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ABSTRACT: Diseases, pests, weeds, and other biotic or abiotic factors can cause significant financial losses 

to crops. It is crucial to detect these problems early to take preventive measures. Vegetation monitoring 

and precision agriculture are necessary for assessing crop health and identifying crop pests in terms of 

environmental risk assessment. Although remote sensing can give helpful data for agricultural production, 

there are a few challenges in employing this technique. The outcomes from remote sensing investigations 

might be difficult to comprehend. Various crops and cultivation environments may necessitate different 

forms of analysis, and identifying trends and patterns in data can be challenging. Precision agriculture 

remote sensing is based on indirectly assessing reflected radiation from soil and crops in agricultural fields. 

Remote sensing indices such as NDVI, LSWI, TVDI, SAVI, WDI, and others can be used to determine crop 

development and soil moisture from satellite imagery. Remote sensing is a cost-effective, comprehensive, 

simple, and rapid method of gathering information suitable for monitoring plant stress and disease by 
providing multitemporal and multispectral information. Thus, it can deliver accurate details continuously 

at a minimum cost, making it a valuable tool. 
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INTRODUCTION 

Plant stress is the stimulus that inhibits plant growth, 

metabolism, and development in response to various 

environmental conditions, including abiotic and biotic 

stressors (Atafar et al., 2009). Abiotic stressors, such as 

insufficient or excessive water supply, extreme 

temperatures, heavy metals, ultraviolet radiation, and 

salinity, can cause significant damage to plant 
development and growth, leading to a substantial 

reduction in agricultural productivity worldwide (Fahad 

et al., 2017, Fich et al., 2016). Biotic stress is a 

biological component such as diseases, insects, and 

other pests subjected to agricultural plants (Gimenez et 

al., 2018). Specific stressors harm plants. These plants 

suffer from various metabolic abnormalities (Godoy et 

al., 2021). 

With the global population projected to reach 8 billion 

by 2023, meeting the demand for food production 

becomes increasingly challenging (World Economic 
Forum, 2021). Predictions suggest that cereal 

production needs to increase to almost 3 billion tonnes 

by 2050, up from 2.1 billion tonnes, and meat 

production needs to rise by over 200 million tonnes to 

470 million tonnes (FAO, 2009).  India's total food 

grain consumption is expected to rise to 215 million 

tonnes by 2033-34 (According to research released by 

the NITI Aayog in 2019), with a significant increase in 

demand for other food products like edible vegetable 

oil, milk, sugar, eggs, fish, meat, fruits, and vegetables. 

Crop damage due to various reasons, such as diseases, 

pests, weeds, and other biotic or abiotic stressors, 

results in significant losses in crop yield, which may 

range from 20-32% in the case of weeds (Mongia et al., 

2005), 35-42% in the case of diseases, and total loss in 

severe infections, insects damage ~14% ranging from 

10-20% losses (Pimentel, 1997). Early detection of crop 

infestations and stress associated with moisture 
deficiencies, insects, fungal, and weed infestations is 

critical to mitigating these losses. Vegetation 

monitoring and precision agriculture using remote 

sensing can provide farmers with frequent, rapid, and 

multispectral information to assess the health of crops 

and detect infestations. 

Crop assessment is a crucial task for agricultural 

development, and it plays a vital role in improving crop 

productivity and ensuring food security. Crop damage 

due to natural disasters, pests, and diseases is a 

significant problem faced by farmers worldwide. 
Traditional methods for crop assessment, such as field 

surveys and ground-based measurements, are time-

consuming and labour-intensive. Remote sensing 

technology has emerged as an effective alternative for 

crop damage assessment and progress monitoring. 

