
Andola 527

et
International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 527-530(2017)

 (Published by Research Trend, Website: www.researchtrend.net)

 ISSN No. (Print) : 0975-8364

 ISSN No. (Online) : 2249-3255

Simple Search Technique with enhanced feature

Deep Chandra Andola

Assistant Professor, Amrapali Institute of Technology & Sciences, Haldwani, (U.K.), India

ABSTRACT: Searching is the method of finding any number or element in the given set of data or list. There

are many searching algorithms – Linear Search, Binary Search, DN Search etc. Linear search is the simplest

and easiest technique for finding the required element in the given data. In a Linear Search method,

searching is continued until the desired element is found or the list gets exhaust. Time taken by this searching

technique is equal to T (n). The disadvantage of this technique is that, once the search is successful it stops. In

this paper, the algorithm is discussed takes equal time with respect to linear search, but it continues, after the

search is successful.

Keywords : searching, linear, binary search, DN search

I. INTRODUCTION TO ALGORITHMS

In mathematics, an algorithm is an self-governing step-

by-step set of operations to be performed. An algorithm

is a well-organized and successful method that can be

expressed within a restricted quantity of space and

time and in a well defined formal language for

estimating a function [1] [2].

In computer world, an algorithm is basically an

instance of logic written in software by software
developers to be effective for the intended "target"

computer(s) for the target machines to

produce output from given input (perhaps null). In

addition every algorithm must satisfy the following

criteria:

• Input: there are one or more quantities which

are externally supplied.

• Output: At least one quantity is produces.

• Definiteness: Each instruction must be clear

and unambiguous.

• Finiteness: If we trace out the instructions of
an algorithm, then for all cases the algorithm

will terminate after the finite number of steps.

• Effectiveness: Every instruction must be

sufficiently basic that it can in principle be

carried out by a person using only pencil and

paper. It is not enough that each operation be

definite, but it is also be feasible.

•

II. UNDERSTANDING COMMUNCATION OF

TIME & SPACE TRADE-OFF FOR ALGORITHM

A problem may have numerous solutions. In order to

choose the best algorithm for a particular task, you need

to be able to judge how long a particular solution will

take to run. Or, more accurately, you need to be able to

judge how long two solutions will take to run, and

choose the better of the two. You don't need to know

how many minutes and seconds they will take, but you
do need some way to compare algorithms against one

another [1] [4].

Asymptotic complexity is a way of expressing the main

component of the cost of an algorithm, using idealized

(not comparable) units of computational work.

Consider, for example, the algorithm for sorting a deck

of cards, which proceeds by repeatedly searching

through the deck for the lowest card. The asymptotic

complexity of this algorithm is the square of the

number of cards in the deck. This quadratic behavior is

the main term in the complexity formula, it says, e.g., if
you double the size of the deck, then the work is

roughly quadrupled.

Now let us consider how we would go

about comparing the complexity of two algorithms. Let

f (n) be the cost, in the worst case, of one algorithm,

expressed as a function of the input size n, and g (n) be

the cost function for the other algorithm. E.g., for

sorting algorithms, f (10) and g (10) would be the

maximum number of steps that the algorithms would

take on a list of 10 items. If, for all values of n >= 0, f

Andola 528

(n) is less than or equal to g(n), then the algorithm with

complexity function f is strictly faster. But, generally

speaking, our concern for computational cost is for the

cases with large inputs; so the comparison of f (n) and

g(n) for small values of n is less significant than the

"long term" comparison of f(n) and g(n), for n larger

than some threshold.

The following 3 asymptotic notations are mostly used

to represent time complexity of algorithms.
1. θ Notation: The theta notation bounds functions

from above and below, so it defines exact asymptotic

behavior.

A simple way to get Theta notation of an expression is

to drop low order terms and ignore leading constants.

For a given function g (n), we denote θ (g (n)) is

following set of functions.

θ (g(n)) = {f (n): there exist positive constant c1, c2 and

n0 such that

0 <= c1*g (n) <= f (n) <= c2*g(n) for all n >= n0

2) Big ‘Oh’ (O) Notation: The Big O notation defines

an upper bound of an algorithm; it bounds a function

only from above. For example, consider the case of

Insertion Sort. It takes linear time in best case and

quadratic time in worst case. We can safely say that the

time complexity of Insertion sort is O (n^2). Note that
O (n^2) also covers linear time.

