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ABSTRACT: This paper proposes a new strategy to meet the controllableheating, ventilation, and air 

conditioning (HVAC) load with a hybrid-renewable generation and energy storage system. Historical hourly 

wind speed, solar irradiance, and load data are used to stochastically model the wind generation, photovoltaic 
generation, and load. Using fuzzy C-Means (FCM) clustering, these data are grouped into 10 clusters of days 

with similar data points to account for seasonal variations. In order to minimize cost and increase efficiency, 

we use a GA-based optimization approach together with a two-point estimate method. Minimizing the cost 

function guarantees minimum PV and wind generationinstallation as well as storage capacity selection to 

supply the HVAC load. Different scenarios are examined to evaluate the efficiency of the system with 

different percentages of load shifting. The maximum capacity of the storage system and excess energy are 

calculated as the most important indices for energy efficiency assessment. The cumulative distribution 

functions of these indices are plotted and compared. A smart-grid strategy is developed for matching 

renewable energy generation (solar and wind) with the HVAC load. 

 
Key words: Energy efficiency, genetic-algorithm (GA)-based optimization approach, HVAC load, probabilistic 
modeling, smart grid strategy, two-point estimate method. 

a,b Shape parameters for Beta distribution 

Ac Surface area of the PV array. 
c Cluster number. 
C Total number of clusters 
Cp Cost of power rating of the storage system 
Cpv Installation cost of the storage system 
Cs Installation cost of the storage system 
Cw Installation cost of wind 
 d Hourly self-discharge rate of the storage 

System. 
EE Excess energy. 
EEt Excess energy at hour. 
fxk PDF for the th input random variable 
Gpv Net PV output power. 
Gw Net output power of the wind generator 
Gpv,t PV power generation at hour. 
Gw,t Wind power generation at hour. 
Gw,r Wind rated power 
G`pv PV output power. 
G`w Output power of the wind generator 
k Shape parameter for Weibull distribution 
Lt Load demand at hour. 
L`t Modified HVAC loads at hour. 
L s,t Shifted load demand at time 
P Maximum power rating of the storage 

system. 
Pk,1,Pk,2 Probabilities of concentrations 
Pt Power rating of the storage system at time . 

S Maximum capacity of the storage system. 
St Energy stored in the storage system at time . 
t Time. 
v Wind speed. 
vi Cut-in wind speed. 
vo Cut-out wind speed. 
vr Rated wind speed 

Xk,1Xk,2 Concentrations of . 
Xk th input random variable 
αpv Installed capacity of PV 
αw Installed capacity of wind 
δ Percentage of HVAC load to be shifted to 

thenext hour. 
ήpv Efficiency of the PV power interface 
ήs Roundtrip efficiency of the storage ystem 
ήw Efficiency of the wind power interface 
ή`pv Efficiency of the PV array. 
λ Scale parameter for Weibull distribution 

 Λ k,3 Coefficient of skewness for . 
µXK Expected value of the th input random 

variable 
£K,,1 £K,2 Locations of concentrations. 
XK tandard deviation of the th input random 

Variable. 
T Gamma function. 
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I. INTRODUCTION 

