
Dynamic load balancing in distributed and high performance parallel
enterprise computing by embedding MPI and open MP

Sandip S. Chauhan, Sandip B. Shah and H.M. Rai
Deptt. of Computer Science, Gujrat Inst. of Technical Studies, Himat Nagar (GJ)

*Deptt. of Electrical Engg. NCC Israna (HR)

ABSTRACT : Load balancing involves assigning task to each processor to achieve higher performance and,
minimizing the execution time of the application. Although static load balancing can solve many problems for
most regular applications but, the transient external load due to multiple-users on a network of workstations
necessitates a dynamic approach to load balancing. Experiments shows that different schemes are best for different
applications under varying program and system parameters. Therefore, dynamic load balancing schemes become
essential for achieving higher performance. In this study, a cluster-computing environment is employed as a
computational platform. Clusters of SMP (Symmetric Multi-Processors) nodes provide support for a wide range of
parallel programming paradigms. In order to increase the efficiency of the system, a dynamic task scheduling
algorithm is proposed. The technique is dynamic, adaptive and, it uses divide and conquer approach. The algorithm
models the cluster as hyper-grids and then balances the load among them. Recursively, the hyper-grids of k-
dimensions are divided into grids of dimensions k ? 1, until the dimension becomes 1. Then, all the nodes of the
cluster are almost equally loaded. The optimum dimension of the hyper-grid is chosen in order to achieve the
best performance. The simulation result shows the effectiveness of the algorithm.

Keywords : CC - Computational Cluster, MPI -Message Passing Interface, Open Mp - Open Message Passing, PSLB -
Positional Scale Load Balancing, NOW - Network of Workstations. IPC - Inter Process Communication

I. INTRODUCTION
Modern Scientific computing problems in many

domains, e.g., Computational Fluid Dynamics (CFD) , VLSI
simulations, Ocean Modelling and, many high performance
encryption Algorithms involve large amount of data and
are based on the concept of a large-scale spatial grid. A
natural and efficient way to execute these types of
applications is to follow the Single Program Multiple Data
(SPMD) approach, i.e., to distribute the data on the spatial
grid into multiple processors, each of which is assigned
with a partition of the N-Dimensional grid onto multiple
processors, each of which is assigned with partition of grid.
Load balancing is a vital factor in achieving high parallel
efficiency especially on platforms with a large number of
processors. The amount of work assigned to each processor
has to be determined such that turnaround time is
minimized. For a parallel application running on a large
number of processors, the turnaround time is defined as
the maximum of all the times taken by the individual
processors to complete the task. Static load balancing
techniques are frequently employed to distribute the task
on the set of processors to obtain the minimum turnaround
time for the application. Total efficiency of resource
utilization (constantly using 100% of all the processors) is
rarely achieved, however, due to dependencies among the
work units on the various processing nodes. Exogenous
factors could also affect the computation. For instance,
there may be other computations running on the same
system, or there may be non-negligible communication time
between the processing nodes. Even if load-balancing is

used, exogenous factors could render static load-balancing
ineffective. In order to achieve effective adaptability, the
computation ought to employ dynamic load-balancing. That
is, the computation must be able to reconfigure its
processing nodes while it runs.

A. Computational cluster

A computational cluster (CC) can be defined as a set
of independent nodes or computers interconnected by a
high-speed communication network such as Fast or Gigabit
Ethernet [1]. The number of the participating processing
elements or nodes can range from tens to hundreds.
However, to fully and effectively exploit any CC platform,
resource management software must be provided to manage
the complexity of different physical architectures for the
user. This complexity arises in managing communication,
synchronization and scheduling a large number of tasks, in
dealing with portability of libraries facilities used to
parallelize/distribute user applications, processor speed,
available memory, length of the current run queue,
percentage of idle time in the recent past, number of recent
network interrupts, etc,. The scheduling of the submitted
tasks to processing-nodes is a major concern with regard
to performance and effective use of any CC . Although
Graph Partitioning and Heuristic methods provide fast but
often sub-optimal solutions within an acceptable time, where
an optimal solution cannot be obtained within reasonable
time. Shen and Tsai[4] proposed a method where problem
of load balancing by optimal task assignment is viewed as
a graph-matching problem. The task is represented as a

International Journal on Emerging Technologies 1(2): 48-56(2010) ISSN : 0975-8364
et

Chauhan, Shah and Rai 49

vertex and the communication between these modules
represented by edges. The weight associated with the
vertices represents the communication cost between two
adjacent vertices of the task graph. The work done by Shen
and Tsai uses a heuristic approach based in A* Algorithm
[4]. The problem of finding an optimal solution to the
scheduling problem is NP-complete [1, 6, 8] where heuristic
methods appear to be a suitable approach to solve this
class of problems.

