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ABSTRACT: Purpose of the present paper is to study of Holomorphic Sectional Curvature. In section 2, we 

have defined and studied H-Projective Curvature tensor. Section 3 is devoted for Recurrent Sasakian 

manifolds and Ricci Recurrent Sasakian manifold. 

I. INTRODUCTION 

An n-dimensional Sasakian space 
nM  is an odd dimensional Riemannian space, which admits a Unit Killing 

vector field 
λη  satisfying: 

(1.1) k , i. j j ik k ij
g gη η η= −  

 Wherein a comma ( , ) followed by index denotes the operation of covariant differentiation with regard to 

the fundamental tensor 
ij

g  of the Riemannian space. 

(1.2) { } { } { }{ } { }{ }h h h h j h l

ijk i j k j i j i j j k j i i kR = ∂ − ∂ + −  

 Whereas the Ricci tensor and the scalar curvature are respectively given by  

(1.3) 
i

jk ijkR R ,=  

(1.4) 
jk

jkR R g=  

and 

(1.5) ( )i

i x∂ = ∂ ∂  

 A tensor 
ij

S  is defined as 

(1.6) 
a

ij i ajS F R= −  

then we have 

(1.7) ij ji
S S= −  

and 

(1.8) 
a a

i aj ia jF S S F= −  

II. H-PROJECTIVE CURVATURE TENSOR 

H-Projective Curvature tensor in the Sasakian space is defined as [5]: 

(2.1) ( ){ }( )1 2 2
h h h h h h h h

ijk ijk ij j jk i ik j ik j jk i ij kP R n R R S F S F S F S Fδ δ= + + − + − − +  
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Definition 2.1 

 A Sasakian manifold is called H-Projective Recurrent if it satisfies the following condition. 

(2.2) 
h h

l ijk l ijkP Pλ∇ =  

 Wherein 
1

λ  is H-Projective Recurrent vector. 

 

Definition 2.2 

 A Sasakian manifold is said to be H-Projective Symmetric if it satisfied the following condition. 

(2.3) 0
h

l ijkP .∇ =  

 

Definition 2.3 

 A Sasakian manifold is termed as H-Projectively flat if 

(2.4) 0
h

ijkP .=  

 H-Conformal (or Bockner) Curvature tensor in the Sasakian space is given by 

(2.5) { }(1 4
h h h h h h

ijk ijk ik j jk i ik j jk iB R ( n R R g R g Rδ δ= + + − + −  

 )2 2h h h h h h

ik j jk i ik j jk i ij k ij k
S F S F F S F F S F F S+ − + − + +  

 ( )( ){ }( )2 4 2
h h h h h

ik j jk i ik j jk i ij k
R n n g g F F F F F F .δ δ− + + − + − +  

Definition 2.4 

 A Sasakian space satisfying the relation  

(2.6) 0
h h

a ijk a ijk
B Bλ∇ − =  

is termed as Sasakian space with Recurrent H-Conformal Curvature tensor. 

 H- Conharmonic Curvature tensor is given by 

(2.7) ( ){ }(1 4
h h h h h h

ijk ijk ik j ik i ik j jk i
T R n R R g R g Rδ δ= + + − + −  

  )2 2
h h h h h h

ik j jk i ik j jk i ij k ij k
S F S F F S F S S F F S .+ − + − + +  

 

Definition 2.5 

 A Sasakian space satisfying the following condition 

(2.8) 0h h

a ijk a ijk
T Tλ∇ − =  

for some non-zero Recurrence vector 
aλ  will be called a Sasakian space with Recurrent H-Conharmonic Curvature 

tensor or Recurrent Bochner Curvature tensor. 

 H-Concircular tensor is given by 

(2.9) ( ){ }( )2
h h h h h

ijk ijk ik j jk i ik jC R R n n g g F Fδ δ= + + − +  

 

Definition 2.6 

 A Sasakian space is called Sasakian space with Recurrent H- Concircular Curvature tensor, if it satisfies. 

(2.10) 0
h h

a ijk a ijkC Cλ∇ − =  

for some non-zero Recurrence vector 
a

λ . 

III. RICCI RECURRENT SASAKIAN MANIFOLDS  

 A Sasakian space is said to be recurrent if, we have 
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(3.1) 0
h h

a ijk a ijkR Rλ∇ − =   

for some non-zero recurrence vector 
aλ . 