The.is currently increasing its use of renewable energy and 
decreasing its reliance on imported fossilfuels. The 
development of the smart grid will facilitate the 
integration of renewable energy sources into the power 
grid.Smart-grid applications include transmission, 
distribution, and distributed generation [1]. The “smarter” 
monitoring and control will create a more efficient energy-
management system for residential customers. Smart-grid 
applications in distribution systems include smart metering 
technologies for efficient integration of distributed 
renewable generation applications, fair pricing 
mechanisms, remote monitoring, and home automation 
and control of electrical power consumption. However, the 
stochastic nature of PV and wind energy resources 
complicates theintegration of renewable generation 
applications. In addition, wind is often not correlated with 
the load pattern and may be discarded even when 
abundantly available [2], [3]. The U.S. Department of 
Energy estimates that HVAC loads account for 40%–60% 
of the energy consumption in U.S. commercial and 
residential buildings [4]. Since these time-flexible loads 
are deferrable for a fewminutes or hours at little or no cost, 
their energy consumption can be adapted according to the 
renewable power-supply fluctuation. This demand-side 
flexibility can counterbalance renewable supply variations 
and efficiently integrate renewable generation. Energy 
efficiency can be furtherincreased by storing energy when 
renewable power generation exceeds the load 
requirements then releasing it when renewable generation 
is insufficient to supply the load [5]. The efficiency of a 
hybrid system is dependent on the renewable generation 
efficiency,the self-discharge rates, and roundtrip 
efficiencies of the energy storage units, and on the sizing 
of the system components [6], [7]. The design, simulation, 
and optimization of hybrid powersystems have been the 
subjects of several studies [8]–[18]. Operating concepts, 
performance evaluation, and economic analysis of such 
systems were investigated in [8]–[12] where the 
component sizing is either arbitrary or based on practical 
and experimental estimates, with no attempt at optimizing 
their parameter values. References [13]–[17] employed a 
variety of heuristic optimization techniques for the optimal 
design and operation of the hybrid systems. However, 
none of these investigations focused on demand flexibility 
and HVAC loads,in particular, or on matching HVAC 
loads with renewable energy sources without the need for 
supplementary conventionalenerations. Reference [18] 

presented an optimal component-sizing framework for the 
hybrid system, but the stochasticnature of wind/PV 
generation is not considered in the modeling.Emerging 
smart-grid strategies can provide the distributionsystem 
with an opportunity to balance renewable generationand 
HVAC loads for a residential feeder using energy 
storagesystems. A smart load shifting strategy is proposed 
in thispaper to shift the HVAC loads based on parameters 
whichcharacterize the load flexibility, such as the 
percentage of loadto be shifted, or the deadline by which 
this load should be met.Unlike [13]–[17], which utilized 
conventional generation tocomplement a hybrid system, 
the proposed strategy eliminatesthe need for 
supplementary generation and meets the HVACload at the 
desired confidence level. The proposed approachuses 
FCM to obtain data clusters for characterizing 
seasonalvariations. This provides a better representation of 
the system’sbehavior than earlier work [8]–[18]. In 
addition, the proposedmethodology characterizes the 
uncertainties of the stochasticvariables (wind speed, solar 
irradiance, and HVAC load) whichare not addressed in 
[18]. The combination of the GA andtwo-point estimation 
enhances the efficiency of the hybridsystem when 
compared to classical optimization approaches.This paper 
proposes a smart-grid strategy for matchingrenewable 
energy generation with HVAC loads using 
hybridrenewable energy generation and energy storage. 
Section IIIexplains the new GA optimization and two-
point estimationmethodology, reviews FCM clustering, 
and explains howit is used to cluster historical hourly wind 

speed/clearness index/load data. It also presents 
stochastic models of wind and PV generation and 
HVAC load based on actual data. Different scenarios 
are studied and their simulation results are given in 
Section IV. Conclusions are presented in Section V. 

II. METHODOLOGY 

A. Probabilistic Modeling of Generation and HVAC 

Load Hybrid generation systems are inherently 
uncertain because of the stochastic nature of wind 
speed, solar irradiance, and load characteristics. The 
uncertainties of wind/solar generation are 
characterized using the probability density functions 
(PDFs)whose statistics are obtained from historical 
data of wind speed and solar irradiance [19], [20]. 
FCM clustering is used in this paper to account for 
seasonal variation in the data [21]. 
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Tenyears of historical hourly data are utilized to 
produce three datasets for: wind speed, solar 
irradiance, and load [22]. Each datapoint is specified 
by a membership grade between 0 and 1. 
Theobjective function of the FCM is to minimize the 
distance fromany given data point to a cluster center 
weighted by that datapoint’s membership grade. An 
iterative algorithm is used to updatethe cluster 
centers and the membership grades for each 
datapoint, which moves the cluster centers to the 
most appropriatelocation within the data sets. The 
elbow method is used to determinethe number of 
clusters [23]. Accordingly, the days aregrouped into 
10 clusters with similar 24-h wind speed, solar 
irradianceand load data. Maximum-likelihood 
estimates of thedistribution parameters are calculated 
for the historical hourlydata within a cluster. Each 
cluster is then represented by threesets of 24 
individual PDFs over the 24-h period. 
 
