
et
International Journal on Emerging Technologies 4(1): 17-25(2013)

ISSN No. (Print) : 0975-8364
ISSN No. (Online) : 2249-3255

Analysis of Mutual Exclusion Algorithms with the significance
and need of Election Algorithm to solve the coordinator

problem for Distributed System

Dr. S.K. Gandhi and Pawan Kumar Thakur
Department of Computer Science & Engineering,

AISECT University, Bhopal (M.P.) India

(Received 05 November, 2012, Accepted 02 December, 2013)

ABSTRACT: The fundamental concept of distributed systems is the concurrency and collaboration
among multiple processes. In many cases, this also means that processes will need to simultaneously
access the same resources. To prevent that such concurrent accesses corrupt the resource, or make it
inconsistent, solutions are needed to grant mutual exclusive access by processes. In systems that
involve multiple processes often utilize critical regions. When a process has to read or update certain
shared structures it enters a critical section, performs its operation and leaves the critical section. We
use special constructs to serialize access to critical sections (semaphores, monitors). These techniques
do not support distributed systems because there is no single shared memory image. We need new
techniques to achieve mutual exclusion. There are many algorithm used for distributed mutual
exclusion. The main points to consider when evaluating of these algorithms are:

• What happens when messages are lost?
• What happens when a process or node crashes?

None of the algorithms have described to tolerate the loss of messages, process or node crashes. An
algorithm for choosing a unique process to play a particular role is called an election algorithm. The
purpose of this paper is to study various mutual exclusion algorithms and find out the drawback of
these algorithms with respect to fault tolerance or node failure. An election algorithm is needed for
this choice.

Keywords: Mutual Exclusion, critical section, Token, Safety, Liveness, Fairness, Message, centralized,
synchronization, messages, Delay, Election.

I. INTRODUCTION

Mutual exclusion makes sure that concurrent process
access shared resources or data in a serialized way. The
is well known critical section problem. If a process, say
Pi, is executing in its critical section, then no other
processes can be executing in their critical sections. For
example updating a DB or sending control signals to an
IO device. In other words, n processes accessing a
shared resource such as file on a hard drive, database
entry, printer, .etc. It is necessary to protect the shared
resource using mutual exclusion. Systems involving
multiple processes are often most easily programmed
using critical regions. Mutual exclusion algorithms
have a big drawback with respect to fault tolerance or
node failure. An election algorithm is needed for this
choice [1]. In this work section 2 represents the system
model, requirements and performance metrics for
mutual exclusion, section 3, 4 & 5 provide the various

mutual algorithms with their performance and
correctness, section 6 represents the comparative study
of these algorithm, section 7 represent the need of
election.

II. SYSTEM MODEL

The system consists of N sites, S1, S2... SN. Without
loss of generality, we assume that a single process is
running on each site. The process at site Si is denoted
by pi. All these processes communicate asynchronously
over an underlying communication network. A process
wishing to enter the critical section, requests all other or
a subset of processes by sending REQUEST messages,
and waits for appropriate replies before entering the
critical section while waiting the process is not allowed
to make further requests to enter the critical section [1,
2].

Gandhi and Thakur 18

A site can be in one of the following three states:
requesting the critical section, neither executing the
critical section or neither requesting nor executing the
critical section (i.e., idle). In the ‘requesting the critical
section’ state, the site is blocked and cannot make
further requests for the critical section. In the ‘idle’
state, the site is executing outside the critical section. In
the token-based algorithms, a site can also be in a state
where a site holding the token is executing outside the
critical section. Such state is referred to as the idle
token state.
At any instant, a site may have several pending requests
for critical section. A site queues up these requests and
serves them one at a time. We do not make any
assumption regarding communication channels if they
are FIFO or not. This is algorithm specific. We assume
that channels reliably deliver all messages, sites do not
crash, and the network does not get partitioned [10].