 

Definition 3.2 

 A Sasakian space is termed as Ricci Recurrent if it satisfies the relation  

(3.2) 0a ij a ijR R ,λ∇ − =  

Remark 3.1 

 It is noteworthy that a Ricci Recurrent Sasakian space is also known as Semi Recurrent Sasakian space. 

 Multiplying equation (3.2) by 
ij

g , we obtain 

(3.3) 0
a a

R Rλ∇ − =  

Remark 3.2 

 From (3.1), if follows that every Sasakian Recurrent space is Sasakian Ricci-Recurrent, but the converse is 

not necessarily true. 

IV. HOLOMORPHIC SECTIONAL CURVATURE  

The Holomorphic Sectional Curvature of a Sasakian space with regard to a vector 
h

v  is given by 

(4.1) ( ) 0m k j l i h k j i h

mjlh k i kj ihK F v v F v v K g v v g v v .+ =   

Remark 4.1 

 If the Holomorphic Sectional Curvature is constant with regard to any vector at all points then the space is 

said to be a space of Constant Holomorphic Sectional Curvature. 

Definition 4.1 

 A vector 
h

v  in the Sasakian manifold is called H-Projective vector if it satisfies the relation 

(4.2) 0
h

v ijkL P .=  

 Transvecting equation (4.2) by hmg , we get 

 

(4.3) 0v ijkmL P =  

 Wherein 
v

L , denotes the operator of Lie derivative. 

In a Sasakian space of Constant Holomorphic Sectional Curvature, the Curvature tensor is given by 

(4.4) ( ) ( ) ( ){ }4 2kjih hk ij jh ik hk jh jh ik jk ihK K g g g g F F F F F F= − + − −  

 Therefore, if the Sasakian space is of Constant Holomorphic Sectional Curvature, then 

(4.5) 0
l ijkh
P∇ =  

 Transvecting equation (4.5) with 
kh

g  yields 

(4.6) 0l ijP∇ =  

 In this regard, we have the following heorem: 

Theorem 4.1 

 A Sasakian space of Constant Holomorphic Sectional Curvature is H-Projective Symmetric. 

 Contracting equation (4.4) by 
ih

g , we obtain 

(4.7) ( )( )2 2
m m

jk j mk k mi jkK K F F F F F F= − +  



Rizwan and Singh   534 

 

 Transvecting equation (2.1) by 
hmg , we get 

(4.8) ( ){ }( )1 2 2ijkm ijkm jm ik im jk ik jm jk im ij kmP R n g R g R S F S F S F= + + − + − +  

 Differentiating equation (4.8) convariantely, we obtain 

(4.9) ( ){ } ( ) ( ){1 2l ijkm l ijkm jm l ik im l jkP R n g R g R∇ = ∇ + + ∇ − ∇  

  ( ) ( ) ( )}2l ik jm l jk im l ij kmS F S F S F+∇ − ∇ + ∇  

Case I 

 If a Sasakian manifold is H-Projectively Flat then equation (2.1) becomes reduced in the form 

(4.10) ( ){ }( )1 2 2h h h h h h

ijk ik jk i ik j jk i ij kR n R R S F S F S Fδ δ=− + − + − +  

Transvecting equation (4.10) by 
hm

g , we obtain 

(4.11) ( ){ }( )1 2 2h h h h h

ijkm ik j jk i ik j jk i ij kR n R R S F S F S Fδ δ= − + − + − +  

 Transvecting equation (4.8) with 
km

g  and using equation (1.8), we get 

(4.12) ( ){ } ( )2 2
n

ij ij in j ijP R n S F FS= + + +  

 Differentiating equation (4.12) covariantely, we obtain  

(4.13) ( ){ } ( ) ( ){ }2 2
n

l ij l ij l in j l ijP R n S F F S∇ = ∇ + + ∇ + ∇  

 

Case II 

 If the Sasakian space is of Constant Holomorphic Sectional Curvature, then equation (4.13) becomes 

reduced in the form  

(4.14) ( ){ } ( ) ( ){ }2 2
k

l ij l ik j l ijR n S F F S .∇ = − + ∇ + ∇  
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