B. Contribution and organization

This paper presents a method of dynamic load balancing
with MPI, OPEN MP [7, 9] which combines methodologies,
graph-partitioning and graph-matching, to achieve maximum
parallel efficiency on for computing clusters. A location
based scheme is proposed and evaluated which is based
on previous PSLB algorithm, a pure dynamic load balancing
technique. The experimental result of proposed technique
shows that it is highly parallel and efficient.

II. BASIC CONCEPTS OF LOAD BALANCING
The load balancing strategies are classified on three

parameters addressing initiation (sender or receiver), load
balancer location (centralized or distributed) and decision–
making (local or global). The speed at which a NOW-based
parallel application can be completed depends on the
computation time of the slowest workstation; efficient load
balancing can clearly provide major performance benefits
[8, 10].

A. The major categories for load-balancing algorithms are:

(I) Static load balancing: Static(Compile-time) load
balancing algorithms allocate the tasks of a parallel program
to grid based on either the load at the time nodes are
allocated to some task, or based on an average load of
cluster grid. In static scheduling, information regarding
tasks’ execution times and nodes’ resources is assumed to
be known beforehand.

(II) Dynamic load balancing algorithms: Dynamic load
balancing algorithms makes changes to the work distribution
at run-time among cluster. This technique takes into account
over-loaded and under loaded nodes, with the assumption
that if the load among all nodes is balanced, then the overall
execution time of the application is minimized. It uses current
load information when making load balancing distribution
decisions.

B. Issues to be considered for dynamic load balancing

(I) Load estimation policy: Determines how to estimate
the workload of a particular node of the system.

(II) Process transfer policy: Determines whether to
execute a process locally or remotely.

 (III) State information exchange policy: Determines
how to exchange the system load information among the
nodes.

 (IV) Priority assignment policy: Determines the
priority of execution of local and remote processes at a
particular node.

 (V) Migration limiting policy: Determines the total
number of times a process, can migrate from one node to
another.

C. Load balancing strategies: There are three major load
balancing strategies:

(I) Sender-Initiated vs. Receiver-Initiated Strategies
means-Who makes the load balancing decision.

(II) Global vs. Local Strategies means-What information
is used to make the load balancing decision.

(III) Centralized vs. Distributed Strategies means-
Where the load balancing decision is made.

III. PROBLEM STATEMENT
A. Problem intuition

Developing a solution for Load balancing into a cluster
computing environment which incurred a less overhead
compare to the prior techniques that have been proposed.
The algorithm not only provides a perfect load balanced
system at very reasonable time and, reduces significant
overhead, but also should minimize the cost of Inter-process
communication (IPC) [1, 3, 6, and 15]. The technique
should also be an adaptive based on the current changes
in topology and, offer high degree of parallelism and,
efficient utilization of the system resources in general.

B. Related work

In this section we will look at some of the load
balancing schemes which have been proposed in the
literature. A large number of load balancing and task
assignment techniques have been proposed the classical
example of this is the work done by Shen and Tsai which
uses the well-known A* algorithm to find optimal task
assignment, a Positional Scan Load Balancing algorithm
(PSLB) [11,17] which is originally the parallel version of an
actual A* algorithm, Optimal Load Balancing by Issac [14],
Customized Dynamic Load Balancing for a Network of
Workstations by Mohammed Wei Li, and many more
techniques have been proposed in the literature which
motivates us to work further in this area of dynamic load
balancing. Moreover, different schemes are best for different
applications under varying program and system parameters

50 Chauhan, Shah and Rai

such as the number of processors, data size, iteration cost,
communication cost, etc., therefore, dynamic load balancing
becomes essential for good performance.

