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ABSTRACT: In this paper, a new trigonometric shear deformation plate theory is developed for the buckling
analysis of a three dimensional thick rectangular isotropic plate, elastically restrained along one edge and
other three edges simply supported (CSSS) under uniaxial compressive load, using the variational Energy
approach. Total potential energy equation of a thick plate was formulated from the three-dimensional
constitutive relations, thereafter the compatibility equations was established to obtain the relations between
the out of plane displacement and shear deformation slope along the direction of x and y coordinates. This
total potential energy functional was differentiated with respect to deflection to obtain the governing
equation. The functions for these slopes were obtained from out of plane function using the solution of
compatibility equations while the solution of the governing equation is the function for the out of plane
displacement. Finally, the total potential energy is minimized with respect to displacement coefficients,
thereafter, the deflection and rotations were substituted back into the buckling equation derived to obtain the
formulas for calculating the critical buckling load and other the mentioned functions. The three dimensional
analysis for critical buckling of thick plates were carried out by varying parameters stiffness properties and
aspect ratios. The proposed method obviates the need of shear correction factors which is associated with
first order shear deformation theory for the energy equation formulation. The present theory unlike refined
plate theories, considered all the stress elements of the plate in the analysis. From the numerical analysis
obtained, it is found that the value of the critical buckling load increase as the span- thickness ratio
increases. This suggests that as the thickness increases, the safety of the plate structure is improved.

Keywords: CSSS plate, a new trigonometric plate theory, compatibility and governing equation, three-dimensional
buckling analysis, potential energy functional.

I. INTRODUCTION

The use of thick plate materials in engineering is on the
increase over the years due to its attractive properties
such as light weight, economy, its ability to withstand
heavy loads and ability to tailor the structural properties,
etc. Plate structures can be used in roof and floor slabs,
bridge deck slabs, foundation footings, bulkheads, water
tanks, ship hulls and spacecraft panels.
Plates can be classified into thick, membranes and thin
plates, depending upon the heaviness of the plate [1].
In-plane loading causes a plate to buckle or become
elastically unstable. The plates are mostly subjected to
transverse and compressive loads acting in the middle
plane of the plate. When a plate is subjected to forces
applied at the boundary parallel to the mid-plane of the
plate and distributed uniformly over the plate’s
thickness, the state of loading is called an in-plane
compressive loading [2]. If the in-plane compressive
load applied to the plate are further increased beyond
their critical values, very large deflections and bending
stresses will occur which will eventually lead to
complete failure of the plate. To avoid failure of the

plate, relatively more accurate and practical studies on
stability analysis of plate are required.
The classical plate theory (CPT) based on Kirchhoff
assumptions [3-4] are normally used to plates analysis.
It was discovered the solutions based on the classical
theory agree well with the full elasticity solutions (away
from the edges of the plate), provided the plate
thickness is small relative to its other linear dimensions.
The (CPT) neglect the effect of shear deformation which
makes it inconsistent in the sense that elements are
assumed to remain perpendicular to the mid-plane, yet
the equilibrium requires that stress component which
would cause these elements to deform still arise. In
other words, the thin plate model still makes the
assumption that normal stress and strain along the z
axis ( , ) are zero. It was also assumed that the
transverse shear stress ( ) are zero. This assumption
has discovered to have introduced errors, hence does
not offer a very accurate analysis of plates in which the
thickness-to length proportion is relatively large [5-6].
When the plate is relatively thick, one is advised to use
an exact theory, for example one of the shear
deformation theories.
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In this theory, there is the added complication that
vertical line elements before deformation do not have to
remain perpendicular to the mid-surface after
deformation, although they do remain straight [7; 8; 9].
Thus shear strains are generated, constant through the
thickness of the plate. Also, Mindlin’s theory satisfies
constitutive relations for transverse shear stresses and
shear strains by using shear correction factor.
In avoiding shear correction factor and to get the
realistic variation of the transverse shear strains and
stresses through the thickness of the plate for improved
reliability in the thick plate analysis, higher order shear
deformation plate theory (HSDT) evolved [10; 11; 12;
13; 14;15]. In their solution for the bending and buckling
analysis of shear deformable plates, it was discovered
that the thick plate model assumption does not offer a
more reliable analysis of plates in which the thickness-
to-length proportion is very heavy, therefore called
incomplete three-dimensional analysis.
However, a thick plate is a typical three dimensional
element and true analysis demands a complete three-
dimensional analogy. A typical 3-D plate theory
considered a deformation of the plate in the three
directions (x, y, and z) thereby involves the twelve (12)
stress/strain components in the analysis. That is, using
compete three dimensional element for the analysis. It
can be recorded that both first order theory (Mindlin’s
theory) and other higher shear deformation incomplete
three-dimensional analysis are approximations of the
exact three-dimensional equations of elasticity, but for a
typical thick plate analysis, a typical 3-D plate theory is
required [16].
Equally well, no much work has been performed along a
typical three dimensional element stability analysis of
thick plate by determining the exact displacement
function from the compatibility equation to find out the
outcome of critical buckling load.

