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ABSTRACT : Present paper demonstrates on innovative approach for a fundamental problem in computer vision
to map real time a pixel in one image to a pixel on another image of the same scene, which is generally called
image correspondence problem. It is a novel real time image matching method which combines Rotational
Invariant Feature Selection for real time images and optimization capabilities of Hopfield Neural Networks. The
most invariant image matching features are extracted from the reference image. Finally, the image matching
process is optimized by Hopfield neural networks, where image matching problem is treated as minimization of
energy function of the Hopfield neural networks.
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I. INTRODUCTION

The image matching problem, also known as the image
correspondence problem [1], is one of the most exigent tasks
in the computer vision research field. It becomes more
challenging when we perform image matching under varying
conditions for virtually intelligent vision systems including
automated image registration, object recognition and
tracking, content based database retrieval and image based
modeling [2, 3, 4,]. Many problems such as camera
calibration [5], [6], [7], 3-D object reconstruction [8], obstacle
detection [9], [10], motion estimation [11] and object
tracking [12], require solving the correspondence problem
as an initial step for processing the sequence of further
steps. The matching problem can be defined as the
establishment of the correspondence between features
extracted from two or more images of the same scene.
However, the matching problem is a well known ill-posed
problem. The solution of correspondence problem may not
exist if a point in one image does not have a corresponding
match in the other image due to occlusion. The solution of
the problem may not be unique if there may be more than
one match due to scenes with repetitive patterns.

Traditionally, the two types of techniques are used to solve
the problem of image correspondence: area-based and
feature-based techniques. Area-based techniques utilize
correlation between the intensity patterns in the
neighborhood of a pixel in the reference image and those
in the neighborhood of a corresponding pixel at the real-
time image. Feature-based techniques, on the other hand,
using symbolic features derived from intensity images, such
as edge points and edge segments, allow simple

comparisons between the attributes of features. In this way,
the feature based methods are generally faster than area-
based methods.

Feature selection has been widely used to reduce
computation time and improve accuracy. Multi-class SVM
was used in [13] to select the most informative features for
face recognition. The proposed SVM-DFS can speed up
classication without degrading the matching accuracy.
Mahamud and Hebert [14] proposed discriminative object
parts selection and used conditional risks as the distance
measure in nearest neighbor search. Dorko and Schimid [15]
introduced a method for selecting most discriminative object-
part classiers based on likelihood ratio and mutual
information. None of these approaches focuses on rotation
invariance or utilizes the additional information introduced
by specically designed and labeled training views.

Many local feature based image matching systems utilize
orientation alignment for rotation invariance. In orientation
histograms are computed from local circular regions of the
relative scale. However, histogram based methods are
computationally too expensive to be used in real time image
matching systems, because the process generally involves
time-consuming steps such as relative scale searching,
dominant orientation calculation, and pixel values extraction
from irregular regions [3].

To attempt such problem, Lepetit and Fua [2] introduced a
simplified orientation correction technique for real-time image
matching applications. The method only considers intensity
changes along a fixed-size circular region centered on each
key point. It is not, however, robust to scale changes or
out-of-plane rotations.
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To enhance rotation invariance in real-time image matching
systems, we are using an approach combining feature
selection and multiple-view training into one unied
framework. Firstly, we construct a small number of rotation-
dominant views and obtain a set of descriptors for each
view track. Then for those feature points with a high
repeatability, Raw Ranking Scores (RRS) are calculated
based on feature distinctiveness and invariance. Finally, the
raw ranking score is rescaled, weighted and combined with
the other traditional feature selection criterion for the Final
Ranking Score (FRS). Features with high FRS are selected.

None of the feature extraction algorithms available today is
capable of avoiding data loosing, especially under the
influence of distortion factors. Thus the result of image
matching is affected greatly [16]. To conquer the disturbances
mentioned above, this paper demonstrate a novel image
matching method, which combines Rotational Invariant
Feature Selection and the optimization capability of Hopfield
neural networks [17].

II. A REAL TIME FEATURE EXTRACTION
METHOD: ROTATIONAL INVARIANT
FEATURE SELECTION

We can extract invariant features under various rotations
by generating small number of rotational domains synthesized
views with the help of affine transformation [18] for the
purpose of pre-processing.
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The rotational dominant synthesized views cover all the
possible rotations; microscopic changes as well as
macroscopic changes. We can also generate scale-domain
synthesized views for scale invariant feature selection. This
feature selection method can be depicted from the flow
diagram shown below.

Rotational View Domains
The feature selection method can be described as:

Step 1: Construction of set of local patches: Firstly, let us
assume that the numbers of training views Nv and feature
points NF are separately observed in these views. Also
VP (p = 0 – NV), Fq (q = 1 – NF) represent training view
and descriptor ND for those feature points respectively.
Because the affine transformations from V0 (the input image)
to all the synthesized training views are known, we are able
to identify subsets of Fq belonging to the same physical
locations. Such a subset is called a view track of the object,
represented by Sk (k  = 1 – Ns). In general we can write:
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In this way we can describe 32 × 32 local patches around
feature points. Our approach is to treat each patch as a vector
composed of 1024 pixel intensities. Using the Walsh-
Hadamard kernels, these vectors will be projected onto a
space with much lower dimensionality (ND). These W.H.
kernels projection approach are reliable even under very
noisy conditions and fast enough for real-time systems. The
compact feature representations and δi,k values for all the
feature points and view tracks are the outputs of view set
construction.

