipping process (Mishra & 

Mishra 2017). By monitoring environmental conditions, 

supply chain managers can take corrective action to 

prevent spoilage or damage to products. Geospatial 

technology can also be used to monitor inventory levels 

and track the movement of products through the supply 

chain (Srinivasan et al., 2020).  

ENVIRONMENTAL MONITORING OF SOIL 

USING REMOTE SENSING  

Soil quality can be defined as the ability of the soil to 

function within the boundaries of natural or managed 

ecosystems to sustain biological productivity, maintain 
water and air quality and support human habitation 

(NRCS, 2012). Unfortunately, human activities such as 

cropping, grazing and forestry have led to the 

degradation of soil quality, which poses a threat to the 

sustainability of these practices worldwide.  

Awareness of the need to monitor soil degradation on a 

large scale emerged in the 1970s. By the late 1980s, the 

first major evaluation of human-driven soil degradation, 

called the Global Assessment of Human-Induced Soil 

Degradation (GLASOD), was completed. This initiative 

primarily aimed to raise awareness about the dangers of 
poor land resource management and to help prioritize 

efforts for remediation. Numerous researchers have 

since concentrated on mapping particular forms of 

degradation, similar to the GLASOD project, which 

categorized soil degradation into four types: erosion by 

water and wind, physical deterioration, and chemical 

deterioration. Physical deterioration refers to issues 

such as soil compaction, waterlogging, and the 

subsidence of organic soils, whereas chemical 

deterioration involves processes like nutrient depletion, 

salinization, acidification, and contamination. 

Assessing Wind Erosion: Remote sensing is a 

powerful toolfor identifying wind erosion. Due to the 

expansion of agriculture to marginal areas, wind 
erosion has intensified in recent years. There are direct 

and indirect indicators of wind erosion that can be 

detected through remote sensing. Direct indicators 

include surface lowering, which can be identified 

through the use of Lidar and Interferometric Synthetic 

Aperture Radar (InSAR) techniques. Changes in soil 

roughness can also be detected through radar 

backscattering and LiDAR mapping. Indirect indicators 

of wind erosion include spectral information about 

surface properties.  

Assessing Water Erosion :Water erosion can occur in 

three forms: sheet, rill and gully. Direct assessment of 
erosion intensities requires estimating the metric 

dimensions and volume of individual patches of sheet, 

rill and gully erosion, as well as their densities. 

Previous studies have relied on aerial photographs to 

interpret high-resolution data for mapping gullies. 

Barber and Mahler (2010) reported high-resolution 

mapping of gullies using 0.2 m resolution photographs 

with an RGB camera mounted on a light aircraft flying 

at a height of 800 m above the ground. Indirect methods 

for detecting water erosion involve wide-coverage 

assessment of surface changes from gully erosion. 
Studies have employed merging high-resolution 

imagery (QuickBird) with medium-resolution imagery 

(Landsat Enhanced Thematic Mapper (ETM) and 

Système Pour l’Observation de la Terre 5 (SPOT 5)) to 

detect gully erosion areas (Igbokwe et al., 2008).  

Mapping of Overall Soil Losses: Different modeling 

techniques are available to estimate soil loss caused by 

various forms of erosion, typically categorized as 

phenomenological, empirical, or a hybrid of both. 

Among these, the Universal Soil Loss Equation (USLE) 

is widely utilized to determine soil loss per unit area 

over a specified time frame. The USLE takes into 
account multiple factors, including the rainfall and 

runoff erosivity index, soil erodibility, slope length and 

steepness, surface cover and management practices, and 

conservation practices. Remote sensing (RS) 

technologies are crucial for collecting data to produce 

regional assessments of soil loss and to create maps 

over extensive areas. Methods such as photogrammetry, 

radar interferometry, and LiDAR are often employed to 

generate the topographic information necessary for 

calculating slope length and slope steepness parameters. 