Furthermore, the trigonometric displacement
functions can be applied successfully to solve any
boundary condition of rectangular plate; a feat that could
not be easily achieved using exponential and hyperbolic
shape functions. In addition, it is really necessary to
adopt variational method to simplify a complex
equations in the thick plate analysis because the
integration of double Fourier series is quite involving
unlike the present approach.
The author in [16] studied the 3-D elasticity buckling
solution for simply supported thick rectangular plates
using displacement potential functions approach and an
assumed displacement functions, thereafter the
governing differential equations were established using
separation of variables method and satisfying the exact
boundary conditions, an analytical solution is obtained

for linear elastic buckling of simply supported
rectangular thick plates. They neither derive the
displacement function from the compatibility equation,
nor solve for isotropic plates elastically restrained along
one the edge and other three edges simply supported.
This gap in the literature is worth filling.
This work is aimed at bridging the gap in literature by
developing a new trigonometric displacement theory
and applied in the exact three-dimensional stability
analysis of isotropic thick rectangular plate subjected to
an in-plane loading. The main objective of this study is
to determine a realistic formula for calculating the critical
buckling load of  thick rectangular plate elastically
restrained along one the edge and other three edges
simply supported (CSSS) under uniaxial compressive
load, using the variational Energy approach. The study
sought to achieve the main through the following
specific objectives:

-To generate the potential energy of a three
dimensional rectangular thick plate.
-To formulate the general governing and
compatibility equations of the plate and obtain
equations for the coefficients of deflection and
shear deformation slope for x and y coordinates.
- To determine the expressions for the critical
buckling load of the plate.

II. MATERIAL AND METHODS

A. Methodology
The processes involved in the formulation of the total
potential energy of a thick rectangular plate includes
kinematics relations and three-dimensional constitutive
relations; formulation of strain energy and Potential
energy.
Basic assumptions. The basic assumptions for three
dimensional analyses of refined shear deformation thick
continuum plate of small deflection theorems include the
following:
(i) The plate material is elastic, homogenous and
isotropic.
(ii) The middle surface of the flat plate never stretches
nor compresses before, during or after bending.
(iii) A flat x-z or y-z section, which is normal to middle x-
y plane before bending shall no longer remain normal to
the middle x-y surface after bending.
Kinematics Relations. Our formulation of energy
equation for the stability analysis thick rectangular plate
under compressive load will be based on figure 1, figure
2 and assumptions made in the previous section. As
shown in figure 1, the spatial dimensions of the plate
along x, y and z-axes are a, b and t respectively.
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Fig. 1. A rectangular thick plate element showing the in-plane compressive loading.