Remote sensing refers to data collection from a distance 

without direct contact with the measured object. The 

technology uses sensors on various platforms such as 

satellites, drones, or aircraft. Remote sensing for 

precision agriculture relies on the indirect measurement 

of reflected radiation from soil and crops in the 
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agricultural field, providing accurate information on 

plant stress and disease monitoring through 

multitemporal and multispectral data. This approach is 

cost-effective, comprehensive and suitable for 

continuously monitoring crops. To ensure good 

agricultural productivity, remote sensing imagery 

should be provided at least once a week and delivered 

to farmers within two days. 

A. Remote sensing and its Types 

Remote sensing is a technique used to identify, 
measure, and analyse specific objects, areas, or 

phenomena without direct contact with them, allowing 

for informed decision-making. It involves continuously 

monitoring the physical characteristics of a region by 

measuring it's reflected and emitted radiation from a 

distance, typically from aircraft or satellites.  

1. Active remote sensing. Active remote sensing uses 

radar in the microwave section of the electromagnetic 

spectrum, which has wavelengths between 1mm and 

1m. Synthetic Aperture Radars (SARs) are 

sophisticated radar sensors that can enhance spatial 
resolution mathematically and discern the polarisation 

of electromagnetic energy they transmit and receive, 

providing more information about surface features 

(Brown and Porcello 1969; Sarder, 1997). At 

microwave wavelengths, the atmosphere is transparent, 

and radar wavelengths are strong enough to penetrate 

clouds, allowing for imaging even in adverse weather 

conditions. 

2. Passive remote sensing. Passive remote sensing 

includes satellite or airborne remote sensing. The three 

types are satellite-based remote sensing, ground-based 
remote sensing, and unmanned aerial vehicle (UAV)-

based remote sensing. In UAV-based remote sensing, 

detectors for monitoring are installed on the UAVs. 

UAV-based imaging provides high spatial, spectral, and 

temporal resolution and is less expensive than 

conventional remote sensing platforms. 

Radiometers are carried on two types of satellites: 

geostationary and polar-orbiting. Geosynchronous 

satellites are located in a high orbit near the equator, 

while polar-orbiting satellites orbit the Earth at lower 

altitudes, almost perpendicular to the equator. Polar-

orbiting satellites pass over a different region of the 
planet on successive orbits as the Earth rotates 

(Cracknell and Hayes 1991). 

Smart agriculture has extensively used unmanned aerial 

vehicles (UAVs) to monitor crop health indicators such 

as drought stress, disease infection detection, nutritional 

status, biomass, crop vigour monitoring, and yield 

prediction. 

3. Spectral Remote Sensing. Spectral remote sensing 

involves using sensors to measure the reflection of light 

from the target. The sensors measure the intensity of 

light reflected by the crop in different wavelengths, 

which can be used to estimate various crop parameters 

such as chlorophyll content, leaf area index, and 

biomass. Spectral remote sensing can be further 

classified into multispectral and hyperspectral remote 

sensing. 

A. Multispectral Remote Sensing: Multispectral 

remote sensing involves using sensors that measure 

radiation in several specific wavelength bands. 

Multispectral remote sensing data are widely used for 

vegetation monitoring, crop mapping, and yield 

estimation. 

B. Hyperspectral Remote Sensing: Hyperspectral 

remote sensing involves using sensors that measure 

radiation in several narrow and contiguous spectral 

bands. Hyperspectral remote sensing provides more 

detailed information on crops' biochemical and 

physiological characteristics. 
4. Thermal Remote Sensing. Thermal remote sensing 

involves using sensors that measure the temperature of 

the target. The temperature of the crop is an essential 

indicator of crop stress and water availability. Thermal 

remote sensing can estimate crop water stress, 

transpiration rates, and irrigation requirements. 

5. Radar Remote Sensing. Radar remote sensing 

involves using sensors that emit microwave radiation 

and measure the backscatter signal reflected from the 

target. Radar remote sensing can estimate crop height, 

biomass, and canopy structure. It is also valuable for 
mapping crop areas, identifying crop types, and 

monitoring crop growth. 