a) Hourly Wind Power Modeling: Wind speed is 
statistically modeled using the Weibull distribution 
[19], [20]. The PDF for a Weibull distribution is 
given by 

 
Using curve fitting, maximum-likelihood estimates 
of theWeibull distribution parameters are calculated 
for historicalhourly wind speed data. The output 
power of a wind generator 
is a function of wind speed and given by [24]: 

 
If the power-electronic interface has an efficiency of, 
ήw the netwind power output is given by 

 
b) Hourly Photovoltaic Power Modeling: Unlike 
windspeed, the uncertainty of solar irradiance cannot 
be directlymodeled using a PDF. This is due to the 
fact that the solarirradiance has very strong diurnal 
patterns as at night time; thevalue of solar irradiance 

is certain to be zero [25]. Hence, thispaper uses the 
clearness index (kt) to characterize solar 
irradiance.The hourly clearness index is defined as 
the ratio of theirradiance on a horizontal planeIt 

(kW/m2 ), to the extraterrestrial 
total solar irradianceIo(kW/m2 ) 

 
The clearness index is statistically modeled using the 
beta distribution[20], [26]. The PDF for a beta 
distribution over a timeintervalt is given by 

 
Using curve-fitting, maximum-likelihood estimates 
of thebeta distribution parameters are calculated for 
historical hourlyclearness index data. Once the 
hourly clearness index is known, 
the irradiance on a surface with inclinationβ to the 
horizontalplane isIβcalculated as 

 

where  and are parameters that depend on 
inclination, declination,reflectance of the ground, 
latitude, hour angle, and sunsethour angle. The PV 
power output is a function of the clearnessindex and 
is given by [19] 

 
If the power-electronic interface has an efficiency of 
,ήpv thenet PV power output is given by 

 
The values for and are calculated using the 
efficiencycurves of the power converters [27], [28]. 
c) Hourly Load Modeling: This paper uses a 
Gaussiandistribution with specific lower and upper 
limits to model thehourly load variation [20]. Using 
curve fitting, maximum-likelihood estimates of its 
parameters are calculated for historicalhourly load 
data. 
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B. Optimization Approach Based on the GA Method 
Optimization using GAs provides a powerful tool to 
obtainthe optimal capacity for solar energy, wind energy, 
and storagein a hybrid system. Generally, a set of initial 
solutions (initialpopulations), randomly selected from the 
feasible solutionspace, is used to start the GA. The fitness 
function is evaluatedfor each solution, and the solutions 
are consequently ranked. 
The population then evolves through several operations, 
suchas reproduction, crossover, and mutation to optimize 
the fitnessfunction and obtain the final optimal solution. 
The processis repeated until a termination criterion is 
satisfied. This evolutionaryalgorithm is preferred to 
classical optimization approachesbecause it can handle 
the nonlinear, nonconvex, andnonsmooth optimization 
problem of the component sizing forthe hybrid system. 
The nonconvexity of the problem makes itdifficult for 
classical optimization methods to obtain a 
globaloptimum. GAs, on the other hand, globally search 
the domainof possible solutions for an optimal solution 
[29]–[31]. 
Several implementation provisions are considered in 
thispaper to avoid convergence to local minima. In this 
regard,the double vector representation rather than the 
binary oneis used for chromosome codification to 
guarantee mutationcoherence. Scaling the decision 
variables and usingmegawatts/megawatt-hours 
(MW/MWh), instead of kilowatts/kilowatt-hours 
(kW/kWh) for the components sizingkeeps the feasible 
solution space smaller and facilitates mutation. 
A large population size is selected to increase 
thepossibility of convergence to the global minimum, but 
thissignificantly increases the computational burden. Two 
elitismchildren are maintained for each generation to 
ensure retainingdesirable solutions. The balance between 
crossover and mutationoffspring is kept at a desirable 
level by adjusting thecrossover rate around 78%.  
To ensure satisfying the constraints,a large penalty factor 
is assigned to a solution that violates aconstraint. 
Enhanced system efficiency as well as the fewernumber 
of variables provided by the GA make it a bettersolution 
than classical optimization approaches for 
optimalcomponent sizing of hybrid systems. The 
parameters of the GAare given in Table III.Using 
historical hourly data for wind and PV generation 
andcooling load, we first normalize the PV and wind 
generationcurves by dividing them by the maximum PV 
and wind generation. 