As shown in the figure 2, the displacement field includes
the displacements along x, y and z-axes: u, v and w
respectively. The displacement and slope along the x
axis and y axis are mathematically expressed as:= w(x, y, z) = h (1)

 = (2)
 = (3)
Considering assumption iii and figure 1, F as used is a
function of z coordinate. Thus, the in-plane
displacements; u and v as presented in the Equation 2
and 3 are further defined using trigonometric relations
for small angles as:= ( ) =  (4)= ( ) =  (5)
Where:
The symbol denotes deflection, the symbol
denotes in-plane displacement along x-axis, the symbol

denotes in-plane displacement along y-axis, the
symbol denotes shear deformation rotation along x
axis, the symbol denotes shear deformation rotation
along the y axis, and denotes shear deformation
profile.
Substituting Equation 2 and 3 into Equation 4 and 5
gives:= F(z) (6)= F(z) (7)

Fig. 2. Displacement of x-z (or y-z).

Taking the non-dimensional form of coordinates to be R
= x/a, Q = y/b and S = z/t corresponding to x, y and z-
axes respectively, the six strain components in terms of
non-dimensional coordinates are written as:

 = θ (8)
 = θ (9)
 = 1 (10)
 = θ + θ (11)
 = θ + 1 (12)
 = θ + 1 (13)

Where:
the symbol denotes normal strain along x axis, the
symbol denotes normal strain along y axis, the
symbol denotes normal strain along z axis, the
symbol denotes shear strain in the plane parallel to
the x-y plane, the symbol denotes shear strain in the
plane parallel to the x-z plane, the symbol denotes
shear strain in the plane parallel to the y-z plane.

Constitutive Relations. In the constitutive relation, the
stresses causing the body movements are considered
here. These stresses are described using generalized
Hooke’s law, therefore, the three dimensional
constitutive relation for isotropic material is given as:

⎣⎢⎢
⎢⎢⎡

ε
ε
ε
γ
γ
γ ⎦⎥⎥
⎥⎥⎤

= 1
E ⎣⎢⎢
⎢⎢⎡
1 −μ −μ 0 0 0−μ 1 −μ 0 0 0−μ −μ 1 0 0 00 0 0 2(1 + μ) 0 00 0 0 0 2(1 + μ) 00 0 0 0 0 2(1 + μ)⎦⎥⎥

⎥⎥⎤
⎣⎢⎢
⎢⎢⎡
σ
σ
σ
τ
τ
τ ⎦⎥⎥
⎥⎥⎤ (14)

Young’s modulus of elasticity and Poisson’s ratios are
denoted with E and µ respectively.
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Substituting Equations 8 to 13 into Equation 14 and writing the equations of the six stress components one by one in
term of the displacements gives:

 = Ets(1 + μ)(1 − 2μ)a (1 − μ) .  + 
β
.  + at . ∂w∂S (15)

 = Ets(1 + μ)(1 − 2μ)a  .  + (1 − μ)
β

.  + at . ∂w∂S (16)
 = Ets(1 + μ)(1 − 2μ)a  .  + β .  + (1 − μ)at . ∂w∂S (17)
 = E(1 − 2)2(1 + μ)(1 − 2μ)a . 1β  +  (18)
 = E(1 − 2)2(1 + μ)(1 − 2μ)a . ats  + 1ts ∂w∂R (19)
 = E(1 − 2)2(1 + μ)(1 − 2μ)a . ats  + 1βts ∂w∂Q (20)
Strain energy. Strain energy is defined as the average of the product of stress and strain indefinitely summed up
within the spatial domain of the body. This mathematically expressed as:U = abt2   +   +   + τ  + τ  + τ 

.
. dR dQ dS (21)

Substituting Equations 8 to 13 and Equations 15 to 20 into Equation 21, simplifying and carrying out the integration of
the outcome with respect to S gives:U = D∗2a (1 − μ)  + 1  .  + (1 − μ)  + (1 − 2)2β  + (1 − 2)2 