Mapping of Soil Drying and Crusting : Decreasing 
soil moisture (SM) can have a significant impact on 

agricultural production and soil crusting reduces water 

infiltration capacity (Wani et al., 2009) hence these two 

factors need to be assessed and monitored for 

improving production. The major approaches for 

detecting SM content include radar techniques, 

radiation balance and surface temperature calculations, 

reflectance in the visible, near-infrared and shortwave-

infrared regions and integrative methods that utilize 

more than one spectral range. Soil crusts can be 
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identified by significant colour changes, which can be 

parameterized by the soil’s spectral reflectance. 

Monitoring Soil Quality Deterioration. Mapping 

degraded soil properties can be challenging because 

these chemical and physical properties primarily change 
within the soil at greater depths, often showing minimal 

variation at the surface. As a result, indirect methods, 

particularly those using plant properties to indicate 

subsoil conditions, are commonly employed. 

• Soil salinity : Remote sensing methods have gained 

attention in the last decade for mapping soil salinization 

and its regional effects. There are two ways of mapping 

soil salinity: surface salinization mapping and 

subsurface salinization mapping.  

Surface salinization mapping involves high-resolution 

aerial photographs and multispectral images such as 

IRS and Landsat. Hyperspectral sensors have also been 
used in this method.  

Subsurface salinization mapping can be performed 

using indirect methods that implement passive sensors, 

which utilize spectral information from the soil surface 

or plants or active sensors such as electromagnetic 

induction meters.  

• Soil Organic Matter and Nutrients: Soil organic 

matter (SOM) is a product of biological decomposition 

and has a major impact on agricultural production and 

climate change on a global scale and hence, SOM 

mapping is essential for evaluating land degradation 
and soil fertility. Techniques in this field were 

developed using two main approaches. The first 

approach involves studies that link spectral information 

from the soil surface to subsurface conditions. The 

second approach links plant properties to subsurface 

nutrient conditions, primarily assessing spectral 

indicators of nutrient content in leaves. 

Assessing Soil Contamination:  Soil contamination is 

a major environmental issue, with large areas of soil 

acting as sinks for both organic and inorganic 

pollutants. These contaminants, often released through 

fossil fuel use and various human activities, include 
petroleum hydrocarbons, heavy metals (such as nickel 

(Ni), chromium (Cr), copper (Cu), cadmium (Cd), 

mercury (Hg), lead (Pb), zinc (Zn), and arsenic (As)), 

acid mine drainage, and pesticides. The reflectance 

properties of soil make it possible to assess the presence 

of different contaminants. In particular, hyperspectral 

imaging technology has been successfully applied to 

monitor soil contamination caused by metal mining 

activities, notably through the oxidation of pyrite. 

Research indicates that heavy metals themselves do not 

show distinct absorption features within the visible, 
near-infrared, and short-wave infrared (VIS-NIR-

SWIR) wavelength regions. Nevertheless, their 

presence can be identified indirectly through their 

interactions with organic matter or their association 

with detectable compounds such as hydroxides, 

sulphides, carbonates, or oxides. Additionally, heavy 

metals can be detected when they are adsorbed onto 

clays, which strongly absorb light within these spectral 

ranges. 

Core Agromet Products from Indian Geostationary 

Satellite 

• Vegetation Index (VI): Vegetation index is a 

mathematical representation of spectral response of 

vegetation in different wavelength to know the vigour 

and health of vegetation. The “Normalized Difference 

Vegetation Index” (NDVI) is widely used for 
vegetation growth monitoring. NDVI is computed as 

per equation (1) NDVI = 𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷. 

• Surface insolation: The amount of solar radiation 

reaching at ground surface between 300 to 3000 nm is 

known as surface insolation or global insolation and is 

the driving input for two important eco-physiological 

plant processes such as evapotranspiration and 

photosynthesis. In the present scenario surface 

insolation is one of the most important renewable 

energy resources. The daily insolation data is also used 

for estimation of crop biomass and yield. In past, 
interpolated data from the limited ground station was 

used to generate the spatial insolation maps. The 

regular observations from the geostationary satellite 

(high temporal sampling frequency) pay a way to 

compute 30-minute dynamics of the surface insolation. 