Next, we assign the scaling parameters αPV and αWto the 
normalized PV and wind curves which show the 
installedcapacities of PV and wind generation. We obtain 
the optimumscaling parameters αPV and αW as well as 
the storage capacityby minimizing the cost function 

 
The last two terms are the capital costs needed for 
installing the storage system. The total capital cost of the 
storage system is composed of four components: 1) the 
capital cost for energy; 2)the capital cost for power; 3) the 
system energy balance cost; and 4) the system power 
balance cost. The balance of system energy and power 
cost can be included inCs andCp , respectively [32].Also, 
the inverter-based interface cost for connecting the PV 
and wind to the network is considered part of Cpv and 
Cw. The optimization formula given in (9) is subject to 
severalphysical constraints on the parameters. The first 
constraint is an energy balance equation to guarantee that 
the combination of wind and PV generation meets the 
required HV or coolingload over the optimization period. 
Note that the efficiency of the storage system is always 
less than unity due to the losses. To compensate for these 
losses, additional generation is needed. Hence, the energy 
balance equation must be changed to the following 
inequality constraint: 

 
The next constraint guarantees an instantaneous balance 
betweenthe sum of the generated wind energy, PV energy, 
andstored energy, and the instantaneous load. The storage 
is charged 
WhenGpv,t +Gw,t 

__  
Lt+Ls,t ≥0 and discharged when 

Gpv,t+Gw,t 
__

Lt+Ls,t≥o . The instantaneous energy 
balancein the storage system is as follows: 
a) For charging 
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b) For discharging 

 
Utilities often have some intelligent control over 
HVACloads, including agreements with consumers to shift 
part oftheir HVAC loads during peak load hours, if there is 
a problemin the operation of the transmission network. For 
example, NVEnergy’s cool share program is associated with 
anapproximate145-MW remote-controlled air conditioning 
load. Theseloads can be dispatched by NV Energy through 
“raise/lower”thermostat commands as needed and may 
include pool pumps,refrigerators, hot tubes, etc. which 
“need to run” but their exacttime of operation is not critical. 
Load shifting can provide someflexibility regarding this 
problem. Since the hourly generationof wind farms and 
solar plants is not strictly under human control,load shifting 
can be useful during periods of insufficientgeneration. 
Implementing smart load control can reduce themismatch 
between renewable generation and HVAC load. Load 
shifting is expressed as 

 
To ensure that the shifted load is positive and is less than 
thespecific percentage of the load at each time , we need 

 
Storage systems have a minimum storage level, denoted by, 
that must be maintained to prolong lifetime. In 
addition,there is typically a maximum storage capacity that 
is dictated bythe size of the renewable generation units, 
which we denote as. The storage at time is thus governed by 