A. Requirements of Mutual Exclusion Algorithms

A mutual exclusion algorithm should satisfy the
following properties:
1. Safety Property. The safety property states that at
any instant, only one process can execute the critical
section
2. Liveness Property. This property states the absence
of deadlock and starvation. Two or more sites should
not endlessly wait for messages which will never arrive.
3. Fairness. Fairness in the context of mutual exclusion
means that each process gets a fair chance to execute
the critical section.

B. Performance Metrics
The performance of mutual exclusion algorithms is
generally measured by the following four metrics:
1. Message complexity. It is number of messages that
are required per critical section execution by a site.
2. Synchronization delay. After a site leaves the
critical section, it is the time required and before the
next site enters the critical section. Note that normally
one or more sequential message exchanges may be
required after a site exits the critical section and before
next site can enter the critical section.
3. Response time. It is the time interval a request waits
for its critical section execution to be over after its
request messages have been sent out. Thus, response
time does not include the time a request waits at a site
before its request messages have been sent out.

4. System throughput. It is the rate at which the
system executes requests for the critical section. If SD
is the synchronization delay and E is the average
critical section execution time, then the throughput is
given by the following equation: system
throughput=1/(SD+E)[2].
5. Low and high load performance. The load is
determined by the arrival rate of critical section
execution requests. Performance of a mutual exclusion
algorithm depends upon the load and we often study the
performance of mutual exclusion algorithms under two
special loading conditions, viz., “low load" and “high
load". Under low load conditions, there is seldom more
than one request for the critical section present in the
system simultaneously. Under heavy load conditions,
there is always a pending request for critical section at a
site.
6. Best and worst case performance. Often for mutual
exclusion algorithms, the best and worst cases coincide
with low and high loads, respectively. For examples,
the best and worst values of the response time are
achieved when load is, respectively, low and high; in
some mutual exclusion algorithms the best and the
worse message traffic is generated at low and heavy
load conditions, respectively [4].

III. CENTRALIZED ALGORITHM

The easiest way to achieve mutual exclusion in a
distributed system is to simulate how it is done in a
one-processor system. One process is elected as the
coordinator (e.g., the one running on the machine with
the highest network address).
Whenever a process wants to enter a critical region, it
sends a request message to the coordinator stating
which critical region it wants to enter and asking for
permission. If no other process is currently in that
critical region, the coordinator sends back a reply
granting permission, as shown in Fig. 1.1 (a). When the
reply arrives, the requesting process enters the critical
region.
(a) Process 1 asks the coordinator for permission to
enter a critical region. Permission is granted. (b)
Process 2 then asks permission to enter the same critical
region. The coordinator does not reply. (c) When
process 1 exits the critical region, it tells the
coordinator, which then replies to 2.

Gandhi and Thakur 19

Now suppose that another process, 2 in Fig. 1.1 (b),
asks for permission to enter the same critical region.
The coordinator knows that a different process is
already in the critical region, so it cannot grant
permission. The exact method used to deny
permission is system dependent. In Fig. 1.1 (b), the
coordinator just refrains from replying, thus blocking
process 2, which is waiting for a reply. Alternatively,
it could send a reply saying ‘‘permission denied.’’
Either way, it queues the request from 2 for the time
being and waits for more messages [1].
When process 1 exits the critical region, it sends a
message to the coordinator releasing its exclusive
access, as shown in Fig. 1.1 (c). The coordinator
takes the first item off the queue of deferred requests
and sends that process a grant message. If the process
was still blocked (i.e., this is the first message to it), it
unblocks and enters the critical region. If an explicit
message has already been sent denying permission,
the process will have to poll for incoming traffic or
block later. Either way, when it sees the grant, it can
enter the critical region.

Correctness. Centralized algorithm achieves mutual
exclusion. It is easy to see that the algorithm
guarantees mutual exclusion:
(i). The coordinator only lets one process at a time

into each critical region. It is also fair, since requests
are granted in the order in which they are received.
No process ever waits forever (no starvation).
(ii). The scheme is easy to implement, too, and
requires only three messages per use of a critical
region (request, grant, release).

