
A new approach of bully election algorithm for distributed computing

Pawan Kumar Thakur, Ram Kumar, Roohi Ali and Rajendra Kumar Malviya
Department of M.C.A., Govt. Geetanjali Girls. P.G. College, Bhopal (M.P.) INDIA

ABSTRACT : Many distributed algorithms require one process to act as a unique process to play a particular
role in distributed systems. Election algorithms are meant for electing such a process called coordinator from
among the currently running processes of distributed systems in such a manner that at any instance of time
there will be a single coordinator for all the processes in the system. So, election algorithms are extremely
crucial in any distributed system. Bully algorithm is one of the classical approaches for electing the coordinator
in distributed systems. In this paper, we have presented an efficient version of bully algorithm to minimize the
redundancy in electing the coordinator, to reduce the recovery problem of a crashed process in distributed
systems and thus to maximize the effectiveness of traditional bully algorithm.

Keywords : Bully Algorithm, Election, Coordinator, Process Number, Turnaround Time, Election Message, Ok Message,
Coordinator Message, Query Message, Answer Message.

I. INTRODUCTION
Several distributed algorithms require that there be a unique
coordinator process in the entire system that performs some
type of coordination activity needed for the smooth running
of other processes in the system. In general, it does not
matter which process takes on this special responsibility,
but one of them has to do it. If all the processes are exactly
the same, with no distinguishing characteristics, there is
no way to select one of them to be special [1]. Coordinator
is one of the processes with a distinguishable process
number. So, electing coordinator plays a vital role in
distributed systems.

II. ELECTION ALGORITHM
An algorithm for choosing a coordinator to play a

distinct role is called an election algorithm. For example, in
a variant of ‘central-server’ algorithm for mutual exclusion,
the ‘server’ is chosen from among the processes pi, i = 1,
2..., N that need to use the critical section. An election
algorithm is needed to choose which of the processes will
play the role of server. Since all other processes in the
system have to interact with the coordinator, it is essential
that they all must unanimously agree on who the
coordinator is. If the coordinator process wishes to retire
or fails due to the failure of the site on which it is located,
then another election is required to choose a replacement
and a new process must be elected as coordinator to take
up the job of the failed coordinator [3].

We say that a process calls the election if it takes an
action that initiates a particular run of the election algorithm.
An individual process does not call more than one election
at a time, but in principle the N processes could call N
concurrent elections. At any point in time, a process pi, is
either a participant meaning that it is engaged in some run
of the election algorithm — or a non-participant — meaning
that it is not currently engaged in any election [3].

An important requirement is for the choice of elected
process to be unique, even if several processes call
elections concurrently. For example, two decide
independently that a coordinator process has failed, and
both call elections [3].

Without loss of generality, we require that the elected
process be chosen with the largest process number. The
‘process number’ may be any useful value, process
numbers are unique and totally ordered.

III. BULLY ALGORITHM
The bully algorithm [Garcia-Molina 1982] allows

processes to crash during an election, although it assumes
that message delivery between processes is reliable.

Algorithm: This algorithm is based on the following
assumptions:

(a) The system is synchronous: it uses timeouts to
detect a process failure [3].

(b) Each process in the system has a unique process
number [1].

(c) Every process knows the process number of
every other process and which processes have
higher numbers and communicate with all such
processes [3]. What the processes do not know is
which ones are currently up and which ones are
down currently.

(d) Whenever an election is held, the process having
the highest process number among the currently
processes alive is elected as the coordinator [2].

(e) On recovery, a failed process can take some actions
to rejoin the set of active processes [2].

(f) There are three types of message in this algorithm.
An election message is sent to announce an
election; an answer message is sent in response to
an election message; and a coordinator message is

International Journal on Emerging Technologies 1(2): 10-14(2010) ISSN : 0975-8364
et

Thakur, Kumar, Ali and Malviya 11

sent to announce the number of the elected process – the
new ‘coordinator’. A process begins an election
when it notices, through timeouts, that the
coordinator has failed. Several processes may
discover this concurrently [3].

Operation: The operation of this algorithm is shown
in Fig. 1.