 
The upper bound is not known a priori and is 
optimallycalculated in our solution.The next constraint 
ensures that the capacity of the storagesystem is equal to the 
maximum storage capacity needed tomaintain excess energy 
at hourt 

 
Assuming the same charge and discharge rate, the 
maximumpower rating of the storage unit is given by 

 

The optimization problem can be formulated as follows: 

 
where f(x,u) is the objective function of (9); the decision 
variablesare (u) are αPV ,αW  ; and the dependent 
variables(x) are EE, 
 

. The equality constraints of 
(18) are givenby (10b), (11a), (11b), (12), (15), and (16), 
while the inequalityconstraints of (19) are given by (13) and 
(14).We first solve a simplified optimal component-sizing 
problemwithout load shifting for the hybrid system using a 
GA mplementedin MATLAB. We then solve the same 
problem usingdiscontinuous nonlinear programming 
(DNLP) in GAMS.Table IV shows the simulation results for 
this problem. Comparing 
the GA-based results with the DNLP demonstrates 
theimproved efficiency of the proposed methodology over 
theclassical optimization approaches. 
 

C. Probabilistic Optimization 
The randomness of wind and PV power output and loads 
aretaken into account by using stochastic optimization. The 
latteris performed using analytical methods or simulation 
methods[33]. Monte-Carlo simulation (MCS) is a simple 
and accuratesimulation method that uses historical data to 
determine theirPDFs. Random values from these PDFs are 
used to quantifythe uncertainties. The large computational 
effort is the mainobstacle for efficient use of this method. 
Several approximatemethods have been proposed to reduce 
the computationalburden including Taylor series expansion 
[34], first-ordersecond-moment method (FOSMM) [35], 
cumulants [36], andpoint estimation (PE) [37]. PE is a 
popular analytical methodbecause of its accuracy, 
simplicity, and speed. Two-point estimation (2PE), a 
variation of PE, is applied in this paper to model the 
uncertainties [38], [39]. Vectors of input and output 
random variables and the corresponding nonlinear function 
are given by (20)–(22). 
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Two concentrationsf x h(Xk,1,Xk,2)of are used to replacef xhby 
matching its first three moments. The functional relation 
betweenXk andh(Xk)is then used to produce two estimates of 
variants  
(Yk,1=h(µ x1,µ x2,…..xk,I,..µ x xn-1,µ xm)i= 1,2)from (x k,1, x 

k,2).P k.1 and Pk,2scale these estimates to compute the 
expected value and standard deviation of the output. Fig. 1 
shows the flowchart for the proposedmethod. Ten years of 
historical hourly wind speed, solar irradiance, and load data 
are the inputs. FCM is then used to cluster these data into 
clusters of days with similar data points. Next, the scaling 
parameters ( and ) are initialized. The parameters of the 2PE 
shown in Fig. 1 are 

 
Once the 2PE parameters are calculated for the input 
random variables, (2), (3), (7), and (8) are used to calculate 
these parameters for the normalized net wind and PV power 
outputs. The 
normalized outputs are then multiplied by the scaling 
parameters to calculate the hourly net PV and wind 
generation using vector Z. Note thatµ x kinZ is replaced 
byxki(i=1.2), at each iteration. The power rating of the 
storage system at timet(Pt) is  then calculated by the energy-
management function (EMF). Pt If is positive, more 
generation is provided, and the storage system is charged. If 
negative, the load exceeds generation, and the storage 
system is discharged to supply the excess load. If the energy 
stored is less than S min, part of the load is shifted to the 
next hour. If the energy stored is less thanafter the 
maximum-allowable load shifting (a specific percentage of 
the HVAC load(δ )), new scaling parameters are selected by 
GA to satisfy this constraint. The first and second 
momentsof the output variables are then calculated by 

 
Given E(Y) andE(Y2), we calculate the mean and standard 
deviation of the output variables 

 
 
 
 

