

et
International Journal on Emerging Technologies (Special Issue on ICRIET-2016) 7(2): 1-4(2016)

 ISSN No. (Print) : 0975-8364

 ISSN No. (Online) : 2249-3255

FPGA Implementation of Redundant CORDIC Processor

Prof. J. M. Rudagi
*
 and Dr. S Subbaraman

**

*
KLE College of Engineering and Technology Chikodi/ECE Department, Chikodi, India

**
WCE Sangli /ECE Department, Sangli, India

(Corresponding author: J.M. Rudagi)

(Received 16 September, 2016 Accepted 19 October, 2016)

(Published by Research Trend, Website: www.researchtrend.net)
ABSTRACT: Many Digital signal processing (DSP) applications are based on real time constraints. On

account of this, conventional processors are not suitable for modern day DSP systems. Thus leading major

issues pertaining to processors are latency and throughput. In order to overcome these issues and there by
improvising in terms of performance, CORDIC is one such hardware efficient algorithm and its current

trend of hardware intensive signal processing. It efficiently performs all elementary functions such as

trigonometric, logarithmic, hyperbolic and exponential functions which are used in DSP systems. In this paper
redundant Radix-2 CORDIC Architectures for 16-bit and 32 bit has been, implemented on Xilinx 14.2 FPGA

platform, Simulated on ISim simulator and synthesized on Vertex 5 FPGA device.

Keywords: CORDIC (Coordinate Rotational Digital Computer), FPGA (Field Programmable Gate Array), DSP (Digital

Signal Processing)

I . INTRODUCTION

J.E. Volder developed CO-ordinate Rotation Digital

Computer (CORDIC) in 1959 to compute the rotation of

two dimensional vectors [1]. Later Walther generalized

this algorithm to compute logarithmic, exponential,

division, hyperbolic and trigonometric functions [2].

CORDIC is an iterative algorithm for the calculation of

the rotation of two dimensional vectors in linear,

circular and hyperbolic coordinate systems. This
rotation is carried out by a sequence of iterations. Each

of this rotation over a prefixed elementary angle

(micro rotation) is evaluated by means of addition and

shift operations. The number of iteration of radix-2

CORDIC limits its architecture to use in high speed

applications.

In this paper, the organization of work as follows.

Section II gives the basics of CORDIC algorithm.

Section III describes Radix-2 CORDIC Architecture.

Introduction to redundant architecture has been

described in Section IV. Section V gives simulation
results, comparison plots and synthesis report. In the

last section VI conclusion of this work has been

discussed.

II . BASICS OF CORDIC ALGORITHM

The CORDIC algorithm is coordinate rotation in

linear, circular and hyperbolic coordinate systems

depending on which function is to be calculated. This is

performed in the CORDIC algorithm by rotating a

vector through a sequence of arbitrary angles whose

algebraic sum approximates the desired rotation angle

[1], [2]. These arbitrary angles have the property that

vector rotation through each of them may be computed

easily with a single shift and add operation. CORDIC

operates in two modes: the rotation mode and the vector

mode. In rotation mode, angle of rotation and coordinate
components of original vector are given, where as in

vector mode, only the coordinate of original components

are given. Given angle, rotation mode is used to

perform general rotation and to compute elementary

operations such as trigonometric functions,

multiplication, exponential, and hyperbolic functions

depending on the coordinate system in which it is being

rotated. The vectoring mode can be used to compute the

angular argument of the original vector and to compute

divisions, logarithmic functions. The number of micro

rotations to be performed in both the modes depends on
the application. In Cartesian plane rotating a vector by

an angle θ can be arranged and equations are as follows

If the rotation angles are restricted so that tan (θ) = ± 2-

i, the multiplication by the tangent term is condensed to

a simple shift operation. Arbitrary angles of rotation are

available by performing a series of consecutively
smaller micro rotation.

 Rudagi and Subbaraman 2

If the decision at each iterations i, is which direction to

relate rather than whether or not to rotate, then the cos

(θ) term becomes a constant .The iterative rotation can

now be expressed as [3]:

 (1)

 (2)

Where,

Ki= 1/(1+2-2i)1/2; known as scale constant.

di is known as decision function.