C. Dynamic scheduling

Predicting the Future: A common approach taken for
load balancing on a network of workstation is to predict
future performance based on past information. The main
contribution of this paper is the methodology for automatic
generation of network topology with dynamic load
balancing. CHARM implements a local distributed receiver-
initiated scheme. If the work-load falls below a Threshold
[1, 18], the node requests a neighbour with higher work-
load for more work. Much past work has explored the broad
problem of dynamic load balancing. Various studies have
examined synchronization, task migration, and cost for IPC
[19], Processing Power, number of CPU cycles, available
memory and, many other issues. However, the consensus
is that there is no one silver bullet and various techniques
are best implemented on an application-specific basis. To
consider some state-of-the-art techniques, one could apply
optimistic technique to increase parallel performance.

IV. SYSTEM MODEL & HYPER-GRIDS
• A Computational Cluster (CC) is a collection of

independent processing-nodes interconnected by a
network.

• Each node vi is autonomous, has full information
on its own resources, and manages its work load.

• Each node vi has a processing power t i which
represents the number of work units that can be
executed per unit of time.

• The network uses a packet switched protocol and
let w be the size in bits of a packet, which is
constant.

• The network’s flow bij, which is the effective data
rate in bits per second on the link that connect the
nodes vi to vj.

• The tasks are independent and can be executed on
any node regardless its initial placement.

• There are two parameters associated with each task
(t i :1) the number of work units (in terms of
computations) within the task (ßi), and 2) the
number of packets required to transfer the task (µi).

A. Hyper-Grid

Usually, a computational cluster has an irregular
topology. This topology can be described by non-oriented
graph G (V, E) [1, 7], where V represents the cluster nodes
and E the set of links between nodes. The first phase of

this technique is to map the graph G (V, E) into a multi-
dimensional grid, called hyper-grid. The resulting grid is
usually incomplete, in the sense that some of the links
between neighbours and/or nodes are missing. The missing
links and nodes are called virtual links and virtual nodes
respectively. The second phase is to recursively dividing
the original hyper-grid into hyper-grids of smaller
dimensions. The idea is to balance the load among the
hyper-grids dimensions starting from 1-dimension. An
n-dimensional grid (Gn) can be defined as a set of n”
1-dimensional parallel hyper-grids as follows:

Gi = (Gi – 1, Gi – 2, Gi – 3..., Gi – pi) i = n ...(1)

The hyper-grids of dimension 1 represent the nodes
along one dimension (e.g. nodes connected by bus) and
from the equation 1 one can deduce that the number of
nodes of Gn is N = i – 1 Πn – 1pi therefore, we can define
a hyper-grid recursively as follows :

Definition : An n-dimensional hyper-grid is a set of
parallel (n – 1)-dimensional hyper-grids. Zero-dimensional
hyper-grids are the nodes of the system which are
connected by links with the following properties:

• Links are either pair-wise vertical or parallel (links
which lie on the same line or are parallel lines), and

• The length of links that connect direct neighbour
nodes is the unity and it is constant.

Any node of the system can be represented as Vi1, i2,
..., in, for clarity reason, let denote by I the vector [I1,
I2,, In]. The dynamic task scheduling technique
introduced in this paper has a phase that computes a one
dimensional vector of loads of task hyper-grids. These loads
are then balanced across the linear array of processor hyper-
grids. Definition 4.2 A hyper-grid load Wx is the number of
active tasks stored in nodes that are within hyper-grid of
dimension x, called x-hyper grid. This value is calculated
by each processing-node for each hyper-grid that intersects
it.

B. Task Scheduling and allocation

Positional Scan Load Balancing algorithm (PSLB) [11],
leads to a perfect load balanced system at a very reasonable
time. Algorithm preserves the locality decomposition and it
is based on the parallel prefix operation, or scan [4], which
can be defined as follows:

Definition : The prefix sum operation (+, A) takes the
binary associative operator +, and an ordered set of n
elements A = {a0, a1, . . . , an–1}, returns the ordered set

{0, a0, (a0 + a1), (a0 + a1 + a2), ..., (a0 + a1 ... + an – 2)}

C. PSLB algorithm

The basic PSLB algorithm applies to 1-dimensional data
grids. PSLB algorithm is a very powerful dynamic load

Chauhan, Shah and Rai 51

balancing algorithm, operating at the fine grain level. The
generalization of the algorithm to n-dimensional data-grids
is also introduced in [11]. A brief description of the PSLB
algorithm for grids of one dimension (line or bus) of system
networks is given in algorithm 1.

