
IJEECE (Research Trend)  13(1&2): 71-73(2024)                Sharma et al.,                                                  71 

International Journal of Electrical, Electronics                                     ISSN No. (Online): 2277-2626 

                and Computer Engineering 13(1&2): 71-73(2024) 

Role of Threads in Operating System 

Saurabh Sharma*, Sidharth Sharma, Lotus Student 

Department of School of Computer Science and Engineering 

Govt. P.G College Dharamshala, Himachal Pradesh Technical University (HPTU), India. 

 (Corresponding author: Saurabh Sharma*) 

(Received: 13 February 2024,  Accepted: 23 April 2024)  

(Published by Research Trend, Website: www.researchtrend.net) 

ABSTRACT: This paper deals with threads used in an operating system. We discuss about working of 

multithreading system, motivation to implement thread concept. The first part of paper explain you 

background to implement thread. And the second part emphasizes the concept of thread is an operating 

system. 

Keywords: Threads, fork, multithreading, effective, user mode, concurrency, OS. 

 

INTRODUCTION 

Thread is a light weight process (LWP) and we say that 

thread is also a process or every process have its own 
Process control block (PCB). By default -each process 

will have a single thread and we have two types of 

threads kernel level or user level thread. Thread will do 

smart work it will have less resources with it. A thread 

is like another copy of a process that executes 

independently. Each thread may run over different part 

of a program or each thread has a separate stack for 

independent function calls. 

BACKGROUND OF STUDY  

In client server environment client will send the 

requests and then request come into the queue and there 

is server process in operating system which is suppose 
to satisfy these Request initially these server or 

processes were design to operate in iterative mode 

(sequential mode). It Satisfy the request one after 

another that it will take first satisfy the request totally 

by reserving the data from the hard disk and 

formulating the packet on PDU protocol data unit and 

sending over communication protocol then take second 

request do same work again and again and if you satisfy 

the request sequentially one after another naturally you 

will uncounted the problem of (starvation). To remove 

the problem of starvation people went for 

(CONCURRENT SERVER) (Silberschatz et al., 2018)  
 

 
Concurrency in server design was first approach by using (MULTIPROSESS APPROACH). When there is five 

request pending in the queue you want to currently satisfy those 5 requests by create 5 independent process called 

child processes. 

 

I

J E

E

CE



IJEECE (Research Trend)  13(1&2): 71-73(2024)                Sharma et al.,                                                  72 

 

FORK is system call used to create a child process 

these child processes are an exact replica (copy) of 
original process.  We have 5 child process and server 

will assign request to the process and we have one CPU 

and we use round robin may be some Time quantum=6 

sec and operating system first schedule C1 because all 

the process are in ready queue after 6 sec C1 permit and 

C2 schedule. We schedule in a such a way that 

everybody will be get impression my request been 

served. Initially using multi-process approach through 

creating by multiple child process using fork system 

call all child process have same structure. Every child 

have its own code section, own data segment, own heap 

section, own stack. So we have 5 (copy of code, data, 

heap, stack) separately in memory. Independent for 

every process it is traditional concurrency in server 

design. This is how concurrency was achieved initially 

before the concept of thread. This approach of 

concurrency was also for certain amount of time but 

when network scale increase, load increase then people 

realizing the concurrency is used by multi-process 

approach are a big drawback. The code instruction of 

server process are copied in all child processes. If code 

have 100 instruction so every child process having 

same 100 instruction when instruction have same 
functionality this is worry point to developer/researcher 

when functionality is same why should be have 5 copy 

of code section. It is wastage of memory so we 

introduced the concept of multithreading (Khaleel, 

2022).                                                                                                                             

MULTITHREADING CONCEPT  

We implement the concept of multithreading to 

overcome the drawback why should we have replicas 

multiple copy and waste the resources (memory). Let us 

have only one copy of address space, one copy of code, 

one copy of data and all other resources which we can 

have one copy those which we cannot have we will 

separate it (Butenhof, 1997). This was the motivation 

this to introduced the concept of thread. Every thread of 

the process or sub process with in the main process will 

basically share all the common resources then it called 

light weight. There is no independent code section of 

thread no common data. The benefit of multithreaded 

programming can be broken down into five major 

categories (Galvin, 2015). 

a) Responsiveness 

b) Resource sharing 

c) Economy 

d) Scalability 

e) Improved performance due to less context 

switch overhead |TCB| < |PCB| 

Main motivation for having multithreading 

1. Resource Sharing 

 
Why thread shown like a curvy line why not straight 

line:  

The line indicate in our code section when we execute 

instruction 1 then 2 but now this could be possibility 

that my instruction 2 may be a branch instruction go to 

like a function call this instruction 2 is a branch 

instruction means flow of control go somewhere else 

then sequentially then branch during the execution 

instruction of a program their may be a branch that 

branch indicate as a curve. If we say there is no branch 
in my code section so thread of control are straight line 

this line indicate the order in which the instruction are 

executed in code section (Tanenbaum and Bod 2014). 

 

1.User -level-threads -Threads that are created and 

managed by the user level without any support of 

operating system. Benefit of user level thread- 

1. Transparency 

2. Flexibility 

2. Kernal level threads- scheduler can decide to give 

more time to a process having small number of threads. 

Kernel-level threads are especially good for application 

that frequently block. 

Disadvantages- The kernel-level are show(they involve 
kernel invocation). 

Overheads in the kernel (since kernel must manage and 

schedule threads as well as processes. It required a full 

thread control block (TCB) for each thread to maintain 

information about threads), 

 



IJEECE (Research Trend)  13(1&2): 71-73(2024)                Sharma et al.,                                                  73 

 

CONCLUSION 

This paper has provided a comprehensive overview of 

threads in operating systems, exploring their 

functionality, motivation for implementation, and the 

transition from traditional multi-process concurrency to 

the concept of multithreading. Beginning with the 

background of implementing threads, we discussed the 

challenges faced in a client-server environment, 

particularly the issue of starvation, and how 

concurrency was initially achieved through the 

multiprocess approach using system calls like fork. 

However, as networks scaled and loads increased, it 

became evident that this approach had drawbacks, 

particularly in terms of resource utilization and memory 
wastage due to redundant code sections in each child 

process. Hence, the concept of multithreading was 

introduced to address these challenges by allowing 

threads within a process to share common resources, 

leading to more efficient resource utilization and 

improved economy. The main motivations behind 

adopting multithreading were resource sharing and 

cost-effectiveness. By having threads share common 

resources while maintaining separate execution paths, 

multithreading offered a more lightweight alternative to 

traditional multi-process concurrency, leading to better 

performance and scalability. In conclusion, the adoption 

of multithreading has significantly contributed to the 

efficiency and performance of modern operating 
systems, allowing for better resource utilization, 

improved concurrency, and scalability. However, it's 

essential to consider the appropriate use of threads 

based on the specific requirements and characteristics 

of the application or system in question. Overall, 

multithreading remains a fundamental concept in 

operating system design and continues to play a crucial 

role in enhancing system performance and 

responsiveness. 

REFERENCES 

Butenhof, D. R. (1997). Programming with POSIX 
Threads. Addison-Wesley. 

Khaleel (2022) 

https://www.pw.live/study/batches/study  

Galvin (2015). Operating System. Willy Publication, 

2015.  

Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). 

Operating System Concepts (10th ed.). Wiley. 

Tanenbaum, A. S., & Bos, H. (2014). Modern 

Operating Systems (4th ed.). Pearson. 

 

 


