
Face Recognition Using Support Vector Machines
Soheb Munir*, Vikas Gupta*, Sandeep Nemade* and M. Zahid Alam**

Department  of Electronics and Communication,
*Technocrates Institute of Technology, Bhopal, (MP)

**Lakshmi Narain College of Technology, Bhopal, (MP)

(Received 11 January, 2011 Accepted 10 February, 2011)

ABSTRACT : An approach  to  multi-view  face detection based on head pose estimation is presented in this
paper. Support Vector Regression is employed to solve  the problem of  pose  estimation .Three  methods,  the
eigenface  method,  the  Support Vector Machine (SVM) based method, and a combination of t he two methods,
are investigated. The eigenface method,which  seeks  to estimate  the overall  probability  distribution  of
patterns  to be  recognised,  is  fast  but less  accurate because of the overlap of confidence  distributions
between  face and  non-face  classes. On  the other  hand,  the SVM method, which tries to model the boundary
of two classes to be classified, is more accurate but slower as the number of Support Vectors is normally large.
The combined method can achieve an improved performance by speeding up the computation and keeping the
accuracy to a preset level. It can be used to automatically detect and track faces in faceverification and
identificationsystems.
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I. INTRODUCTION
Support Vector Machines (SVM) have their roots in

Statistical Learning Theory. They have been widely applied
to machine vision fields such as character, handwriting digit
and textrecognition and more recently to satellite image
classification. Svms, like Artificial Neural Networks and other
nonparametric classifiers have a reputation for being robust.
SVMs function by nonlinearly projecting the training data
in the input space to a feature space of higher (infinite)
dimension by use of a kernel function. This results in a
linearly separable dataset that can be separated by a linear
classifier [1]. This process enables the classification of
remote sensing datasets which are usually nonlinearly
separable in the input space. In many instances,
classification in high dimension feature spaces results in
over-fitting in the input space, however, in svms over-fitting
is controlled through the principle of structural risk
minimization.

The empirical risk of misclassification is minimised by
maximizing the margin between the data points and the
decision boundary. In practice this criterion is softened to
the minimisation of a cost factor involving both the
complexity of the classifier and the degree to which marginal
points are misclassified. The tradeoff between these factors
is managed through a margin of error parameter (usually
designated C) which is tuned through cross-validation
procedures [2]. The functions used to project the data from
input space to feature space are sometimes called kernels
(or kernel machines), examples of which include polynomial,
Gaussian (more commonly referred to as radial basis
functions) and quadratic functions. Each function has unique
parameters which have to be determined prior to classification
and they are also usually determined through a cross

validation process. A deeper mathematical treatise of svms
can be found in Christianini (2002), Campbell (2000) and
Vapnik (1995).

II. SVM MULTICLASS STRATEGIES
As mentioned before, SVM classification is essentially

a binary (two-class) classification technique, which has to
be modified to handle the multiclass tasks in real world
situations e.g.derivation of land cover information from
satelliteimages. Two of the common methods to enable this
adaptation include the 1A1 and 1AA techniques. The 1AA
approach represents the earliest and most common SVM
multiclass approach (Melgani and Bruzzone, 2004) and
involves the division of an N class dataset into N two-class
cases. If say the classes of interest in a satellite image
include water, vegetation and built up areas, classification
would be effected by classifying water against non-water
areas i.e. (vegetation and built up areas) or vegetation
against non-vegetative areas i.e. (water and built up areas)
[3]. The 1A1 approach on the other hand involves
constructing a machine for each pair of classes resulting in
N(N-1)/2 machines. When applied to a test point, each
classification gives one vote to the winning class and the
point is labeled with the class having most votes. This
approach can be further modified to give weighting to the
voting process. From machine learning theory, it is
acknowledged that the disadvantage the 1AA approach has
over 1A1 is that its performance can be compromised due
to unbalanced training datasets, however, the 1A1 approach
is more computationally intensive since the results of more
SVM pairs ought to be computed. In this paper, the
performance of these two techniques are compared and
evaluated to establish their performance on the extraction
of land cover information from satellite images [4].
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III. METHODOLOGY
The study area was extracted from a 2001 Landsat scene

(row 171 and row 60). It is located at thesource of River
Nile in Jinja, Uganda. The bands used in this research
consisted of Landsat’s opticalbands i.e. bands 1, 2, 3, 4, 5
and 7. The classes of interest were built up area, vegetation
andwater. IDRISI Andes was used for preliminary data
preparation such as sectioning out of the  study area from
the whole scene and identification of training data. This
data was then exported into a form readable by MATLAB
(Version 7) for further processing and to effect the
classification process. The SVMs that were used included
the Linear, Polynomial, Quadratic and Radio Basis Function
(RBF) SVMs. Each classifier was employed to carry out 1AA
and 1A1 classification. The classification results for both
1AA and 1A1 were then imported into IDRISI for
georeferencing, GIS integration, accuracy assessment and
derivation of land cover maps. The following four parameters
formed the basis upon which the two multiclassification
approaches were compared: Number of unclassified pixels,
number of mixed pixels, final accuracy assessment and the
95% level of significance of the difference between overall
accuracies of the two approaches (i.e. |Z| >1.96).