+ 6(1 − 2)t a  + a  + w + 1
β

w + 2a. w+ 2a. w
+ (1 − μ)a w dR dQ (22)

Where:D∗ = Et12(1 + μ)(1 − 2μ) = D (1 − μ)(1 − 2μ) (23)
Total potential energy functional. Total potential energy functional is the algebraic summation of strain energy and
external work. That is:
 = U − V (24)

However, the external work for buckling load is given as:V = abN2a w dR dQ (25)
Substituting Equations 22 and 25 into Equation 24 gives:

 = D∗2a (1 − μ)  + 1  .  + (1 − μ)  + (1 − 2)2β  + (1 − 2)2 

+ 6(1 − 2)t a  + a  + w + 1
β

w + 2a. w+ 2a. w + (1 − μ)a w
− ND∗ . w dR dQ (26)

B. Compatibility Equation
Minimizing the total potential energy functional with respect to rotation in x-z plane and rotation in y-z plane gives the
compatibility equations in x-z plane y-z plane respectively:

Π = D∗2a (1 − μ)  + 12 .  + (1 − 2)2β  + 6(1 − 2)t a  + a. w dR dQ= 0 (27)
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Π = D∗2a 12 .  + (1 − μ)  + (1 − 2)2  + 6(1 − 2)t a  + a. w dR dQ= 0 (28)
For Equations 27 and 28 to be true, their integrands must be zero. That is:(1 − μ)  + 12 .  + (1 − 2)2β  + 6(1 − 2)t a  + a. w = 0 (29) 3112 .  + (1 − μ)  + (1 − 2)2  + 6(1 − 2)t a  + a. w = 0 (30) 32
Using law of addition, the Equations 12 and 13 will be simplified and substituted into Equations 29 and 30
respectively, then factorizing the outcome gives:(1 − μ) + 1 . (1 − ) + 6(1 − 2)at . 1 + 1 = 0 (31)1 . w (1 − μ) + (1 − μ) + 6(1 − 2)at . 1 + 1 = 0 (32)
One of the possibilities of Equation 31 to be true is for the terms in the bracket to sum to zero. Adding terms in the
brackets of Equation 31 and 32 gives:6(1 − 2)(1 + )t = −c(1 − μ)a + 1 (33)
C. General Governing Equation
The general governing equation is obtained by minimizing the total potential energy functional with respect to
deflection. That is:

Π = D∗2a 12(1 − 2)t w + 1
β
. w + a.  + a  + 2 (1 − μ)a . w − 2ND∗ . w dR dQ= 0 (34)

Substituting the simplified Equations 12 and 13 into Equation 34 and simplifying the outcome gives:D∗2a 6(1 − 2)(1 + c)t w + 1
β
. w + (1 − μ)a w − ND∗ . w dR dQ = 0 (35)

Let:= w .w .w (36)= w .w (37)w = w .w (38)N = N + N (39)
Substituting Equation 37, 38 and 33 into Equation 35 and simplifying the outcome gives: gives:D∗2a w + 2

β
. w + 1

β
. w − N agD∗ . w w + wg (1 − μ)a . w − N aD∗ . w dR dQ = 0 (40)

For Equation 40 to be true, its integrand must be zero. That is:w + 2
β
. w + 1

β
. w − N agD∗ . w w + wg (1 − μ)a . w − N aD∗ . w= 0 (41)

One of the possibilities of Eqn. 41 to be true is for the terms in each of the two brackets sum to zero. That is:w + 2
β
. w + 1

β
. w − N agD∗ . w = 0 (42)(1 − μ)a . w − N aD∗ . w = 0 (43)