Step 2: Selection of invariant features: After constructing
the view tracks, our next step is to select view tracks that
are unique, invariant and constant. The stability is measured
by the feature repeat rate across all the training views,
equivalent to the size view tracks. The stability score for

view track k  is defined as : ,1 .k F i kSS i N= Σ ≤ ≤ δ  Feature

points having stability scores lower than the threshold value
(LSS) are eliminated. Features that are not distinguishing from
one view track to another are usually come from repeated
elements of the scene, cause confusion to image matching
system. While training performed for rotational view
domains, features that have a high possibility to come from
boundaries of a region, forming more diverse descriptors
under rotation and potentially compromising the system’s
robustness. Hence, we have to select those feature points
that are unique and invariant, and accordingly to improve
the geometric invariance of the system.

Step 3: Computation of ranking scores for each view track:
The expected value of distance between view track mean
vectors will compute the uniqueness of the features. In
this way, we will measure the variance of each view track
by the expected value of single dimension variances. Thus,
for ranking the features, Mean and variance must be
calculated.
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To measure the uniqueness of one view track Uj, we first
compute the mean vector of all the feature vectors belonging
to Uj′

i.e. Mj =
,
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Let Dj : j′ represent the mean vector distance between view
track Uj and Dj′. The Uniqueness Score for view track Uj
can be demonstrated as:

USj = :
1
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However, computing co-variance matrices for each view
track is time-consuming, we are here simplifying variance
computation by individually observing each dimension of
all feature vectors of one view track, which provides a ND–
dimensional variance vector for each view track i.e.
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where l = 1 – ND is the dimension of vectors.

The variance Score for view track Uj is defined as the
expected value of all VVj ’s components:

VSj = 1 ,
1
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Good features should have high uniqueness value and low
variance. Therefore, the Raw Rank Score (RRS) for view

track Uj is defined as: RRSj = .j

j

DS
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The unified formula for RRS expressed by original feature
descriptors is:
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Finally, RRS is rescaled to the same range as stability score and
combined together through a weight parameter (α = 0 – 1) to
form Final Ranking Score.

FRSj = αRRSrescalled, j + (1 – α) SSj. Here a = 0 is the
traditional criterion when only repeatability is considered
while a = 1 is the extreme case using only RRS.

Step 4: Selection of view track of high ranking score:
Ranking all the view tracks, final step is to select the object
features with scores higher than some threshold value.

III. OPTIMIZING IMAGE MATCHING
PROCESS BY HOPFIELD NEURAL NETWORK

The key idea of image matching by Hopfield neural network
is to seek an appropriate energy function expression for the
problem, so as to make the Hopfield network convergence
state corresponding with an image matching result.

The energy function of Hopfield model for some current
state of the images can be given as

E = – 
1
2 ij i j i i

i j i
W O O O− θ∑∑ ∑ ...(1)

where, = Adjoining weights between ith and jth neuron

Oi & Oj = output states of ith and jth neuron

 θ1 = external inputting threshold acting on ith neuron.

Now if suppose the reference image high RRS feature set
size is P, the real time image High RRS feature set size is
Q, obviously, the latter just corresponds to a subset of the
former, so Q is much greater than P. Then the answer of
Hopfield neural network image matching can be expressed
by an P×Q neuron matrix {O}, where Oi,j ranges in [0,1],
and the neuron state O converges to 1 if the feature from
view track i matches the image feature from view track j
perfectly; otherwise it is equal to or close to 0. To the matrix
{O} mentioned above, due to the uniqueness of image,
number of “1” in each row and each column of  the matrix
should be not more than one.

The Hopfield energy function for matching an image with
its reference image can be derived as
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Where,  α1, α2, α3, α4 and α5 are the weight coefficients.
The first term of the equation is compatibility constraints,
second term is uniqueness constraints, third, and fourth
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and fifth terms are matching constraints. It has already been
proved that the Hopfield neural network with such an
energy function has a poor convergence. Among 100 times’
experiments done by Wilson, only 15 times’ experimental
results are convergence to mean answer within 1000 times’
iterative computation [17].

As seen from the energy equation, the matching process
tries to satisfy the constraints globally in a parallel manner
to find the matching nodes. The local compatibility measures
provide excitory and inhibitory supports for matching local
features which are unique for the images. The dynamics of
the network is characterized as a stochastic process that
will reach a stable state when the energy Eq. (4) is at its
minimum.

IV. CONCLUSION
The paper demonstrates a robust method for real time image
registration using Hopfield Neural Networks. Rotational
invariant features can be scaled and selected from the real
time reference image. This reference image can be matched
with a real time image by converging Hopfield energy
equation.
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