The fitness function is then evaluated, and a confidence 
coefficient is allocated to the probabilistic constraints 
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Next, the constraints are checked for violation. If there is 
any violation, the violated constraints are assigned a large 
penaltyfactor and combined with the fitness function to give 

 
This combination assigns higher cost to an infeasible 
solution candidate than to a feasible one with the same 
objective valuesImplementing the crossover and mutation 
operators to the chromosomes, the offspring population is 
created and then used to produce the next generation by 
selection and reproduction. This evolutionary algorithm is 
repeated until reaching the termination 
criterion. Eventually, the best chromosome is selected as the 
optimal solution. The fitness function of the GA is a 
weighted sum of the hybrid system installation costs for all 
of the clusters and is given by Fitness Function Cost (29)  

 
The weighting coefficient for each cluster is defined as the 
ratio of the number of dayswithin that cluster to the total 
numberof days (365 10 days). Minimizing the installation 
cost of the 

III. CASE STUDIES 

In this section, we examine two scenarios for an energy-
management system combining renewable energy 
generation andenergy storage. The first is a simplified 
deterministic scenario that allows us to better demonstrate 
the interplay betweenstorage and renewable energy 
generation to meet an HVAC load. The second scenario is 
stochastic and includes the complexityintroduced by the 
uncertainties of renewable energy generation and cooling 
loads. We present simulation results forthe optimal GA or 
GA-2PE solution subject to the constraints (10.b) and (11)–
(16). 

A. Scenario I: Deterministic Wind/PV Generation and 

CoolingLoad 
Scenario I corresponds to deterministic wind generation, PV 
generation, and cooling load for a residential feeder over 
asingle day [40]–[42]. The peak wind generation level is 
typically significantly less than the generation capacity as 
observedin this data set [40]. Two different cases are studied 
using GA-based optimization. Fig. 2 shows the hourly 
generationof the PV system and wind system normalized 
based on the maximum-installed capacities of PV and wind 
generation for asingle day. Fig. 3 shows the hourly cooling 
load for a residential feeder. Installation costs of the storage 
system for energy and powerare U.S.$0.2/Wh, and 
U.S.$0.25/W [32]. Piecewise linear costsingle day. 
functions are assigned to the PV and wind eneration to 
calculate the associated installation costs [43], [44]. These 
are the averageinstallation costs of the different technologies 
for utilityscale (hundreds to thousands of kilowatts) 
systems.  
 

The minimum-allowable charge of the storage system is 3% 
of its rated capacity [45]. Thisminimum charge, necessary 
for some storagetechnologies, is for ensuring a longer 
lifetime.  

 

Fig. 2. Normalized hourly PV generation and wind 
generation. 

 

 
 

Fig. 3. Hourly cooling load of a residential feeder for a 
single day 

Case Study I: The optimization problem is solved for the 
normalizedPV generation, wind power, and cooling load as 
shown in Figs. 2 and 3. The maximum-allowable load 
shifting is 30%of the load for each hour. The simulation 
results in Fig. 4 show that in the absence of load shifting, 
the modified cooling load isthe same as the cooling load 
during hours 1–15. Storage shows the state of charge of the 
storage system at each hour. At eachhour, the energy stored 
in the storage system at time can be calculated by adding 
two components; the energy stored in thestorage system at 
time reduced to account for discharge over one hour, and the 
excess energy given by the differencefunctions are assigned 
to the PV and wind generation to calculate the associated 
installation costs [43], [44].  
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These are the average installation costs of the different 
technologies for utility scale (hundreds to thousands of 
kilowatts) systems. The minimum-allowable charge of the 
storage system is 3% of its rated capacity [45]. This 
minimum charge, necessary for some storage technologies, 
is for ensuring a longer lifetime. Case Study I: The 
optimization problem is solved for the normalizedPV 
generation, wind power, and cooling load as shown in Figs. 
2 and 3. The maximum-allowable load shifting is 30%of the 
load for each hour. The simulation results in Fig. 4 show 
that in the absence of load shifting, the modified cooling 
load isthe same as the cooling load during hours 1–15. 
Storage shows the state of charge of the storage system at 
each hour. At eachhour, the energy stored in the storage 
system at time can be calculated by adding two components; 
the energy stored in the storage system at time reduced to 
account for discharge over one hour, and the excess energy 
given by the differencebetween the generation and load over 
a 1-h period scaled to account for the roundtrip efficiency of 
the storage system. As shown, wind generation is always 
included in the optimal solution since wind installation cost 
permegawatt is less than PV installation cost. The storage 
system is charged in the early hours of the day when more 
energy is available and the load is low, 