Fig. 1(a)

Fig. 1(b)

Fig. 1(c)

Fig. 1(d)

Fig. 1(e)

Election message

Ok message

Coordinator message

Fig. 1 : The bully election algorithm

Here, the system consists of six processes, numbered
1 to 6. Suppose all of the six processes are alive except
process 1. Now process 6 is the coordinator, but it has just
crashed. Process 2 is the first one to notice this, so it
sends election messages to all the processes higher than
it, namely processes 3, 4, 5 and 6, as shown in Fig. 1(a).
Processes 3, 4 and 5 all response with ok message, as
shown in Fig. 1(b). Upon getting the first of these
responses, process 2 knows that its job is over. It just sits
back and waits to see who the coordinator will be. In Fig.
1(c), processes 3, 4 and 5 hold elections, each one only
sending message to those processes higher than itself. In
Fig. 1(d), process 4 sends ok message to process 3 and
similarly process 5 sends ok message to process 3 and
process 4. Process 5 will not receive any ok message from
any other processes. Thus process 5 will be the new
coordinator and sends coordinator messages to all

12 Thakur, Kumar, Ali and Malviya

processes as shown in Fig. 1(e). Suppose now process 5 is
crashed.

Process 2 has noticed this and initiated the election.
Thus process 4 will be the new coordinator in a similar
way as depicted in Fig. 1. At this moment of time, process
1 recovers from failure and initiates an election by sending
messages to all other processes. Thus process 4 will be
elected as coordinator again. Now process 6 recovers from
failure and will send coordinator messages to all processes
and will bully them into submission. So process 6 is the
new coordinator. After this, if process 5 recovers from
failure, it will also send coordinator messages to all
processes and will bully them into submission.

Advantages: This algorithm has following advantages:

(a) This algorithm clearly meets the live ness condition
E2, by the assumption of message delivery. And if
no process is replaced, then the algorithm meets
condition E1.

(b) It is impossible for two processes to decide that
they are the coordinator, since the process with the
lower number will discover that the other exists and
defer to it.

Limitations: The bully algorithm suffers from the
following shortcomings:

 (a) This algorithm is not guaranteed to meet the safety
condition El if processes that have crashed are
replaced by processes with the same number. A
process that replaces a crashed process p may
decide that it has the highest number just as another
process (which has detected p’s crash) has decided
that it has the highest number. Two processes will
announce themselves as the coordinator
concurrently. Unfortunately, there are no guarantees
on message delivery order, and the recipients of
these messages may reach different conclusions on
which is the coordinator process [3].

(b) Condition El may be broken if the assumed timeout
values turn out to be accurate — that is, if the
processes’ failure detector is unreliable [3].

(c) Taking the example just given, suppose that process
5 either had not failed bit running unusually slowly
(that is, the assumption that the system is
synchronous incorrect) or that process5 had failed
but is then replaced. Just as process 4 sends its
coordinator message, process 5 (or its replacement)
does the same. Process 4 receives process 5‘s
coordinator message after it sent its own and so
sets elected4 = process 5. Due to variable message
transmission delays, process 3 receives process 4’s
coordinator message after process 5’s and so
eventually elected3 = process 4. Condition El has
been broken.

(d) From the above example, we can find out some other
drawbacks:

o When process 5 recovers from failure, it
becomes new coordinator whereas process 6
with the highest process number is still alive.
This is a violation of the assumption.

o At the time, when process 4 is coordinator,
process 1 recovers from failure and it initiates
an election. Then process 4 becomes coordinator
again. This election is redundant.

o When process 2 notices the failure of the
coordinator process 6, it sends election
messages to processes 3, 4, 5 and 6. In reply of
the election messages, it gets ok messages from
processes alive among processes 3, 4, 5 and 6.
Process 2 can elect the coordinator itself instead
of holding elections by processes 3, 4 and 5.
These elections are also redundant.

IV. PROPOSED BULLY ALGORITHM NEW
 APPROACH

In this section, we have presented a modified version
of existing bully algorithm.

Algorithm: Our algorithm is based on the assumptions
of the existing bully algorithm.

(a) There are five types of message in this algorithm.
An election message is sent to announce an
election; an ok message is sent in response to an
election message on recovery, a process sends a
query message to the processes with process
number higher than it to know who the new
coordinator is; a process gets an answer message
from any process numbered higher than it in
response to a query message; and a coordinator
message is sent to announce the number of the
elected process – the new ‘coordinator’.