(iii). It can also be used for more general resource
allocation rather than just managing critical regions.

Problems. The centralized approach also has
shortcomings.
The coordinator is a single point of failure, so if it
crashes, the entire system may go down. If processes
normally block after making a request, they cannot
distinguish a dead coordinator from ‘‘permission
denied’’ since in both cases no message comes back.
In addition, in a large system, a single coordinator
can become a performance bottleneck.
1. The coordinator can become a performance
bottleneck.
2. The coordinator is a critical point of failure:

• If the coordinator crashes, a new
coordinator must be created.

• The coordinator can be one of the
processes competing for access an
election algorithm (see later) has to be
run in order to choose one and only one
new coordinator.

IV. DISTRIBUTED ALGORITHM

Having a single point of failure is frequently
unacceptable, so researchers have looked for
distributed mutual exclusion algorithms. Lamport’s
1978 [4] paper on clock synchronization presented the
first one. Ricart and Agrawala (1981) [5] made it more
efficient.

Gandhi and Thakur 20

A. Lamport’s algorithm
The algorithm works as follows. When a process wants
to enter a critical region, it builds a message containing
the name of the critical region it wants to enter, its
process number, and the current time. It then sends the
message to all other processes, conceptually including
it. The sending of messages is assumed to be reliable
that is, every message is acknowledged. Reliable group
communication if available can be used instead of
individual messages. When a process receives a request
message from another process, the action it takes
depends on its state with respect to the critical region
named in the message. Three cases have to be
distinguished:
Case 1: If the receiver is not in the critical region and
does not want to enter it, it sends back an OK message
to the sender.
Case 2: If the receiver is already in the critical region, it
does not reply. Instead, it queues the request.

Case 3: If the receiver wants to enter the critical region
but has not yet done so, it compares the timestamp in
the incoming message with the one contained in the
message that it has sent everyone. The lowest one wins.
If the incoming message is lower, the receiver sends
back an OK message. If its own message has a lower
timestamp, the receiver queues the incoming request
and sends nothing. After sending out requests asking
permission to enter a critical region, a process sits back
and waits until everyone else has given permission. As
soon as all the permissions are in, it may enter the
critical region. When it exits the critical region, it sends
OK messages to all processes on its queue and deletes
them all from the queue. Let us try to understand how
the algorithm works. If there is no conflict, it clearly
works. However, suppose that two processes try to
enter the same critical region simultaneously, as shown
in Fig. 1.2(a).

(a) Two processes want to enter the same critical region
at the same moment.
(b) Process 0 has the lowest timestamp, so it wins.
(c) When process 0 is done, it sends an OK also, so 2 can
now enter the critical region.
Process 0 sends everyone a request with timestamp 8,
while at the same time, process 2 sends everyone a
request with timestamp 12. Process 1 is not interested in
entering the critical region, so it sends OK to both
senders. Processes 0 and 2 both see the conflict and
compare timestamps. Process 2 sees that it has lost, so it
grants permission to 0 by sending OK. Process 0 now
queues the request from 2 for later processing and enters
the critical region, as shown in Fig. 1.2(b). When it is
finished, it removes the request from 2 from its queue

and sends an OK message to process 2, allowing the
latter to enter its critical region, as shown in Fig. 1.2(c).
The algorithm works because in the case of a conflict,
the lowest timestamp wins and everyone agrees on the
ordering of the timestamps [4].
Note that the situation in Fig.1.2 would have been
essentially different if process 2 had sent its message
earlier in time so that process 0 had gotten it and granted
permission before making its own request. In this case, 2
would have noticed that it itself was in a critical region
at the time of the request, and queued it instead of
sending a reply.

Correctness. Lamport’s algorithm achieves mutual
exclusion.