Instantaneous surface insolation was generated using 

spectrally integrated radiative transfer scheme and 

three-layer cloudy-sky model with cloud-top albedo, 

temperature, atmospheric water vapour from visible, 

thermal IR and water vapour spectral bands and vertical 

profile of aerosol and ozone (Bhattacharya and Nigam 
2015). Surface insolation is provided through INSAT 

3D and 3DR from MOSDAC geo-portal. 

• Land surface temperature (LST): The land surface 

temperature (LST) lead to characterizing the interaction 

between surface atmosphere energy fluxes, thus having 

great usage in agro-meteorology, hydrology and other 

environmental applications. A single (10.5-12.5 µm) 

and dual (10.2-11.3 µm and 11.5-12.5 µm) thermal 

spectral bands with Radiative Transfer (RT) model 

were used to retrieve LST from satellite. The basis of 

LST algorithm depends on transmissivity, upwelling 

and downwelling radiances of the atmosphere along 
with surface emissivity. 

Surface Soil Moisture (SSM) Product: The 

operational Soil Wetness Index (SWI) and volumetric 

Soil Moisture (SM) products were created using time 

series data from the SMAP L-band radiometer. 

Absolute soil moisture, denoted as W(t) at a specific 

time, was calculated based on SMAP L-band brightness 

temperature (Tb), along with the soil's permanent 

wilting point (PWP) and field capacity (FC), modeled 

through time series analysis (Pandey et al., 2021). 

GEO-SPATIAL VALUE ADDED AGROMET 

PRODUCTS  

• Leaf area index (LAI):LAI is defined as the single 

sided area of green, functioning leaves per unit ground 

area. LAI can play a vital role for determining 

vegetation physiological state and health. Agricultural 

crop LAI from satellite can be retrieved using forward 

and inversion modeling of one dimensional (1-D) 

canopy radiative transfer (CRT) model PROSAIL and 

satellite reflectance data. PROSAIL has two 

components (i) PROSPECT (Jacquemoud & Baret 

1990) simulates reflectances at leaf level and(ii) SAIL 
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address the directionality. The different statistical and 

machine learning inversion techniques are used to 

invert the satellite observed surface reflectance to get 

the unique crop LAI.  

• Evapotranspiration  
Potential Evapotranspiration: Reference or potential 

evapotranspiration (ET0) indicates the atmospheric 

demand for water over a vegetated surface. In this 

context, potential evapotranspiration—referred to as 

grass reference evapotranspiration (ET0)—is defined as 

the rate of water loss to the atmosphere from a surface 

that is uniformly moist and covered with short, actively 

growing grass, such as Alfalfa. Daily ET0 values, 

measured in millimeters, are estimated using solar 

radiation data from INSAT-3D and 3DR satellites, 

along with three-hourly meteorological forecasts 

derived from the WRF (Weather Research and 
Forecasting) model. The FAO56 model has been 

adapted to integrate INSAT data and weather inputs for 

this calculation. Currently, daily ET0 operational 

products are accessible to users via the MOSDAC 

portal. 

Actual Evapotranspiration: The calculation of actual 

evapotranspiration (AET) involves the use of latent heat 

fluxes (Eλ or LE) and the latent heat of evaporation (L). 

Generally, satellite-based estimates of surface latent 

heat flux (Eλ) are obtained as the residual component of 

the surface energy balance approach (Kustas et al., 
1994). Over the Indian subcontinent, this technique has 

been applied using INSAT satellite data to estimate 

AET (Bhattacharya and Nigam 2015).  

• Surface Dryness Index (SDI): The Surface Dryness 

Index (SDI) serves as a metric to quantify the 

availability of precipitation relative to atmospheric 

water demand. It reflects the adequacy of precipitation 

in meeting the atmospheric vegetation water 

requirements. The weekly SDI can be calculated 

utilizing daily potential evapotranspiration (PET) data 

obtained from INSAT-3D and rainfall estimates derived 

from the Hydro Estimator (HEM) products. 