The Big O notation is useful when we only have upper

bound on time complexity of an algorithm.

O (g(n)) = {f (n): there exist positive constant c and n0

such that

0 <= f (n) <= c*g(n) for all n >= n0

3) Ω Notation: Just as Big O notation provides an

asymptotic upper bound on a function, Ω notation

provides an asymptotic lower bound.

Ω Notation can be useful when we have lower bound

on time complexity of an algorithm.

Ω (g (n)) = {f (n): there exist positive constant c and n0

such that

0 <= c*g (n) <= f (n) for all n >= n0

III. LINEAR SEARCH

In computer science, linear search or sequential

search is a method for finding a particular value in
a list that checks each element in sequence until the

desired element is found or the list is exhausted. The

list need not be ordered. Linear search is the

simplest search algorithm; it is a special case of brute-

force search. Its worst case cost is proportional to the

number of elements in the list. Its expected cost is also

proportional to the number of elements if all elements

are searched equally.

Algorithm for Linear Search
Here ‘A’ is the linear array with ‘n’ elements and ‘item’

is the given item of information. This algorithm find the

location ‘loc’ of item in A, or set loc = 0 if the search is
unsuccessful. [3].

linear_search (A, item)
1. [insert item at the end of data, i.e. ‘A’]

Set A [n+1] = item

2. [initialize counter]

set loc = 1

3. [search for item]

Repeat while A [loc] =! Item

set loc = loc + 1

4. [successful]

if loc = n + 1,
else set loc = 0

5. Exit

Andola 529

Example:
Let us consider an array of ten numbers:

A = 12, 54, 23, 43, 12, 65, 23, 16, 87, 23

Now using linear search algorithm, discussed above, let

us find the number, num = 23, in the given array. In the

first step, the num (=23) will be inserted at the (n+1)

location of the array A, i.e. at eleventh position. Thus,

the new array will be:

A = 12, 54, 23, 43, 12, 65, 23, 16, 87, 23, 23
After insertion of num into a given array, searching

starts. In the very first step, when loc = 1, A[1] will be

compare to A[n+1], i.e. A[11].

A = 12, 54, 23, 43, 12, 65, 23, 16, 87, 23, 23

In this step, it is an unsuccessful search. Similarly for

loc = 2, it will be an unsuccessful search.

When the value of loc = 3, then the search will be

successful.

A = 12, 54, 23, 43, 12, 65, 23, 16, 87, 23, 23

As soon as search is successful, it will automatically

discontinue the loop in step 3 of algorithm and print

successful and will exit.
In linear search algorithm, it provides the information

about the existence of the searched number but it does

not provide any information about the occurrence of the

number.

Analysis:
For a list with n items, the best case is when the value is

equal to the first element of the list, in which case only

one comparison is needed. The worst case is when the

value is not in the list (or occurs only once at the end of

the list), in which case n comparisons are needed. Thus

worst cost of Linear Search is θ (n).

IV. MODIFIED LINEAR SEARCH TECHNIQUE

As we have seen in the above section that linear search

technique just provide the information about the

existence of the searched number, but it does not tells

about the occurrence of it. To overcome this

disadvantage we will design Modified linear search

technique. In modified linear search technique, we will

get information about the existence of the searched

number but in addition it also provides the information

about the total occurrence of it.

Working of this algorithm is simple. During the
searching of an element in the given array modified

linear search algorithm took one variable for counting

the number of occurrences and one temporary array to

store the location, every time search is successful.

Algorithm for Modified Linear Search Technique
Here ‘A’ is the linear array with ‘n’ elements and ‘item’

is the given item of information. This algorithm

provides information about the item, that it is present in

the given array or not, also notifies the total number of

occurrence of the item.

modified_linear_search (A, item)
1. set c = 0, j=1

2. set for i = 1 to n [initialize loop]

[repeat step 3 to 6]

3. if (A[i] == item)

[repeat step 4 to 6]

4. set c = c + 1
5. set temp[j] = i

6. set j++

[end of if condition and for loop]

7. if c == 0

then print “UNSUCCESSFUL”

else

print “SUCCESSFUL” and

print “ITEM is present ‘c’ times at ‘temp[j]’

location ”

Example:
Let us consider an array of ten numbers:
A = 12, 54, 23, 43, 12, 65, 23, 16, 87, 23

Now using modified linear search algorithm, discussed

above, let us find the number, num = 23, in the given

array.

