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ABSTRACT: Purpose of the present paper is to study of Holomorphic Sectional Curvature. In section 2, we
have defined and studied H-Projective Curvature tensor. Section 3 is devoted for Recurrent Sasakian
manifolds and Ricci Recurrent Sasakian manifold.

I. INTRODUCTION

An n-dimensional Sasakian space M " is an odd dimensional Riemannian space, which admits a Unit Killing
vector field 77/1 satisfying:
ADM ;= 17; 8 — M 8

Wherein a comma ( , ) followed by index denotes the operation of covariant differentiation with regard to

the fundamental tensor g i of the Riemannian space.

an Ry =0, {," -, {" p+{ " H -1 H

Whereas the Ricci tensor and the scalar curvature are respectively given by

13 R, = R"Uk,
(14 R=R, g
and

(1.5 0, = (0/ox')
A tensor S i is defined as

_ a
(1.6) SU =—-F" Raj
then we have

(1.7) SU =-9.

Ji
and

a _ a
(1.8 F°. S, ==S,F";
II. H-PROJECTIVE CURVATURE TENSOR
H-Projective Curvature tensor in the Sasakian space is defined as [5]:
h _ ph h h h h h h
en P, =R, +{{/(n+2)}(R,8" -R, 8" +S, F" - S,F" —S,F" +25,F")
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Definition 2.1
A Sasakian manifold is called H-Projective Recurrent if it satisfies the following condition.

@)V, P', =4 P",

Wherein 2‘1 is H-Projective Recurrent vector.

Definition 2.2
A Sasakian manifold is said to be H-Projective Symmetric if it satisfied the following condition.

@3»V,P", =0.

Definition 2.3
A Sasakian manifold is termed as H-Projectively flat if

2.4) P”Uk =0.
H-Conformal (or Bockner) Curvature tensor in the Sasakian space is given by
h h h h h h
@s) B", =R", +{l/(n+4}(R, 8" R, 8" + g, R",— g ,R",
h h h h h h
+S,F" —S F" +F,S" —~F,F" +2S,F" +2F,s" )

~{R/(n+ 2)(n+4)}(gik 8" —g,0" +F, F' —F,F" +2F, F”k).

Definition 2.4
A Sasakian space satisfying the relation
h h
@&V ,B", -4 B", =0

is termed as Sasakian space with Recurrent H-Conformal Curvature tensor.
H- Conharmonic Curvature tensor is given by

enT', =R", +{i/(n+4)}(R,0" - R, 5" +g, R",—g,R",

1

+S,F",~ S, F" +F.S" —F, 8" +2S,F" +2F,;S" ).

Definition 2.5
A Sasakian space satisfying the following condition

h h
e V,T", —-AT =0
for some non-zero Recurrence vector ﬂa will be called a Sasakian space with Recurrent H-Conharmonic Curvature

tensor or Recurrent Bochner Curvature tensor.
H-Concircular tensor is given by

@9 C" =R", +{R/n(n+2)}(g, 0" —g," +F,F",)

Definition 2.6
A Sasakian space is called Sasakian space with Recurrent H- Concircular Curvature tensor, if it satisfies.

@1V, C" —4,C", =0

for some non-zero Recurrence vector ﬂua .

III. RICCI RECURRENT SASAKIAN MANIFOLDS
A Sasakian space is said to be recurrent if, we have
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¢y V, R —AR"; =0

for some non-zero recurrence vector ﬂa .

Definition 3.2
A Sasakian space is termed as Ricci Recurrent if it satisfies the relation

(3.2) VaRl.j -4, R, =0,

Remark 3.1
It is noteworthy that a Ricci Recurrent Sasakian space is also known as Semi Recurrent Sasakian space.

Multiplying equation (3.2) by & g , we obtain
33V, R-A R=0
Remark 3.2

From (3.1), if follows that every Sasakian Recurrent space is Sasakian Ricci-Recurrent, but the converse is
not necessarily true.

IV. HOLOMORPHIC SECTIONAL CURVATURE

The Holomorphic Sectional Curvature of a Sasakian space with regard to a vector Vh is given by

@) K, F" Vv FLviy! +K(gkj"k"j 8ihvi"h): 0.

mjlh
Remark 4.1

If the Holomorphic Sectional Curvature is constant with regard to any vector at all points then the space is
said to be a space of Constant Holomorphic Sectional Curvature.

Definition 4.1
A vector vh in the Sasakian manifold is called H-Projective vector if it satisfies the relation

h _
@2 L P e = 0.
Transvecting equation (4.2) by &, , we get
@3) L, By, =0
Wherein LV , denotes the operator of Lie derivative.

In a Sasakian space of Constant Holomorphic Sectional Curvature, the Curvature tensor is given by

(4.4) Kkjih = (K/4){(ghk 8~ gjhgik) + (Fhijh - F,'hFik - 2F/k F, )}
Therefore, if the Sasakian space is of Constant Holomorphic Sectional Curvature, then

@5V, By, =0

Transvecting equation (4.5) with g kh yields

46V, P, =0
In this regard, we have the following heorem:
Theorem 4.1

A Sasakian space of Constant Holomorphic Sectional Curvature is H-Projective Symmetric.
Contracting equation (4.4) by & i , we obtain
_ m m
«n K, =(K/2)(F"F,~F" F,+2FF,)
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Transvecting equation (2.1) by g, . we get
(4.8) Plj,'km = Rg,'km + {1/(71 + 2)}(8/"1 R, — &in Rjk + Siijm - Sijim + 255; ka)

Differentiating equation (4.8) convariantely, we obtain
@9V, Pijkm =V, Rijkm +{1/(n + 2)}{gjm (Vz R, )_ 8im (Vlek )
+Vz (Sik F/m) - Vz (Sjk F;'m)+2Vl (Sij ka )}
Casel
If a Sasakian manifold is H-Projectively Flat then equation (2.1) becomes reduced in the form
oo h h h h h
10 R"; =—{1/(n+2)}(R, 8"~ R, 8"+ S, F" =S ,F" +2S,F",)
Transvecting equation (4.10) by &, , we obtain
_ h h h h h
@i Ry, =—{1/(n+2)}(R,S", - R, 8" + S, F" =S ,F" +2S,F" )
Transvecting equation (4.8) with g o and using equation (1.8), we get

n
@12) P, = R, +{2/(n+2)}(S,, F",+ FS,)
Differentiating equation (4.12) covariantely, we obtain

@13 V,B, =V, R, +{2/(n+2){V,(S,F",)+ V,(F S,)}

Case II
If the Sasakian space is of Constant Holomorphic Sectional Curvature, then equation (4.13) becomes
reduced in the form

@14 V, R, =—{2/(n+2){V, (S, F*,)+ V,(F S,)}.
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