(a) PSTS Algorithm

In order to schedule more general applications (tasks)
executing on irregular network topologies, we propose a
technique based on PSLB, called the Positional Scan Task
Scheduling (PSTS). PSTS [1] approaches the task scheduling
by applying the same technique as PSLB. PSTS uses the
additive scan operation in order to find out the destination
node for each work unit within each task. Firstly the
algorithm indexes the work units (not the tasks), then uses
the scan operator to collect information about the load in
the system and processing powers, and finally for each
node calculates locally the destination of each work unit.
The key issue here is that, instead of considering a work
unit as a basic processing unit, a task, consisting of many
work units, is considered as a basic element. In other words,
a task is a non-divisible load however, the algorithm uses
the work units to decide whether a task has to be migrated
or not.

START

Index the work units

Use SCAN operator to collect information

Broadcast the collected information

Calculate locally the destination of each work

Perform the migrations of
the work units

END

Algorithm 1 PSLB Algorithm -

Let T = {t1, t2, ..., tm}, represents the set of active
tasks in the system, which consists of nodes {v1, v2, ...,
vn}. The total load in the system is

W =
0

m

i

i
=

β∑ ...(2)

As the system is heterogeneous, each node vi has
different processing power, ƒÑi, and is given as the number

of work units can be executed per unit of time. So, the
total processing power of the system is

π =
0

m

i

i
=

τ∑ ...(3)

In the algorithm, we utilize the normalized quantities.

Let π = 0
m
i=Σ τi the total processing power of the system,

the normalized processing of a node vi, ?i = t i/Π. Therefore
in a perfect load balanced system, the load of each node,
according to the equations 2, and 3 is given by

Wi = W *
i

Vi
τ

Π = Wγi ...(4)

The goal of the PSTS algorithm is to move each task
ti, from its current location vi, to a node vj, vj = F(ti), so
that the whole system is well balanced, and therefore the
response time of different active tasks in the system is
minimized R(ti, vi → vj).

PSTS algorithm, firstly calculates the exclusive additive
scan of the work units of all tasks on the hyper-grids G1 of
dimension equal to 1.

S1r = (+ L1r), r 1, 2,..., p1 ...(5)

Where L1r, is a vector of elements representing the
number of work units of a node belonging to the hyper-
grid G1 x. Thus, (+, L1r) is performed concurrently for all
the hypergrids of a dimension equal to one. In the same
way, this operation is performed concurrently on hyper-
grids of the same dimension,

Spr = (+, Lpr), r = 1, 2,, pp ...(6)

The resulting vector Sp* . Represent the exclusive
additive scans for all hyper-grids of the same dimension p.
The total work load W in the system is calculated by the
operation (+, Snr) on the n-dimensional hyper-grid. The scan
operation is also used for determining the relative
processing powers of the hyper-grids of different
dimensions:

λpr = (+, λpr), r = 1, 2,, pp ...(7)

This implies that each hyper-grid knows the normalized
processing power of its hyper-nodes. The next step is to
calculate the destination of each task within the hyper-
grids of the same dimension. Each task ti, according to its
initial placement, is assigned to a node vi, vi = Finit(ti), and
let F(ti) = vJ. Then, the problem consists of calculating the
index of the destination node vJ, J = [j1, j2, ..., jn].

The calculations start from the highest dimension n
and continues until the dimension is 1. In order to balance
the load in the system, algorithm calculates the least index
λn <= i/W. This means that the algorithm works according

52 Chauhan, Shah and Rai

to the relative power of each hyper-grid and the sum of
the work load of the entire system. After these scans each
1- dimensional hyper-grid knows whether is a “receiver”
or a “sender”. A receiver (resp. sender) means that a hyper-
grid is under-loaded (resp. over-loaded). If, for instance, a
1-dimensional hyper-grid has to receive additional tasks then
its own work consists of balancing its own workload
according to the PSLB algorithm and just wait to receive
more tasks which will go to the appropriate nodes. On the
other hand, if it is over-loaded, then it uses the PSLB
algorithm to balance its own workload (only for the tasks
that have to remain in the hyper-grid), knowing that the
hyper-grids of higher dimensions will balance the tasks
among their elements, and therefore will migrate the extra
tasks to their appropriate hyper-grids of lower dimension.
This procedure guarantees that after its completion the
entire system will be as close as possible to the perfect
load balanced state. The description of the PSTS algorithm
is given in algorithm 2.