 

Fig. 4. Simulation result for Case Study I (Scenario I). 

then releases the energy stored when the load exceeds 
generation. During peak hours when the wind is low and the 
storageis not sufficiently charged, load shifting dispatches 
the flexible loads to hours when the wind energy is in excess 
of the load.This is evident for hours 17, 22, 23, and 24 
where the shifted loads are fully met. For this case study, the 
optimum PV, wind installation, and storage capacity are 0.0, 
1.9, and 2.92 MWh (with 0.93 MW). The excess energy 
(i.e., the amount of energy in excess of the load) is 0.85 
MWh. Total installation cost of the system is 4.615 10 ( 
3.80 10 for wind and 0.815 10 for storage). 
Case Study II:This case study evaluates the possibility of 
matching HVAC load and PV plants, which is 
particularlyimportant for regions with poor wind speed 
profiles and an abundance of solar energy.  
 
 

The 24-h simulation periodstarts at noon when solar energy 
is most readily available. The optimum PV and storage 
capacity are 2.85 MW and 6.4MWh (with 1.81 MW), and 
the excess energy produced is 4.58 MWh. Total installation 
cost of the system is minimizedat 13.404 10 ( 10 for PV 
1.733 10 for storage). The simulation results show that by 
installing more PV capacity and storage capacity, the load 
can be fully supplied without wind energy generation. 
Another observation is that the storage capacity needed for 
this case study is larger than Case Study I where wind 
energy is available during most hours of the day. This is 
because solar energy is only available during daylight hours 
and storage provides energy for the remainder of the day. 

B. Scenario II: Stochastic Wind/PV Generation and 

CoolingLoad 
Scenario II corresponds to stochastic models of wind 
generation, PV generation, and cooling load. PDFs are 
obtained fromhistorical hourly wind speed and solar 
irradiance using curve fitting [22]. Wind and PV power are 
derived based on (1)–(5). 
Similarly, we calculate the maximum-likelihood estimates 
of the normal distribution parameters for historical hourly 
coolingload data for a residential feeder. GA-2PE stochastic 
optimization evaluates the efficiency of the hybrid system 
for 10%, 20%, 
30%, 40%, and 50% load shifting (LS). 
Case Study I: The GA-based optimization problem is 
solved considering the probabilistic PV generation, wind 
generation, and cooling load. Figs. 5 and 6 show the 
cumulative distribution functions of the storage capacity and 
of the excess energy (EE) for each LS. For and EE, the 
cumulative probabilities increase with load shifting. Thus, 
increasing the load shifting from 10%–50% providesthe 
system with more flexibility and reduces the storage 
capacity and excess energy of the system. This leads to a 
more efficient system with less energy dissipated due to the 
nonideal characteristics of the storage system. 
 

 
 
Fig. 5. Cumulative distribution of the maximum capacity of 
the storage system for different LS percentages (Scenario II, 
Case Study I). 
 



 
 

 
 
                                                                        Hangaragi and Kolaki                     196

 
 
Fig. 6. Cumulative distribution of the excess energy of the 

system for different LS percentages (Scenario II, Case Study 
I). 