Eqns. 42 and 43 are the two Governing Equations of a 3-dimensional rectangular plate subject to pure buckling.
Thus, the exact solution to the differential equation of Equation 42 is in trigonometric form gives:

w = [1 ( ) ( )] . [1 ( ) ( )] (44)
Recall from Equation 1, w = . ℎ and ws is only differential along z-axis. Hence, it is constant along x-axis and y-
axis. Thus, Substituting Equation 45 into Equation 37, gives;
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w = ∆ [1 ( ) ( )] . [1 ( ) ( )] (45)
Where:w = ∆ + ∆ S (46)
And,w = ∆ (47)
Substituting Equation 45 into the simplified Equations 12 and 13 and simplifying the outcome gives:

= . ∆ . [1 ( ) ( )] . [1 ( ) ( )] (48)
 =

β
. ∆ . [1 ( ) ( )] . [1 ( ) ( )] (49)

In symbolic forms, Equations 48 and 49 are:

 = . ℎ (50)
 =

β
. ℎ (51)

D. Direct Governing Equation
The governing equation is obtained by minimizing the total potential energy functional with respect to deflection
coefficient.
Substituting Equations (1),(50) and (51) into Equation (26) gives:

 = D∗2a (1 − μ) + 1 . + (1 − 2)2 + (1 − 2)2 + (1 − μ)
+ 6(1 − 2) a + + 2 . + 1

β
. + + 2 .

− N aD∗ . (52)
Where:= ℎ : = ℎ ; = ℎ ;
= ℎ ; = ℎ

Minimizing Equation 52 with respect to A2R and A2Q and Solving Equations simultaneously gives respectively:= (53)= (54)
Where:= ( − )( − ) ; = ( − )( − )= (1 − μ) + 12 (1 − 2) + 6(1 − 2) a= (1 − μ) + 12β (1 − 2) + 6

β
(1 − 2) a= = 12 ; = −6(1 − 2) a ; = = − 6

β
(1 − 2) a

Minimizing Equation 52 with respect to A1 gives:
Π = 6(1 − 2) a [ + ]. + 1

β
. [ + ]. − N aD∗ . = 0 (55)

Substituting Equations 53 and 54 into Equation 55 and rearranging gives:
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N aD∗ = 6(1 − 2) a [1 + ] + 1
β
. [1 + ]. (56)

This gives:a N = (1 + μ)2 a [1 + ] + 1
β
. [1 + ]. (57)

III. NUMERICAL ANALYSIS

Considering Fig. 3, the numerical analysis of CSSS rectangular plate will be performed to determine the value of the
critical buckling load at various span-thickness ratios. A trigonometric displacement function for the analysis CSSS
plate was derived according to author in [17] as presented in Equation (45).

Fig. 3. CSSS Rectangular Plate subjected to uniaxial compressive load.

Equation 45 can be re-written as:(∋,∈) = + + ( ) + ( ) . + + ( ) + ( ) (58)
At = = 0; = 0 (59)
At = = 1; . = = 0 (60)
At = = 1; ∪= 0 (61)
At = 0; . = 0 (62)
Substituting Equations (59 to 62) into Equation (45) and solving gives the following constants:= 0; 2 + − 2 (63)
The value of that satisfies Equation (61) is:= [ ℎ = 1, 2, 3… ]; = 4.49340946 (64)
Substituting Equation (64) into (45) and its differentials thereby satisfying the boundary conditions of equation (59 to
63) gave;= = = 0; = ; = − (65)
Substituting the constants of Equation (67) into Equation (47) gives;= ( . ) × ( − − + ) (66)
That is:∪= × ( ). ( − − + ) (67)
Recall from Equation 26, that;= ℎ.
Let the amplitude,= × (68)
And;ℎ = ( ). ( − − + ) (69)
Thus, the trigonometric deflection functions after satisfying the boundary conditions is= ( ). ( − − + ). (70)
IV. RESULTS AND DISCUSSIONS

The result of stiffness coefficients for deflection of rectangular thick analysis subjected to of CSSS boundary condition
were obtained using the trigonometric functions as obtained in Equation 70 and presented in Table 1. The Poisson’s
ratio of the plate is 0.25.

Table 1: The trigonometric stiffness coefficients of deflection function for CSSS plate.