Algorithm 2 Positional Scan Task Scheduling Algorithm

1. repeat

2. r = 1

3. for all r-dimensional hyper-grids in parallel do

4. Srq ← (+, Lrq), q = 1, 2, ..., pr

5. ?rq ← (+, tpr), q = 1, 2, ..., pr

6. end for

7. Wr ← Sr + ni1, p1–1, i3 ……….., ir. (n–1 times)

8. ? r ← ?r + ti1, p1 “1 , i3, ..., ir. (n–1 times)

9. r = r + 1

10. until (r = n – 1)

11. W ← i=1Σ n–1 Wi + np2, p1 – 1, p3, ..., pn(n–1 times)

12. ?r ← i=1 Σn”1 ? i + t p2, p1 – 1, p3, ..., pn (n–1times)

13. for all 1-dimensional grids in parallel do

14. Calculate, using the PSLB algorithm, if the
1-dimensional grid is a sender or a receiver

15. if any 1-dimensional grid has to migrate tasks then

16. Apply the PSLB algorithm for the destination
1-dimensional grid, and

17. Migrate the tasks to the appropriate nodes.

18. else

19. Apply the PSLB algorithm for its own workload

20. end if

21. end for

22. End.

D. PSTS Performance model

Let d denote the dimensionality of the grid. If d = 1
(bus topology) the number of communication steps needed
is comm S 1 = 2(n – 1), where n is the number of the
participating nodes, (see Figure 1). The number of
computation steps is comp S1 = 2(n – 1).

n321

1 2 n-1

n-3n-2n-1 1

Fig. 1. d = 1 Comm. And Comp. Steps.

Let p and q be the costs in t ime units of a
communication and a computation step respectively, then
the total cost of the algorithm can be expressed as follows :

S1n = S1comm + S1comp

 = 2(n – 1)p + 2(n – 1)q

 = 2(n – 1) (p + q) ...(8)

For d = 2, the network topology is a grid consisting of
n1lines and n2 columns where n = n1 . n2 (see Figure 2).

n321

1 2 n-1

n-3n-2n-1 1

n321

1 2 n-1

n-3n-2n-1 1

n321

1 2 n-1

n-3n-2n-1 1

n – 1 ... 12

2 ... n – 22

1 ... n – 12

n – 11

n–11
3

Fig. 2. d = 2 Comm. and Comp. Steps

The number of communication and computation steps
needed for each line (of n1 nodes) is given by the equation
8. 2(n1 – 1)p + 2(n1 – 1)q. This corresponds to balancing
the load along each line of the grid (or hyper-grid of one
dimension). Balancing the load along the columns can be
done by performing the algorithm on hyper-grid of
dimension 2 (by considering each line as a hyper-node of
that hyper-grid). Therefore, the total cost for a 2-D grid is:

S2 = S2 comm + S2 comp

 = 2(n1 – 1)p + 2(n1 – 1)q + 2(n2 – 1)p + 2(n2 – 1)q
...(9)

Finally, for d = 3 (figure 4.3), the total cost of
computation and communication steps needed is:

Chauhan, Shah and Rai 53

n321

1 2

n-3n-2n-1 1

n321

1 2

n-3n-2n-1 1

n321

1 2

n-3n-2n-1 1

n–1...12

2...n – 22

1...n – 12

n–11

n–113

3

3

n–11

n–11

n321

1 2

n-3n-2n-1 1

n321

1 2

n-3n-1 1

n321

1

n-3n-2n-1 1

n–1...12

2...n –22

1...n–12

n–11

n – 113

3

3

n – 11

n – 11

Fig. 3. d = 3, comm.. and comp. steps

 S3= S3 comm + S3 comp
= 2(n1 – 1)p + 2(n1 – 1)q + 2(n2 – 1)
 + 2(n2 – 1)q + 2(n3 – 1)p + 2(– 1)q ...(10)

or
 S3= S3 comm + S3 comp

= 2 (n1 + n2 + n3 – 3) (p + q)
and consequently for d = k
 Sk = Sk comm + Sk comp

 = 2(n1 + n2 + ... + nk – k) (p + q)
E. Embedding Irregular Network into N-Dimensional Grid

There are many ways of embedding an irregular network
topology G(V, E) into an n-D grid. The resulting grid is
called incomplete and contains two types of nodes and
links. Nodes (resp. links) which are mapped onto V(resp. E)
elements are called active nodes (resp. links). The nodes
(resp. links) which are not assigned to any element of V
(resp. E) are called virtual nodes (resp. virtual links). In
order to ensure that the algorithm described above works
on an incomplete grid, the virtual nodes are considered as
active node with zero processing power. In the same way
we can consider the virtual links as active links with zero
bandwidth. In order to minimize the cost of the PSTS
algorithm on an incomplete grid, one need to minimize the
number of virtual nodes or the dimension of the
corresponding gird. Proposition 4.1. Consider a network G(V,
E) consisting of n nodes. The best performance of PSTS is
achieved when G(V, E) is mapped onto a [log2(n)]-D grid
[proof [3]].