Removing the scaling constant from the iterative

equations yields a shift-add algorithm for vector

rotation. The product of the K can be functional as part

of a system processing gain or by initiating the rotating

vector by the reciprocal of the gain of a certain number
of iterations. The angle of a composite rotation is

uniquely defined by the sequence of the directions of

the micro rotations. That series can be represented by a

decision vector. All possible decision vectors is an

angular measurement system are based on set of binary

arctangents. A favorable conversion method uses an

additional adder- subtractor that holds the elementary

rotation angles at each single iteration. The elementary

angles can be expressed in any suitable angular unit

either radians or degrees and are stored in small lookup

table or it can be hardwired, depending on the
implementation. The angle accumulator adds a third

difference equation to the CORDIC algorithm

 (3)

The CORDIC in rotation mode, a vector (x, y) is

rotated by an angle θ. The angle accumulator is

initialized with the desired rotation angle θ. The

rotation decision per iteration is made to diminish the

magnitude of the residual angle in the angle

accumulator. Hence, the decision per iteration is based

on the sign of the residual angle after each step.

Normally, the angle accumulator may be eliminated, if

the input angle is already expressed in the binary

arctangent base.

I I I . RADIX-2 CORDIC ARCHITECTURE

Radix-2 architecture is as shown in Fig 1. The main pro

of this type of architecture is that the barrel shifters are

of fixed size and can be implemented in the wiring.

Secondly, instead of requiring storage space that is

ROM that holds the arbitrary angle values, need not

to be restructured after each iteration because the

constants can be hardwired. The LUT values for

computing angle accumulator is distributed as constant

to each adder in the angle accumulator chain so that the

entire CORDIC processor is compact to an array of

interconnected adder-subtraction units. Unlike other

architectures there is no need of registers which avoids

unfolded architecture strictly to behave like

combinational circuit. The delay is favorable, but

processing time is reduced as compared to other

iterative structures. Thus produces speed required for

faster applications.

Fig. 1. Radix 2 CORDIC Architecture.

The various components required for the Radix-2

CORDIC processor in unfolded style for

implementation are ROM which stores the angle values

tan-1(2-i) where i is varied from 0 to 16 for 16-bit

processor. There are barrel shifters required for shifting

of the intermediate values Xi and Yi. The barrel shifters

carry out a right shift which can be implemented using

multiplexers. For next iteration for X, Y and Z

computation there are addition/subtraction unit [7].

For rotation mode Radix-2 CORDIC

 (4)

 (5)

 (6)

Where σi = -1 for Zi < 0.

Else σi =1 after n iterations we get,

 Xn = An [X0 cos Z0 – Y0 sin Z0] (7)

 Yn = An [Y0 cos Z0 + X0 sin Z0] (8)

 Zn = 0 (9)

An (10)

 Rudagi and Subbaraman 3

For Radix-2 CORDIC, processing gain is

approximately K≈1.65.The major drawback of the

conventional CORDIC algorithm is its comparatively

high latency and low throughput due to the sequential

nature of the iteration process with carry propagates

addition and variable shifting in every iteration. To

overcome these drawbacks, redundant CORDIC

architecture has been implemented using redundant
arithmetic. On the other hand, the carry propagate

addition remained a bottleneck for additional

throughput enhancement. Two most important

methodologies have been employed in order to

increase the speed of CORDIC implementation.

IV. REDUNDANT ARITHMETIC

Redundant Number Systems (RNS) offer an alternate

form of computer arithmetic suited to numerically

intensive applications. An important property of RNS is

that it captures or prevents the carry propagation [8,9],

creating parallel adders with constant delay,

irrespective of the operand word-length. Thus low
latency results are produced in an RNS format.

Traditionally CORDIC implementations are based on

ripple carry addition. These, however suffer from large

internal carry propagation delays. Since the adder/

subtractor unit forms a major component of CORDIC

architecture, their performance will determine the

overall performance of the CORDIC processor. To

enhance the performance of CORDIC processors

redundant arithmetic has been proposed.

Table. 1: Redundant adder addition rules.

18/04/2016

X�+Y� X�₋₁₋₁₋₁₋₁+Y�₋₁₋₁₋₁₋₁ Intermediate
carry c �

Intermediate
sum s �

-2 Don't care -1 0

-1
At least one is

negative

-1 1

None is negative 0 -1

0 Don’t care 0 0

1
At least one is

negative

0 1

None is negative 1 -1

2 Don’t care
1 0

Redundant Adder Addition Rules

26

 This arithmetic, due to its inherent carry-free property

avoids the propagation of carry from the LSB to the

MSB, resulting in faster operations. This section

considers radix-2 hybrid and signed-digit additions and

subtractions. The following table gives redundant adder

rules [5].