Gandhi and Thakur 21

Performance:
(a). For each critical section execution, Lamport’s
algorithm requires (N − 1) REQUEST messages, (N −
1) REPLY messages, and (N−1) RELEASE messages.
(b). Lamport’s algorithm requires 3(N−1) messages per
critical section invocation. Synchronization delay in the
algorithm is T.
Problems. As with the centralized algorithm discussed
above, mutual exclusion is guaranteed without deadlock
or starvation. The number of messages required per
entry is now 2(n − 1), where the total number of
processes in the system is n. (i). Best of all no single
point of failure exists. Unfortunately, the single point of
failure has been replaced by n points of failure. If any
process crashes, it will fail to respond to requests. This
silence will be interpreted (incorrectly) as denial of
permission, thus blocking all subsequent attempts by all
processes to enter all critical regions. Since the
probability of one of the n processes failing is at least n
times as large as a single coordinator failing, we have
managed to replace a poor algorithm with one that is
more than n times worse and requires much more
network traffic to boot.
(ii). The algorithm can be patched up by the same trick
that we proposed earlier. When a request comes in, the
receiver always sends a reply, either granting or
denying permission. Whenever either a request or a
reply is lost, the sender times out and keeps trying until
either a reply comes back or the sender concludes that
the destination is dead. After a request is denied, the
sender should block waiting for a subsequent OK
message.
(iii). Another problem with this algorithm is that either
a group communication primitive must be used, or each
process must maintain the group membership list itself,
including processes entering the group, leaving the
group, and crashing. The method works best with small
groups of processes that never change their group
memberships.
(iv). Finally, recall that one of the problems with the
centralized algorithm is that making it handle all
requests can lead to a bottleneck. In the distributed
algorithm, all processes are involved in all decisions
concerning entry into critical regions. If one process is
unable to handle the load, it is unlikely that forcing
everyone to do exactly the same thing in parallel is
going to help much. Various minor improvements are
possible to this algorithm. For example, getting
permission from everyone to enter a critical region is
really overkill. All that is needed is a method to prevent
two processes from entering the critical region at the
same time. The algorithm can be modified to allow a

process to enter a critical region when it has collected
permission from a simple majority of the other
processes, rather than from all of them. Of course, in
this variation, after a process has granted permission to
one process to enter a critical region, it cannot grant the
same permission to another process until the first one
has released that permission. Other improvements are
also possible, such as proposed by Maekawa (1985),
but these easily become more complicated.
(v). This algorithm is slower, more complicated, more
expensive, and less robust that the original centralized
one. Why bother studying it under these conditions?
For one thing, it shows that a distributed algorithm is at
least possible, something that was not obvious when we
started. Also, by pointing out the shortcomings, we may
stimulate future theoreticians to try to produce
algorithms that are actually useful.

B. Ricart-Agrawala Algorithm

Ricart and Agrawala algorithm (1981) assumes there is
a mechanism for “totally ordering of all events” in the
system (e.g. Lamport’s algorithm) [4] and a reliable
message system. A process wanting to enter critical
sections critical section sends a message with (critical
section name, process id, current time) to all processes
(including itself). When a process receives a critical
section request from another process, it reacts based on
its current state with respect to the critical section
requested. There are three possible cases:
Case 1: If the receiver is not in the critical section and
it does not want to enter the critical section, it sends an
OK message to the sender.
Case 2: If the receiver is in the critical section, it does
not reply and queues the request.
Case 3: If the receiver wants to enter the critical section
but has not yet, it compares the timestamp of the
incoming message with the timestamp of its message
sent to everyone. {The lowest timestamp wins.}

• If the incoming timestamp is lower, the
receiver sends an OK message to the
sender.

• If its own timestamp is lower, the receiver
queues the request and sends nothing.

The process that requires entry to critical section
multicasts the request message to all other processes
competing for the same resource; it is allowed to enter
the critical section when all processes have replied to
this message. The request message consists of the
requesting process’ timestamp (logical clock) and its
identifier. Each process keeps its state with respect to
the critical section: released, requested, or held [6].