V. EXPERIMENTAL RESULTS AND
DESCUSSION
The algorithm that’s proposed and discussed in

previous chapter is implemented on cluster environment
which is actually a modification of original Positional Scan
Task Scheduling (PSTS) Algorithm which uses Divide and

Conquer approach for load balancing. Generally the problem
of load balancing is NP-Complete problem. This technique
first recursively partitions and N - Dimensional grid into a
1-Dimentional grid then applies SCAN - Operator [10,20]
to which keeps tracks of current load information of grid
and transfers this information to the broadcaster which is
responsible for the load balancing in a grid of cluster. The
broadcaster also computes locally the transfer of the load
of grid to another grid based on the Threshold values if
load exceeds the Threshold [1] then that node becomes
heavily loaded and requires to be off-load and if the node
has a work load below threshold value then that node
becomes lightly loaded node and this information is noted
by the broadcaster using the SCAN operator and the
broadcaster will transfer the load to this lightly loaded
nodes. The technique is Adaptive, fully dynamic and non-
per-emptive which incurred a small amount of overhead to
achieve fully dynamic load balanced cluster.

A. Results

To test the methodology, experiments are implemented
in Sequential and parallel with the use of P-THREAD, MPI
and Open MP on cluster of grid. In the following text,
description of test cases is given, and then based on data
from the given test case follows the result test, which
include comparison between sequential and parallel with the
use of Positional Scan Load Balancing (PSLB) algorithm
in cluster of two-way grids and also the experiments
analyzed with V-Tune Performance Analyzer by Intel(R).

(a) Test case
A 2 node SMP cluster is used for testing. Every node

is equipped with Intel(R) Core(TM) 2 Duo Processor clocked
at 1.83 GHz. Each node has 1 GB memory resulting in a
total of 2 GB RAM for whole cluster. Both nodes are
connected using shared memory and a high speed switch
in (LAN).

(b) Tests with sequential technique
The algorithm which is proposed is implemented on a

single machine with the Dual Core machine with the number
of work unit as shown in Table 1 and, the estimated program
execution time is also listed out for both Sequential and
parallel execution using P-Threads.

Fig. 4. Performance Graph for Sequential and P-Thread
implementation

54 Chauhan, Shah and Rai

Table 1. Execution time in number of seconds for both
sequential and parallel using (P-Thread) implementation.

Execution Time
Sr. No. Number of (seconds)

work Units
Sequential P-Thread

1 100,000 1.202 2.407

2 200,000 2.405 2.945

3 300,000 4.228 4.982

4 400,000 6.230 5.550

5 500,000 8.235 7.125

6 600,000 8.923 8.146

7 700,000 10.265 19.988

8 800,000 12.298 23.571

9 900,000 14.263 24.615

10 10,00,000 15.938 25.710

C. Tests with proposed algorithm and MPI and Open
 MP

Now, it is attempted to use of graph matching to obtain
load balancing across a cluster comprising of a two-way
SMPs. This amounts to re-assigning of tasks to each node
in such a manner that the sum of the computation and
communication time for all processor in the node remains
same. First, proposed algorithm is applied with P-THREAD.
Two threads are created and task modules are assigned
to each thread, than both threads are executed parallel
to get optimal execution time, which are presented in
Table – 2. Finally, the same the technique is used with MPI
and Open MP to parallelize dynamically with 2 processors
for achieving a load balancing and higher performance
[9, 28].