IV. GLOBAL APPROACH
Both global systems described in this paper consist of

aface detection stage where the face is detected and
extracted  from an input image and a recognition stage where
the person’sidentity is established.

A. Face Detection

In order to detect faces at different scales we first
computed a resolution pyramid for the input image and then
shifted a window over each image in the pyramid.

We applied two preprocessing steps to the gray images
tocompensate for certain sources of image variations [5]. A
best-fit intensity plane was subtracted from the gray valuesto
compensate for cast shadows. Then histogram
equalizationwas applied to remove variations in the image
brightnessand contrast. The resulting gray values were
normalizedto be in a range between 0 and 1 and were used
as inputfeatures to a linear SVM classifier. Some detection
resultsare shown in Fig. 1. The training data for the face
detector were generated by rendering seven textured 3-D
head models. The heads were rotated between ___Æ and
__Æ in depth and illuminated by ambient light and a single
directional light pointingtowards the center of the face. We
generated 3,590 face images of size pixels. The negative
training setinitially consisted of 10,209  non-face patterns
randomly extracted from 502 non-face images. We
expandedthe training set by bootstrapping [19] to 13,655
non-face patterns [6].

B. Recognisation

We implemented two global recognition systems. Both
systems were based on the one-vs-all strategy for SVM
multi-class classification described The first system had a

linear SVM for every person in the database. Each SVM
was trained to distinguish between all images of a single
person (labeled) and all other images [7].

 

Fig. 1. The upper two rows are example images from our training
set. The lower tworows show the image parts extracted by the

SVM face detector.

For both training and testing we ran the face detector
on the input image to extract the face. We re-saled the face
image to pixels and converted the gray values into a feature
vector 2. Given a set of people and a set of SVMs, each
one associated to one person, the class label of a face
pattern is computed as follows :
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We implemented a two-level component-based face
detector which is described in detail [8]. The principles of
the system are illustrated in Fig. 1. On the first level,
component classifiers independently detected facial
components. On the second level, a geometrical
configuration classifier performed the final face detection
by combining the results of the component classifiers. Given
a window, the maximum continuous outputs of the
componentclassifiers within rectangular search regions
around theexpected positions of the components were used
as inputsto the geometrical configuration classifier. The
search regionshave been calculated from the mean and
standard deviation of the components’ locations in the
training images [9]. We also provided the geometrical
classifier with the precisepositions of the detected
components relative to the upperleft corner of the window.
The 14 facial componentsused in the detection system are
shown in Fig. 4 (a).
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Fig. 2. System overview of the componentbasedface detector
using four components.On the first level, windows of the size of

the components (solid lined boxes) are shiftedover the face
image and classified by the componentclassifiers. On the second
level, the maximum outputs of the component classifierswithin

predefined search regions (dottedlined boxes) and the positions of
the detected components are fed into the geometrical

configuration classifier.

V. RESULTS

 

Fig. 3. With the L2 penalization of the slacks, the parallel
between dualoptimization and primal Newton optimization is

striking: the training timesare almost the same (and scale in O
(n3sv)). Note that both solutions are exactly the same.

 

Fig. 4. KMP vs SpSVM (with/without regularization) on M3V8,
M3V other & Vehicle.

 

Fig. 5. Otimization of the objective function (2.13) by conjugate.

 

Fig. 6. Trajectory of LOO margin Idas a function of leave-one-
out coefficient.

VI. CONCLUSION

We presented a component-based technique and two
global techniques for face recognition and evaluated their
performance with respect to robustness against pose
changes. The component-based system detected and
extracted a set of 10 facial components and arranged them
in a single feature vector that was classified by linear SVMs.
In both global systems we detected the whole face, extracted
it from the image and used it as input to the classifiers. The
first global system consisted of a single SVM for each
person in the database. In the second system we clustered
the database of each person and trained a set of view-
specific SVM classifiers.

We tested the systems on a database which included
faces rotated in depth up to about 0. In all experiments the
component-based system outperformed the global systems
even though we used more powerful classifiers (i.e. non-
linear instead of linear SVMs) for the global system. This
shows that using facial components instead of the whole
face pattern as input features significantly simplifies the task
of face recognition
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