Deflection form
Trigonometry CSSS 928.2428 1,015.280 2,057.980 94.05066 102.8692

The expression of the critical buckling load
π
and was obtained in the previous section and the numerical

values, determined using Equation 58 and 59 respectively. Table 2 and 3 contains the result of the non-dimensional



Onyeka et al., International Journal on Emerging Technologies 12(1): 228-240(2021) 235

values of the critical buckling load for an isotropic rectangular thick plate elastically restrained along one the edges
and other three edges simply supported (CSSS) under uniaxial compressive load  at varying aspect ratio.
For the non-dimensional values obtained in Table 3 and 4, it reveals that the values of critical buckling load increase
as the span- thickness ratio increases. This load increase continues until failure occurs. This means that a decrease
in plate thickness increases the chance of failure in a plate structure. This means that the plate structure is not safe
and needed to be maintained. To avoid this, the designer should consider higher thickness or increase the span-
thickness ratio of the plate. Furthermore, it can be deduced that as the in-plane load on the plate increase and
approaches the critical buckling, the failure in a plate structure is a bound to occur.

Table 2: Non-dimensionalCritical Buckling Load on the CSSS Rectangular Plate Using Trigonometric
Function.N = N a

∝= = 1.0 = 1.5 = 2.0 = 2.5 = 3.0 = 3.5 = 4.0 = 4.5 = 5.0
4 4.3145 2.1634 1.5734 1.3356 1.2166 1.1484 1.1057 1.0771 1.0570
5 4.8168 2.3330 1.6761 1.4151 1.2854 1.2115 1.1652 1.1343 1.1126

10 5.7053 2.6057 1.8359 1.5371 1.3903 1.3072 1.2553 1.2208 1.1966
15 5.9076 2.6634 1.8689 1.5621 1.4117 1.3266 1.2736 1.2383 1.2135
20 5.9818 2.6842 1.8807 1.5710 1.4193 1.3335 1.2801 1.2445 1.2196
30 6.0361 2.6993 1.8892 1.5774 1.4248 1.3385 1.2848 1.2490 1.2239
40 6.0553 2.7046 1.8922 1.5797 1.4267 1.3403 1.2864 1.2506 1.2255
50 6.0642 2.7071 1.8936 1.5807 1.4276 1.3411 1.2872 1.2513 1.2262
60 6.0691 2.7084 1.8944 1.5813 1.4281 1.3415 1.2876 1.2517 1.2266
70 6.0720 2.7092 1.8949 1.5817 1.4284 1.3418 1.2879 1.2519 1.2268
80 6.0739 2.7097 1.8952 1.5819 1.4286 1.3419 1.2880 1.2521 1.2269
90 6.0752 2.7101 1.8954 1.5820 1.4287 1.3421 1.2881 1.2522 1.2270

100 6.0762 2.7103 1.8955 1.5821 1.4288 1.3422 1.2882 1.2523 1.2271
1000 6.0801 2.7114 1.8961 1.5826 1.4292 1.3425 1.2886 1.2526 1.2274
1500 6.0802 2.7114 1.8961 1.5826 1.4292 1.3425 1.2886 1.2526 1.2274

Table 3: Non-dimensional Critical Buckling Load on the CSSS Rectangular Plate using Trigonometric
Function.N = N a

∝= = 1.0 = 1.5 = 2.0 = 2.5 = 3.0 = 3.5 = 4.0 = 4.5 = 5.0
4 3.7851 1.8979 1.3804 1.1717 1.0673 1.0075 0.9700 0.9450 0.9273
5 4.2258 2.0467 1.4704 1.2414 1.1277 1.0628 1.0223 0.9952 0.9761