B. Indices of Remote Sensing and Signification 

Various types of data are needed to estimate crop 

progress, including environmental factors like air 

temperature, relative humidity, and precipitation, as 

well as surface conditions like soil moisture content and 

temperature. Remote sensing techniques using satellite 

imagery can provide helpful information for crop 

monitoring by calculating specific indices such as the 

Normalised Difference Vegetation Index (NDVI), Land 
Surface Water Index (LSWI), Temperature-Vegetation 

Dryness Index (TVDI), Soil Adjusted Vegetation Index 

(SAVI), Water Deficit Index (WDI), and others. These 

indices can be used to assess crop growth and soil 

moisture levels. 

1. Spectral Vegetation Indices. Remote sensing 

vegetation indices (SVIs) (Lyon et al., 1998) often 

utilise the fact that plant pigments, including 

chlorophyll and carotenoids, absorb light in the visible 

red wavelengths (corresponding to AVHRR channel 1), 

while mesophyll tissue reflects light in the near-infrared 

range (Corresponding to AVHRR channel 2) (Tucker 
and Sellers, 1986). Healthy plants appear darker in the 

visible spectrum and brighter in the near-infrared range 

than sick or senescent plants. As foliage coverage 

increases, more red light is absorbed due to increased 

pigmentation, and more near-infrared radiation is 

reflected due to increased internal leaf dispersion of 

mesophyll (Curran and Williamson 1986).  Soil 

reflectance is more straightforward than that of plants, 

with a general increase in reflectance with wavelength 

depending on soil texture, structure, water content, 

organic carbon, and iron oxide concentration (Huete 

and Escadafal 1991). These properties are used to 

differentiate between plants and soil, as they have 

distinct spectral properties. SVIs aim to increase 

reflectance contrast and detect vegetation in remote 

sensing imagery. 

The ratio vegetation index (RVI) or simple ratio index 

(SRI) is the most basic SVI. Other SVIs, such as the 
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Normalised Difference Vegetation Index (NDVI), was 

developed to address reflectance from typically dark or 

reddish soil backgrounds by dividing the difference 

between the two channels by their total. (Tucker, 1979): 

NDVI=(Ch2−Ch1)/(Ch2+Ch1) 

The NDVI has an ideal range of -1 to +1, but it 

typically ranges from 0.0 to 0.8, as noted by Tucker 

(1979). As with all red/near-infrared indices, the NDVI 

is a specific measure of chlorophyll quantity and light 

absorption, according to Myneni et al. (1995a). 
In regions with sparse vegetation growth, NDVI 

measurements are instrumental since they provide a 

more comprehensive dynamic range than simpler SVIs 

like RVI. Conversely, in areas with complete coverage, 

such as forests, the NDVI becomes saturated, as Huh 

(1991) observed. 

To address some of these issues, various indices, such 

as the soil-adjusted vegetation index (SAVI), have been 

proposed, as noted by Leprieur et al. (1996) and Huete 

(1988). However, they have been less frequently used 

for ecological and epidemiological purposes and are not 

being investigated further. Primicerio et al. (2012) 

utilised a multispectral camera mounted on a UAV to 

assess vine health by calculating the normalised 
difference vegetation index (NDVI). Similarly, Gennaro 

et al. (2016) determined the GLSD-infected vine by 

estimating the NDVI based on UAV multispectral data, 

even in cases where the disease-infected vine was in the 

early stages of the illness and could not be diagnosed 

visually. 

Table 1: Main spectral vegetation indices used in agriculture. 

Index Equation Usefulness Reference 

N.G. G/ (NIR+R+G) Carotenoids, anthocyanins, xanthophylls Sripada et al., 2006 

NR R/ (NIR+R+G) Chlorophyll Sripada et al., 2006 

DVI NIR-R Soil reflectance Tucker, 1979 

GDVI NIR-G Chlorophyll, N status Tucker, 1979 

NDVI (NIR-R)/ (NIR+R) Vegetation cover Rouse et al., 1973 

GNDVI (NIR-G)/ (NIR+G) Chlorophyll and photosynthesis, N status Gitelson et al., 1996 

Abbreviation: A=adapted, D=difference, G=green, N=normalized, NIR=near-infrared, R=red, RVI=Ratio Vegetation Index, 

VI= Vegetation Index. 