Application of agromet products  

Crop Sowing Date: The sowing date constitutes a vital 

input for initializing crop conditions within dynamic 

crop growth models. It delineates the temporal window 

for crop development and establishes essential 

boundary conditions for modeling crop yields and 

planning agronomic practices such as irrigation 

scheduling. Multiple methodologies have been 

developed to estimate sowing dates using time-series 

data from the Normalized Difference Vegetation Index 

(NDVI). 
In-Season Crop Area Monitoring: In India, diverse 

methodologies have been developed over the past two 

decades to monitor crop area and production utilizing 

data from polar-orbiting satellites. However, these 

satellites are constrained by limited temporal resolution 

and revisit intervals, which hinder their ability to 

provide consistent intra-seasonal crop monitoring. 

Geostationary satellites, by contrast, offer the capacity 

for continuous observation over a fixed region, 

accommodating variations in solar zenith and azimuth 

angles. This characteristic positions geostationary 

satellite data as a promising tool for regular, high-

frequency monitoring of crop progress under Indian 

agro-climatic conditions. 

Agrometeorological Advisory Services: The current 

framework for agrometeorological advisories, 
developed under the Gramin Krishi Mausam Seva 

(GKMS) program by the India Meteorological 

Department (IMD), faces limitations in conducting near 

real-time assessments of soil and crop conditions. To 

improve the accuracy and geographic reach of these 

advisories, spectral data from geostationary and polar-

orbiting satellites is being used to create 

agrometeorological products that enable real-time, 

continuous, and synoptic crop monitoring. In 

partnership with the Indian Space Research 

Organisation's (ISRO) Space Applications Centre, IMD 

has begun the routine application of daily agro-
meteorological products in six Agro-Met Field Units 

(AFMUs), covering 382 blocks within 60 districts. 

These tools—including NDVI, Potential 

Evapotranspiration (PET), Standardized Drought Index 

(SDI), minimum and maximum Land Surface 

Temperature (LST), and Surface Soil Moisture 

(SSM)—are shared in a user-accessible format through 

the VEDAS (Visualization of Earth Observation Data 

and Archival System) portal (https://vedas.sac.gov.in). 

These time-series and near real-time datasets are used 

to evaluate crop sowing conditions, monitor plant 
health, determine irrigation requirements, and detect 

crop stress across block and district levels during the 

farming season (Nigam et al., 2023). 

CONCLUSIONS 

This paper concludes that geospatial technology plays a 

pivotal role in revolutionizing agriculture and soil 

management practices. Its applications, such as 

precision agriculture, crop monitoring, soil mapping, 

land use planning, yield prediction and decision support 

systems, provide valuable tools and information for 

farmers to make informed decisions and implement 

sustainable practices. Geospatial technology enables 
precision agriculture by allowing farmers to analyze 

spatial data and optimize resource management, leading 

to improved resource efficiency, reduced environmental 

impacts and increased crop yields. It facilitates 

continuous crop monitoring and management, aiding in 

the identification of crop health issues, stress factors 

and nutrient deficiencies, enabling timely interventions 

to optimize crop performance. By utilizing geospatial 

technology for soil mapping and analysis, farmers can 

characterize soil properties, assess land suitability and 

implement site-specific management practices. This 
approach supports effective soil conservation, nutrient 

optimization and erosion prevention, contributing to 

improved soil health and long-term sustainability. 

Geospatial technology also plays a critical role in land 

use planning and management, integrating data on land 

cover, topography, soil characteristics and climate 

patterns. This enables farmers to make informed 

decisions regarding crop selection, land allocation and 

zoning, leading to optimized land utilization, reduced 

https://vedas.sac.gov.in/
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land degradation and the promotion of sustainable 

agricultural practices.  

Furthermore, geospatial technology aids in yield 

prediction and forecasting, facilitating production 

planning and risk management for farmers. By 
integrating historical data, weather information and 

crop growth models, farmers can estimate future yields 

and make proactive decisions to adjust planting 

strategies, optimize harvest schedules and identify 

market opportunities. The development of decision 

support systems in agriculture, incorporating geospatial 

technology, enhances overall farm management. These 

systems integrate various data sources, providing real-

time information, recommendations and alerts to 

optimize resource allocation, reduce production costs 

and improve decision-making processes. Overall, 

geospatial technology empowers farmers with valuable 
spatial information and tools, enabling them to optimize 

resource utilization, improve crop productivity, reduce 

environmental impacts and foster sustainable 

agricultural practices. 
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