V. RESULTS AND DISCUSSION

Simulation Results: Radix 2 Redundant CORDIC has

been simulated using Xilinx 14.1.The following fig

shows the simulation results for 16 bit cos and sine

values for 30 o degree angles.

Fig. 2. Simulation waveform for 16 bit sine and cosine

value.

The following graph shows the simulation results for %

error vs angles.

Simulation Result

18/04/2016 30

Fig. 3. Simulation Result for sine values.

Simulation Result…

18/04/2016 31

Fig. 4. Simulation Result for cosine values.

 Rudagi and Subbaraman 4

Synthesis Results: Redundant Radix 2 CORDIC

Processor has been implemented using Vertex 5 FPGA

device.

Fig . 5. Top level view.

Fig. 6. RTL Schematic view.

Table 2: Synthesis Results.

Synthesis Results

• XILINX Vertex 5 FPGA, XC5Vlx30-3ff324

18/04/2016

Parameters
Redundant

16 32

Max Comb Path

Delay(ns)
13.4 16

Logic Delay(ns) 10.06 12.6

Route Delay(ns) 3.42 3.447

Max Operating

Frequency (MHz)
74 62.4

Leakage Power(uw) 379.89 379.96

Dynamic Power(mw) 60.2 66.156

32

VI .CONCLUSION

 Redundant Radix 2 CORDIC Processor has been

designed and implemented on Xilinx14.2. Total delay is

13.4 ns for 16 bit and 16 ns for 32 bit .It operates at

higher speed compared to that of non redundant

CORDIC processor. The switching speed reduces due

to the redundant architecture so power consumption is

also less.

REFERENCES

[1]. Bhakthavatchalu, R., Sinith,M.S, Jismi,K., Nair, P.,“A
Comparison of Pipelined Parallel and Iterative CORDIC

Design on FPGA”, Proceedings 2010 5th International
Conference on Industrial and Information Systems, ICIIS
2010, July 29- Aug 01, 2010, India. pp. 239 – 243.
[2]. Volder, J.E., “The CORDIC trigonometric computing
technique”, IRE Trans. Electronic Computing, volume EC-8,
pp. 330 – 334, 1959.
[3]. Deprettere, E., Dewilde, P.,Udo, R.,“ Pipelined CORDIC
Architecture for Fast VLSI Filtering and Array Processing”,

Proceedings ICASSP’84, 1984, pp. 41.A.6.1- 41.A.6.4
[4]. Andraka, R., “A survey of CORDIC algorithms for FPGA
based computers”, FPGA ’98, in ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pp. 191-
200, 1998.
[5]. Erecegovac, M. D., Lang, T., “Digital Arithmetic”,
Elsevier, Amsterdam, the Netherlands, 2004.
[6]. Hu, Y. H.,“ Pipelined CORDIC architecture for the

implementation of rotational based algorithm”, in
Proceedings of the International Symposium on VLSI
Technology, Systems and Applications, pp. 259, May 1985.
[7]. De Lange, A. van der Hoeven, A. J., Deprettere, E. F.,
and Bu, J.,“ An optimal floating-point pipeline CMOS
CORDIC Processor”, IEEE ISCAS’88, pp. 2043-47, 1988.
[8]. Kamp, W., Bainbridge, A., “Multiply accumulate unit
optimized for fast dot-product evaluation”, Field-

Programmable Technology, 2007, pp. 349–352, 12 Dec.
2007.
[9]. Parhi, K. K., “VLSI Digital Signal Processing Systems:
Design and Implementation”, Wiley, 1999.
[10]. Hwang, K., “Computer Arithmetic: Principles,
Architectures and Design”, Wiley, 1979.
[11]. Guyot, A., Herreros, Y., Muller, J., “JANUS, an on-line
multiplier/divider for manipulating large numbers”, in Proc.

of 9th Symposium on Computer Arithmetic, pp. 106 – 111,
1989.
[12]. “ISE Simulator”, Xilinx incorporation San Jose U.S.A,
2011.