10 5.0052 2.2860 1.6106 1.3485 1.2197 1.1468 1.1013 1.0710 1.0497
15 5.1827 2.3366 1.6396 1.3704 1.2385 1.1638 1.1173 1.0863 1.0646
20 5.2479 2.3549 1.6499 1.3782 1.2452 1.1699 1.1230 1.0918 1.0699
30 5.2954 2.3681 1.6574 1.3839 1.2500 1.1743 1.1271 1.0957 1.0737
40 5.3123 2.3727 1.6601 1.3859 1.2517 1.1758 1.1286 1.0971 1.0751
50 5.3201 2.3749 1.6613 1.3868 1.2525 1.1765 1.1293 1.0978 1.0757
60 5.3244 2.3761 1.6620 1.3873 1.2529 1.1769 1.1296 1.0981 1.0761
70 5.3270 2.3768 1.6624 1.3876 1.2531 1.1771 1.1298 1.0983 1.0763
80 5.3286 2.3772 1.6626 1.3878 1.2533 1.1773 1.1300 1.0985 1.0764
90 5.3298 2.3776 1.6628 1.3879 1.2534 1.1774 1.1301 1.0986 1.0765

100 5.3306 2.3778 1.6629 1.3880 1.2535 1.1775 1.1301 1.0986 1.0765
1000 5.3341 2.3787 1.6635 1.3884 1.2539 1.1778 1.1304 1.0989 1.0768
1500 5.3341 2.3787 1.6635 1.3884 1.2539 1.1778 1.1304 1.0989 1.0768
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Looking closely at Fig. 4 to 12, which shows that the results of the critical buckling load of an isotropic rectangular
thick plate elastically restrained along one the edge and other three edges simply supported (CSSS) under uniaxial
compressive load at varying aspect ratio. It reveals that the increase in the value of the length-breadth ratio ( =1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0) decreases the value of the critical buckling load N . This continued until
safety is ensured in the plate structure. In the result, it is observed that an increase in plate width increases the
chance of failure in a plate structure. To maintain this, the designer should consider higher plate width or decrease
the length-breadth ratio of the plate.
In summary, Table 4 to 5 and figure 4 to 10 presented here, it is observed that as the in-plane load which will cause
the plate to fail by compression increases from zero to critical buckling load (N ), the buckling of the plate exceed
specified elastic limit thereby causing failure in the plate structure. This means that, the load that causes the plate to
deform also causes the plate material to buckle simultaneously.

Fig. 4. Graph of Critical buckling load versus aspect ratio of a square rectangular plate.

Fig. 5. Graph of Critical buckling load versus aspect ratio of plate at length-to-breadth ratio of 1.5.
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Fig. 6. Graph of Critical buckling load versus aspect ratio of plate at length-to-breadth ratio of 2.0.

Fig. 7. Graph of Critical buckling load versus aspect ratio of plate at length-to-breadth ratio of 2.5.

Fig. 8. Graph of Critical buckling load versus aspect ratio of plate at length-to-breadth ratio of 3.0
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Fig. 9. Graph of Critical buckling load versus aspect ratio of plate at length-to-breadth ratio of 3.5

Fig. 10. Graph of Critical buckling load versus aspect ratio of plate at length-to-breadth ratio of 4.0.

Fig. 11. Graph of Critical buckling load versus aspect ratio of plate at length-to-breadth ratio of 4.5
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Fig. 12. Graph of Critical buckling load versus aspect ratio of plate at length-to-breadth ratio of 5.0

V. CONCLUSION AD RECOMMENDATION

It can be concluded that the classical theory is good for thin plates but over-predicts buckling loads in relatively thick
plates. Hence, the incomplete three-dimensional shear deformation theory is only an approximate relation for
buckling analysis of thick plate (although it turns out to be exact in the case of pure bending). Furthermore, the
trigonometric displacement functions developed were derived from the compatibility equation obtained from first
principle and their use in the analysis of thick plates will yield exact results. Thus, the displacement functions
developed in this work are recommended for use in analysis of isotropic thick rectangular plates.
Data Availability Statement: All data, models, or code that support the findings of this study are available from the
corresponding author upon reasonable request.
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