Case Study II: This case study evaluates the possibility of 
matching HVAC load and PV plants for regions with poor 
wind speed profiles and an abundance of solar energy. The 
CDFs, of the storage capacity and of the excess energy (EE) 
for this case study show a similar trend to those of 
Case Study I and are not provided for brevity. For both S 
and EE,the cumulative probabilities increase with LS. Thus, 
increasing the LS from 10 to 50%provides the system with 
more flexibility. Table I gives the installed wind and PV 
capacity, the expected value, and standard deviation of 
storage capacity and excess energy. This table also provides 
optimal installation cost of the 

Table 1: Installed Wind and Pv Capacity, Maximum 

Storage Capacity, and Excess Energy (Scenario Ii). 
 
 

 
 
 
 

Table 1 gives the installed wind and PV capacity, the 
expected value, and standard deviation of storage capacity 
and excess energy. This table also provides optimal 
installation cost of the hybrid system for renewable energy 
generation and storage systems 

Table 2: Hybrid System Cost For Different Risk Levels 

(Scenario Ii). 
 

 

Table II gives the cost of the hybrid system for different risk 
levels. Assigning a confidence coefficient to the 
probabilistic constraints, risk is defined as the percentage of 
the random variable violating the corresponding constraint  

                        Risk %=1-γ                                           (30) 

As shown in Table I, increasing LS from 10 to 50% 
decreases the expected value of from 11.630 to 6.576 MWh 
and decreases the expected value of EE from 10.364 to 
5.068 MWh for Case Study I. The same trend is observed 
for Case Study II, where the expected value of decreases 
from 9.114 to 7.919 MWh and the expected value of EE 
decreases from 9.131 to 6.880 MWh as LS changes from 
10% to 50%. Note that renewable energy sources have 
already been installed in many electric utility systems across 
the U.S. Therefore, the total cost of the hybrid system will 
be significantly reduced if these resources are already in 
place. The proposed methodology provides electric utilities 
with an energy-management tool to optimally utilize these 
resources and the storage systems to meet the HVAC load 
of the residential feeders at a desired 
confidence level. 

Table 3: Ga Parameters. 

 
 
Table 4: Simulation Results For Ga-Based and Classical 

Optimization Approaches. 
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Case Studies I and II show the economic benefits of using 
wind power to supply the HVAC load. This is evident from 
the lower installation costs of the hybrid system in Case 
Study Iwith respect to Case Study II. In addition, optimal 
solutions for Case Study I require less wind power capacity 
than the PV power capacity of Case Study II. The 
simulation results summarized in Table II provide a 
quantitative representation of the compromise between cost 
and risk in the hybrid system. 

IV. CONCLUSION 

This paper evaluates the efficiency of a hybrid system that 
combines renewable energy generation and energy storage 
to meet a controllable HVAC load. Using historical data and 
curve fitting, wind and PV generation and cooling loads are 
stochastically modeled. FCM clustering provides ten data 
clusters that properly represent the effects of seasonal 
variations. GA-based optimization is proposed to minimize 
the cost and increase the efficiency. A smart-grid strategy is 
developed to shift the load and match the renewable energy 
generation and cooling load. This method is tested on a 
residential feeder and different case studies are carried out 
to investigate the factors affecting the energy efficiency of 
the system. The proposed procedure can be applied for any 
controllable deferrable load, such as the HVAC load. 
Simulation results show that increasing the LS percentage 
gives the system more flexibility and may lead to less 
excess energy and more efficiency. Our results show the 
compromise between the risk of failure to meet demand and 
cost for different wind and PV generation levels. Case 
studies demonstrate the economic benefits of using wind 
power to supply the HVAC load. In addition, the proposed 
methodology provides utility companies with an energy-
management tool to optimally utilize the installed renewable 
energy sources and the storage system to meet the flexible 
loads of the residential/commercial/industrial feeders. For 
future work, we will apply the proposed method to matching 
the renewable energy sources with other controllable loads, 
such as plug-in electric vehicles. 
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