Performance Graph For MPI vs. Open MP
1.5

1

0.5

0

MPI

Open
MP

1 2 3 4 5 6 7 8 9 10

Number of Work Units = Value X 105

P
er

fo
rm

an
ce

 (
E

xe
cu

tio
n

Ti
m

e/
N

o.
 o

d
jo

bs
)

Fig. 5. Performance Graph For MPI and OpenMP
implementation

Table 2. Execution time in MPI and Open MP

Sr. No. Number of Execution Time (seconds)
work Units

MPI Open MP

1 100,000 1.331 1.338

2 200,000 2.564 2.432

3 300,000 3.816 3.003

4 400,000 5.0426 4.925

5 500,000 6.342 5.553

6 600,000 7.616 6.451

7 700,000 8.943 6.495

8 800,000 10.383 7.541

9 900,000 11.619 8.596

10 10,00,000 13.057 10.121

Open MP

MPI

P-Thread

Sequential

10987654321

Number of Work Units = Value X 10
5

0

1

1.5

0.5

P
er

fo
rm

an
ce

 (
E

xe
cu

tio
n

T
im

e/
N

o.
 o

d
jo

bs
)

Fig. 6. Combined Performance Graph For Sequential and
P-Thread MPI AND OpenMP implementation

Table 3. Execution time in Sequential, P-Therad, MPI
and Open MP

Sr. No. Number of Execution Time (seconds)
work Units

Sequ. P-Thread MPI OpenMP

1 100,000 1.202 2.407 1.331 1.338

2 200,000 2.405 2.945 2.564 2.432

3 300,000 4.228 4.982 3.816 3.003

4 400,000 6.230 5.550 5.0426 4.925

5 500,000 8.235 7.125 6.342 5.553

6 600,000 8.923 8.146 7.616 6.451

7 700,000 10.265 19.988 8.943 6.495

8 800,000 12.298 23.571 10.383 7.541

9 900,000 14.263 24.615 11.619 8.596

10 10,00,000 15.938 25.710 13.057 10.121

A Speed – up factor denoted by µ is introduced to
quantify the result. The optimality index is defined as :

Speed – up =
ExecutionTime(Sequential)

ExecutionTime(Parallel)
...(5.1)

Chauhan, Shah and Rai 55

B. Analysis using Intel(R) V-Tune Performance Analyzer

Finally, the parallel implementation is tested with Intel(R)

V-Tune performance Analyzer which provides the
information about behavior of different function used. This
information is used to find the maximum Speed-Up that can
be achieved using proposed algorithm and using parallel
implementation.

Performance gain is: As the Fig 4 shows that the
only 23.88% of process running sequentially so Scalar
fraction a can be calculated as follows:

α = 23.88/100 = 0.2388

α = 0.2388

Now, According to Amdahl’s Law, Speed-up can be
calculated using following equation:

Speed – up =
1

1
p

− α
α

...(5.2)

Where a = 0.2388 and p = No. of Nodes in SMP = 2,
so Speed-up

Speed – up =
1

1 0.2388
0.2388

2
− ...(5.3)

Speed – up = 1.6144.

C. Discussion

The result presented in Table-1 is based on single
processor and in Table-2 is based on a two-way SMP node.
In the result, the advantage of the POSITIONAL SCAN
TASK SCHEDULING (PSTS) Algorithm methodology is
clearly evident. The program calculates the actual time using
timeval, timezone structure and using gettimeofday() function
built in UNIX <time.h> library header file, this represents
the actual time taken from launch of the parallel job to its
completion. The parallel tasks are programmed using
P-thread, MPI and, Open MPI (Open Message Passing
Interface) and the utility mpirun –np # Output_ filename
[10] was used to launch the jobs. np parameter indicates
the number of processes. # sign indicates the number of
nodes on which the job will executes. Here we can also
provide a file name named as .Profile which contains all the
information about nodes and there port addresses if more
number of nodes are participating in task execution. Finally
the file name to be executed on different node. Though the
size of the state-space reduces drastically because of
parallel implementations, the overheads incurred in
communication over the network and mpirun to launch and
terminate processes actually increase the turnaround time.
This implies that the methodology shall be effective for
cases with large number of task modules where the speed-
up due to reduction is state-space size makes up for these
overheads.