2. Atmospheric Moisture Indices. As Dalu (1986) 
outlined, an approach has been established to estimate 

the overall water content in the atmospheric column, 

known as total precipitable water. The method employs 

atmospheric radiative transfer models over the ocean, 

assuming a surface relative humidity of 80% due to the 

balance between evaporation and diffusion. The 

estimates were validated against ship-collected data. To 

determine the total precipitable water content of the 

atmospheric column, U (kg m
2
), a correction factor, a, is 

derived and the varying atmospheric path length as a 

function of the scan angle is considered, as per the 
technique suggested by Dalu (1986). 

U = a × (Ch4 − Ch5) × cos θ 

3. Rainfall Indices. As per Emanuel (1994), convective 

processes tend to dominate weather patterns in tropical 

latitudes with substantial reserves of potential energy 

from cyclical heating. The most vigorous convection 

currents produce the greatest updrafts, leading to clouds 

with a higher water content that is more likely to 

produce rainfall, as noted by Ba and Nicholson (1998). 

These convection currents form dense clouds with 

frigid, elevated tops that emit shallow thermal infrared 

radiance values. While it is possible to measure 

temperatures at the tops of clouds, the specific threshold 

temperature associated with rain-bearing clouds and the 

amount of rainfall they produce vary over time and 

space and must be determined through empirical 

analysis, according to Grimes et al. (1999). 

Remote sensing can aid in creating a temporal 
developmental profile of crops throughout their life 

cycle. By retrieving environmental components and 

remote sensing indices, it becomes possible to discern 

the crop growth model, the relationships between them, 

and the influence of relevant variables on crop 

development. Remote sensing is a valuable tool for 

assessing crop development at local and large scales, 

relying on prior data and tests. By incorporating 

ecological, surface, and crop status data obtained via 

remote sensing approaches, as well as soil station data, 

the model's ability to determine crop condition is 
enhanced. 

C. Role of Remote Sensing in Crop Progress Assessment 

The theoretical framework known as crop growth or 

crop progress analysis is used to determine the 

relationship between genotype and environmental 

factors on the growth and development of plants. In 

natural habitats, growth and development cycles must be 

completed within a specific time frame due to 

environmental factors such as light, moisture, and 

nutrition, which can limit genetic potential. The 

physiological phases of crop development from planting 
to harvest are called crop phenology. Precise 

information on agricultural phenology is required during 

the growing season for crop growth management and 

yield estimation (Walthall et al., 1935). The impact of 

water stress on crop yield varies depending on the 

growth stage (Anderson et al., 2016). Some plant 

species naturally increase, while others grow more 

slowly. Fast-growing species have higher rates of 
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photosynthesis but also use respiratory energy more 

efficiently for maintenance, growth, and ion uptake. 

While photosynthetic activity rates are higher in fast-

growing species, they also utilize respiratory energy 

more effectively for maintenance, development, and ion 

absorption. 

Growth indices in summary: Five key indices are 

commonly derived as an aid to understanding growth 

responses. Mathematical and functional definitions of 

those terms are summarised below. 

Table 2: Key plant growth indices (Source: Charles Price and Rana Munns). 