(b) Since the system is assumed to be synchronous,
we will construct a reliable failure detector and
calculate a time T as upper bound on the total
elapsed time from sending a message to another
process to receiving a response as described in [3].

(c) When a process notices that the coordinator is
no longer responding, it initiates an election. A
process P, holds an election as follows:

o P sends an election message to all processes
with higher numbers.

o If no one response, P wins the election and
becomes the coordinator.

o If process P gets responses (ok message along
with process number of the responder) from the

Thakur, Kumar, Ali and Malviya 13

processes containing higher process number
than that of process P, it selects the process
with the highest process number as new
coordinator and sends coordination messages
to all other processes.

 At any moment, a process can get election message
from one of its lowered numbered colleagues. When such
a message arrives, the receiver sends an ok message along
with process number of itself back to the sender to indicate
that it is alive and is a potential candidate for the
coordinator.

 If a process that was previously down comes back
up, it sends a query message to the processes with process
number higher than it to know who the new coordinator is.
If it gets any answer message from any processes numbered
higher than it, it knows the new coordinator. If it gets no
answer message from any processes numbered higher than
it within time T, it knows there is no other higher numbered
process alive. The process then sends coordination message
to all processes with lower numbers and becomes the new
coordinator.

Operation: The operation of this algorithm is shown
in Fig. 2 :

Fig. 2(a)

3

4

5

1

6

2

Fig. 2(b)

Fig. 2(c)

Fig. 2(d)

Fig. 2(e)

14 Thakur, Kumar, Ali and Malviya

Fig. 2(f)

Election message

Ok message

Coordinator message

query message

answer message

Fig. 2 : The modified bully algorithm

Here also, the system consists of six processes,
numbered 1 to 6. Now process 6 is the coordinator, but it
has just crashed. Process 2 is the first one to notice this,
so it sends election messages to all the processes higher
than it, namely processes 3, 4, 5 and 6, as shown in Fig.
2(a). Processes 3, 4 and 5 all response with ok message, as
shown in Fig. 2(b). Process 2 now knows who the alive
process with highest process number is. So it elects process
5 as the new coordinator and sends coordinator messages
to all other processes, as shown in Fig. 2(c). The election
is finished at this point. Every process knows process 5 as
the new coordinator. Now process 4 has just crashed and
process 6 has recovered from failure. As process 6 knows
that it is the process with highest process number, it just
sends coordinator message to all processes as shown in
Fig. 2(d) and becomes the new coordinator. Suppose
process 4 has recovered from failure and sends query
messages to process 5 and process 6 instead of holding
an election, as shown in Fig. 2(e). In Fig. 2(f), process 4

gets answer message from process 5 and process 6 in
response of its query message and process 4 comes to
know process 6 as the new coordinator.

V. CONCLUSION
We measure the performance of an election algorithm

by its total bandwidth utilization and by the turnaround
time for the algorithm: the number of serialized message
transmission times between the initiation and termination
of a single run [3]. From this context, our modified bully
algorithm as compared the existing one is efficient and
easier to implement in all cases. But still there is a future
scope to improve this algorithm so that it can be guaranteed
to meet the safety condition E1 with out any compromise
with the efficiency of electing the coordinator in distributed
system.

VI. ACKNOWLEDGEMENT
The authors wish to acknowledge, HOD Dr. Sanjay

Bhatt, Department of MCA for providing the distributed
computing facilities.

REFERENCES
[1] Tanenbaum, A. S., Distributed Operating Systems, Pearson

Education (Singapore) Pte. Ltd., 140– 142 (2002).

[2] Sinha, P. K., Distributed Operating Systems Concepts
and Design, Prentice Hall of India Private Limited, 332–
334 (March 2002).

[3] Coulouris, G., Dollimore, J., Kindberg, T., Distributed
Systems Concepts and Design, Pearson Education, 431–
436 (2003).

[4] Tanenbaum, A. S., Steen, M. V., Distributed Systems
Principles and Paradigms, Prentice-Hall of India Private
Limited, 262–263 (July 2003).

[5] Garg, V. K., Principles of Distributed System, Kluwer
Academic, Norwell, MA (1996).

[6] Garcia-Molina, H., “Elections in a Distributed Computing
Systems”, IEEE Transactions on Computers, C–13(1):

48 – 59 (1982)