In the first step, value of c will be set to 0 and loop will

initialize.

For i = 1, item is not equal to A[1].

12, 54, 23, 43, 12, 65, 23, 16, 87, 23 item= 23

So, value of c = 0.

For i = 2, item is not equal to A[2].

12, 54, 23, 43, 12, 65, 23, 16, 87, 23 item= 23
So, value of c = 0.

For i = 3, item is equal to A[3].

12, 54, 23, 43, 12, 65, 23, 16, 87, 23 item= 23

So, value of c = 1 and temp[1] = 3.

For i = 4, item is not equal to A[4].

12, 54, 23, 43, 12, 65, 23, 16, 87, 23 item= 23

So, value of c = 1.

For i = 5, item is not equal to A[5].

12, 54, 23, 43, 12, 65, 23, 16, 87, 23 item= 23

So, value of c = 1.

For i = 6, item is not equal to A[6].
12, 54, 23, 43, 12, 65, 23, 16, 87, 23 item= 23

So, value of c = 1.

For i = 7, item is equal to A[7].

12, 54, 23, 43, 12, 65, 23, 16, 87, 23 item= 23

So, value of c = 2 and temp[2] = 7.

For i = 8, item is not equal to A[8].

12, 54, 23, 43, 12, 65, 23, 16, 87, 23 item= 23

So, value of c = 2.

For i = 9, item is not equal to A[9].

12, 54, 23, 43, 12, 65, 23, 16, 87, 23 item= 23

Andola 530

So, value of c = 2.

For i = 10, item is equal to A[10].

12, 54, 23, 43, 12, 65, 23, 16, 87, 23 item= 23

So, value of c = 3 and temp[3] = 10.

Thus after completion of for loop, value of c =3 and

temp[3] = {3, 7, 10}. This implies item = 23 is present

in the given array three time (c = 3) and at 3rd, 7th and

10th position.

Analysis:
In the above algorithm, we use only one single ‘for’

loop. This implies that the complexity for the above

algorithm will be T(n).

Best case: Best case is one where the item is searched

at first position. In modified linear search algorithm,

best case is when all the elements in the given array are

equal to the item searched. In this case, for loop will

execute for n times, so best case complexity will be

T(n).

Worst Case: In worst case, search will never be
successful. In modified linear search algorithm, this

condition appears when item will never equal to the

elements of the given array. But for loop will execute n

times. Thus, worst case complexity for modified linear

search will be T(n).

V. RESULT

As linear search and modified linear search are

discussed above and their average time can be given as:

Table 1: Comparison between Linear Search &

Modified Linear Search.

SNo Technique Average
Time

1. Linear Search T (n) = θ (n)

2. Modified Linear

Search

T (n) = θ (n)

VI. CONCLUSION

In this paper, Linear Search and Modified Linear

Search techniques were discussed with their average

time (in Table1). Linear search gives information about

the existence of element in the given array but modified

linear search provide same information with some

added features such as total number of occurrences in

the given array and location of each occurrence. Since,

both the searching technique took same amount of time,
but with added features, modified linear search can be

proved as more powerful technique than simple linear

search.

REFERENCES

[1] Thomas H Cormen, Charles H Leiserson, Ronald L

Rivest, Clifford Stein, “Introduction to Algorithm”, 3rd

Edition, Prentice Hall of India Pvt Ltd., Chapter 1 and

Chapter 3.

[2] Ellis Horowitz, Suraj Sahni, Sanguthevar

Rajasekaran, “Fundament of Computer Algorithms”,

Galgotia Publication, Chapter 1.3.

[3] Seymour Lipshutz, Schaum’s Outline “Data
Structures”, Tata McGraw Hill, Chapter 4.7 and

Chapter 4.8.

[4] Seymour Lipshutz, Marc Lars Lipson, Varsha H

Patil, Schaum’s Outline “Discrete Structure”, Third

Edition, Tata McGraw Hill, Chapter 3.9.