Growth Index Units Functional definition 

Relative growth rate (RGR) d
-1 

Rate of mass increase per unit mass 

present  

Net assimilation rate (NAR) g m -
2 

g 
-1

 Rate of mass increase per unit leaf 

area 

Leaf area ration (LAR) m 
2 
g 

-1
 Ratio of leaf area to total plant mass 

Specific leaf area (SLA) m 
2 
g 

-1 
Ratio of leaf area to leaf mass 

Leaf weight ratio (LWR) unitless Ratio of leaf mass to total plant mass 

 
D. Role of Remote Sensing in Crop Damage Assessment 

Remote sensing technology has potential applications in 

farming for assessing crop area and detecting crop 

status, especially in water stress or pest infestation 

cases. A hypothesis based on the reflectance of plants 

suggests that healthy crops have a higher near-infrared 

reflectance but a lower visible reflectance. In contrast, 

plants affected by illness have higher reflectivity in the 

visible band and lower reflectivity in the infrared. By 

examining the differences in spectral ranges between 

healthy and diseased plants, scientists can determine the 

stress potency of green leaves. 
Diseased plants with reduced chlorophyll quantity and 

changes in internal structure can absorb incident sun ray 

modifications in the visible and near-infrared range. 

(Carter and Knapp 2001). Spectral reflectance is crucial 

in the red area and falls in the Near-Infrared range, 

depending on the contamination potency. Plants under 

stress also exhibit varying degrees of internal 

morphological alterations, decreasing spectrum 

reflectance in the Near-Infrared array. The foliar 

internal makeup of green trees is primarily responsible 

for their strong spectral reflectance in the Near-Infrared 
array. These spectral properties of foliage are the 

cornerstone for remote sensing of disease-stressed 

plants. 

Various types of stresses can impact plant function, and 

there are several approaches to identifying the effects of 

these stresses through remote imaging. Instead of 

visualizing the stress, scientists typically examine the 

plant's natural response to stress. For example, changes 

in the stomatal aperture can affect leaf temperature, 

which can be reviewed to determine the effects of 

different stressors, such as drought, floods, salinity, 

temperature, or infection. 
1. Drought. According to scientists, water or drought 

stress is when plants experience physiological reactions 

due to insufficient water availability, either from soil 

water deficit or high atmospheric evaporative demand. 

This stress leads to dehydration and affects plant cells' 

ability to maintain appropriate water concentrations, 

making it one of the crucial abiotic stressors that can 

impact crop growth, output, and food quality (Hopkins, 

2009). However, plants may already be significantly 

damaged before any visible symptoms of water stress 

are observed (Jones, 2008). To avoid severe crop loss, 

detecting physiological changes in plants before they 

become apparent is essential. Hyperspectral imaging 

can provide a comprehensive spectrum of data that can 

reveal the relationship between spectral properties and 

plant conditions (Pinter, 2003). Multi-/hyperspectral 

remote sensing techniques, such as thermal imaging 

(TIR; 8–14 µm), visible, near-, and shortwave infrared 

reflectance (VNIR/SWIR; 0.4–2.5 µm), and sun-

induced fluorescence (SIF 0.685 and 0.74 µm), are used 

to detect plant responses to external stress. 

2. Salinity. Osmotic pressures and high quantities of 
sodium and chloride cause salt damage to crops. As soil 

sodium levels increase, sodium ions are more likely to 

be absorbed by the humus complex. Excess salt also 

hardens and compacts the soil, preventing water from 

reaching the root zone and remaining at the soil surface. 

In addition, extra salt raises soil pH, which sequesters 

certain soil nutrients and makes them inaccessible to 

plants, ultimately impacting productivity in tsunami-

affected regions by inhibiting crop uptake of potash 

minerals through the cation exchange capacity 

(Tchiadje, 2007). Remote sensing (R.S.) data and 
geographic information systems (GIS) techniques have 

been used to assess floods, tidal waves, and other 

catastrophic events. NDVI, a vegetative activity metric 

derived from satellite data, can be used to quantify the 

impact of salt on crops and other vegetation. Under salt 

stress, crop canopy reflectance increases in the visible 

range (e.g., 450–700 nm) but decreases in the near-

infrared region (e.g., 770–900 nm). However, remote 

sensing of salinity over large areas based on plant 

analysis has shown disappointing results because other 

stressors, such as water stress and pests, also generate 

significant changes in canopy reflectance (Goto, 2015). 
3. Temperature. Several research studies have 

demonstrated that satellite-based land surface 

temperature measurements can estimate mean and 

maximum daily air temperatures. To estimate daily 

mean air temperature, Guo et al. (2017) established a 

correlation between air temperature data collected from 

meteorological stations and Land Surface Temperature 

(LST) data derived from remote sensing sources. By 

integrating remote sensing data on planting areas, 

phenology, daily mean air temperature, and maximum 
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air temperature, it is possible to generate maps 

highlighting areas of agricultural damage caused by 

high temperatures. 