VI. CONCLUSION
In this project, the load balancing and, parallel task

assignment policies for cluster computing environment and
distributed network are discussed. Also, some existing load
balancing techniques and their drawbacks and possible
kinds of solutions are discussed. A perfect and low-Inter
Process Communication(IPC) cost based load balancing
technique which is based on Positional Scan Load
Balancing (PSLB) and its modification Positional Scan Task
Scheduling (PSTS) is implemented, which makes use Divide
and conquer approach to partition the N-Dimensional grid
recursively in 1-Dimentional grid and then applies SCAN
operator to collect recent network load information. The
performance evaluation shows that proposed scheme offers
high performance and low communication overhead which
increase throughput and significantly improves system
response time. Till now many techniques and solutions
have been proposed and they works correctly with the
selection of suitable parameters on specific application. To
enhance the performance of the parallel and distributed
system load balancing is vital parameter. To ensure the
reliability and fault-tolerance to further improvement of
system performance proposed technique can be implemented
by introducing some fault tolerant mechanism with that.

The technique which is proposed is fully dynamic and
adaptive according to the changes into the topology of
network. This solution achieves high performance by
providing perfect load balancing. As the fault-tolerance and
reliability is also an important factor in order to improve
the overall system performance. This can be enhanced by
introducing a feature of fault tolerance in the technique
which we shown above.

REFERENCES
[1] Ilias K. Savvas and M-Tahar Kechadi, “Dynamic Task

Scheduling in Computing Cluster Environments”, IEEE
Proceedings of the ISPDC/HeteroPar’ 04.

[2] Virginia Mary Lo. “Heuristic Algorithms for Task
Assignment in Distributed Systems” IEEE Transaction on
Advanced in Parallel and Distributed computing Proceeding,
37(11): November, (1988).

[3] Shen and Tsai. “A Graph Matching Approach to Optimal
Task Assignment in Distributed Computing Systems Using
a Minimax Criterion”, IEEE Transaction on Advanced in
Parallel and Distributed computing Proceeding, C-34(3):
March, (1985).

[4] Isfaq Ahmad and Muhammad Kafil, “A Parallel Algorithm
for Optimal Task Asignment in Distributed System” IEEE
Transaction on Advanced in Parallel and Distributed
computing Proceeding, March, (1997).

[5] Babak Taati & Michael Greenspan .”A Dynamic Load-
Balancing Parallel Search for Enumerative Robot Path
Planning”, Springer journal for Distributed and Parallel
computing September, (2006).

56 Chauhan, Shah and Rai

[6] F.M. Lopes. “Improving Load Balancing in a Parallel Cluster
Environment Using Mobile Agents” Springer HPNC, (2001).

[7] Gabriele and Jin. “Comparing the OpenMP, MPI, and Hybrid
Programming Paradigms on an SMP Cluster” NAS Technical
Report NAS-03-019, November, (2003).

[8] Sandeep Singh. “Classification of dynamic load balancing
strategies in a Network of Workstations”, Department of
computer science, Khalsa College, Amritsar (INDIA).

[9] Chao Huang. “Adaptive MPI”, Springer-Verlag Berlin
Heidelberg, (2004).

[10] Isaac Keslassy, Cheng-Shang Chang, Nick McKeown3, Duan-
Shin Lee2, “Optimal Load Balancing” Ieee transaction fo
parallel computers, (2005).

[11] Mark Baker. Cluster computing white . Technical report,
University of Portsmouth, UK, December (2000).

[12] J. Basney et al. Utilizing widely distributed computational
resources efficiently with execution domains. J. of Computer
Physics Comm., 140: 246–252, (2001).

[13] Beowulf. http://www.beowulf.org.

[14] Guy E. Blelloch. Prefix sums and their applications.

Technical report, School of Computer Science, Carnegie
Mellon University, USA, (1990).

[15] T.L. Casavant and J.G. Kuhl. A taxonomy os scheduling in
general-purpose distributed computing systems. IEEE Trans.
Soft. Eng., 14(2): 141–154, (1988).

[16] S. K. Das, D. J. Harvey, and R. Biswas. Parallel processing
of adaptive meshes with load balancing. IEEE Trans. On
Parallel And Distributed Systems, 12(12): 1269–1280,
December (2001).

[17] M.K. Dhodhi et al. An integrated technique for task
matching and scheduling onto distributed heterogeneous
computing systems. J. of Parallel and Distributed
Computing, 62: 1338–1361, (2002).

[18] M. Maheswaran et al. Dynamic map of a class of
independent tasks onto heterogeneous computing systems.
Journal of Parallel and Distributed Computing, 59: 107–
131, (1999).

[19] http://www.intel.com/design/nettwork/products/ernet/.

[20] Michael J. Fischer and Michael Merritt. Appraising two
decades of distributed computing theory research. Journal
of Distributed Computing, 16: 239–247, (2003).