4. Disease. Studies have shown that plant diseases, and 

pests can cause significant crop loss, with diseases 

alone accounting for at least 10% of global food 

production (Strange and Scott, 2005). Pesticides are 

often used excessively to protect crops, increasing 

production costs and the risk of hazardous residue in 

agricultural products. Changes in pigment, chemical 
concentrations, cell structure, nutrition, water 

absorption, and gas exchange can alter the colour and 

temperature of the plant canopy and its reflectance 

properties. Remote sensing can detect these changes, 

allowing for the safe, quick, and cost-effective detection 

and quantification of crop stress caused by various 

biotic and abiotic factors (Raikes and Burpee 1998). 

The reflectance of plant leaves varies depending on the 

state of health and vitality of the plant, with healthy 

leaves exhibiting low reflectance at visible wavelengths 

due to strong absorption by photoactive pigments and 
high near-infrared reflectivity in the leaf's interior tissue 

due to repeated scattering at the air-cell contacts. 

Absorption by water, proteins, and other carbon 

components results in low reflectance in wide 

wavebands in the shortwave infrared. The difference in 

spectral properties between healthy and diseased plants 

can be used to track disease occurrence and severity. 

Hyperspectral remote sensing is a modern and practical 

disease surveying and mapping tool. However, 

distinguishing diseases from everyday nutritional 

stressors, such as nitrogen deficiency or overuse, can be 
difficult. They may have similar spectrum responses 

resulting in comparable biochemical characteristics and 

plant morphology alterations. 

5. Insect Pest. Plant protection experts have utilized 

various approaches to detect and quantify crop damage 

caused by insect pests and diseases in crops like rice, 

cotton, wheat, sugarcane, legumes, and vegetables. One 

such method involves using a hyperspectral 

spectroradiometer to measure the spectral reflectance at 

the canopy level and compare data from healthy and 

pest-infested plants. Reflectance data from healthy and 

infected plants in different spectral bands such as blue, 
green, red, and near-infrared (NIR) are subjected to 

mathematical analysis to create vegetation indices that 

aid in identifying and quantifying agricultural losses. 

Researchers Yang and Cheng (2001) demonstrated that 

canopy reflectance spectra acquired using a 

spectroradiometer could readily distinguish six stages of 

rice plant hopper infestation, particularly within the 

737-925 nm range of the spectrum. Greenbug-infested 

wheat canopies showed more reflectivity in the visible 

range and less in the near-infrared sections of the 

spectrum than undamaged canopies. Several spectral 
vegetation indices were generated and linked to green 

bug density and the percentage of reflectance 

comparison. In contrast to previous findings, Reisig and 

Godfrey (2007) found that spider mite and aphid-

infested cotton leaves increased reflectance in the near-

infrared wavelength of around 850 nm compared to 

uninfected leaves. 

CONCLUSIONS 

Thus, the paper discusses the benefits of remote sensing 

as a tool for detecting and measuring both abiotic and 

biotic stressors in plants. It highlights the ease, cost-

effectiveness, and comprehensiveness of remote sensing 

and notes that integrating information from various 

sensors can improve the sensitivity of detecting and 

measuring stressors. The paper also notes that remote 

sensing is already used for crop production forecasting, 

yield modelling, and stress detection in India. Finally, 
the passage emphasizes the usefulness of spectral 

remote sensing for the non-destructive estimation of 

plant growth and biophysical parameters. 
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