Gandhi and Thakur 22

Algorithm 1.1
A request issued by a process Pj is blocked by another
process Pi only if Pi is holding the resource or if it is
requesting the resource with a higher priority[6] (this
means a smaller timestamp) then Pj as shown in Fig.
1.3.
Performance:
-For each critical section execution, Ricart-Agrawala
algorithm requires (N − 1) REQUEST messages and

(N−1) REPLY messages. Thus, it requires 2(N−1)
messages per critical section execution.
-Synchronization delay in the algorithm is T.
Problems:
- The algorithm is expensive in terms of message
traffic; it requires 2(n-1) messages for entering a critical
section: (n-1) requests and (n-1) replies.
-The failure of any process involved makes progress
impossible if no special recovery measures are taken.

Rule for process initialization
/* performed by each process Pi at initialization */

[RI1]: statePi := RELEASED.
Rule for access request to critical section
/* performed whenever process Pi requests an access to the critical section */

[RA1]: statePi := REQUESTED.
TPi := the value of the local logical clock corresponding to this request.
[RA2]: Pi sends a request message to all processes; the message is of the form (TPi, i), where i is an
identifier of Pi.
[RA3]: Pi waits until it has received replies from all other n-1 processes.

Rule for executing the critical section
/* performed by Pi after it received the n-1 replies */

[RE1]: statePi := HELD.
Pi enters the critical section.

Rule for handling incoming requests
/* performed by Pi whenever it received a request

(TPj, j) from Pj */
[RH1]: if statePi = HELD or ((statePi = REQUESTED)
and ((TPi, i) < (TPj, j))) then
Queue the request from Pj without replying.
else
Reply immediately to Pj.
end if.

Rule for releasing a critical section
/* performed by Pi after it finished work in a critical section */

[RR1]: statePi := RELEASED.
Pi replies to all queued requests

Gandhi and Thakur 23

V. TOKEN RING ALGORITHM

A completely different approach to achieving mutual
exclusion in a distributed system is illustrated in Fig.
1.4. Here we have a bus network, as shown in Fig.
1.4(a), (e.g., Ethernet), with no inherent ordering of
the processes. In software, a logical ring is

constructed in which each process is assigned a
position in the ring, as shown in Fig.1.4 (b). The ring
positions may be allocated in numerical order of
network addresses or some other means. It does not
matter what the ordering is. All that matters is that
each process knows who is next in line after itself [8].

Fig. 1.4(a). Bus Network - Token ring algorithm.

Fig. 1.4(b). Ring Network-Token ring algorithm.

(a) An unordered group of processes on a network. (b)
A logical ring constructed in software.

Correctness. The correctness of this algorithm is easy
to see.
(i). Only one process has the token at any instant, so
only one process can actually be in a critical region.
Since the token circulates among the processes in a
well-defined order, starvation cannot occur.
(ii).Once a process decides it wants to enter a critical
region, at worst it will have to wait for every other
process to enter and leave one critical region.

Problem:
(i). If the token is ever lost, it must be regenerated. In
fact, detecting that it is lost is difficult, since the amount
of time between successive appearances of the token on
the network is unbounded.
(ii). The fact that the token has not been spotted for an
hour does not mean that it has been lost somebody may
still be using it.
(iii). The algorithm also runs into trouble if a process
crashes, but recovery is easier than in the other cases.
(iv). If we require a process receiving the token to
acknowledge receipt, a dead process will be detected

when its neighbor tries to give it the token and fails. At
that point the dead process can be removed from the
group, and the token holder can throw the token over
the head of the dead process to the next member down
the line, or the one after that, if necessary. Of course,
doing so requires that everyone maintains the current
ring configuration.

VI. COMPARISON OF THE MUTUAL
EXCLUSION ALGORITHMS

A brief comparison of the mutual exclusion algorithms
we have looked at is informative. In Table 1.1 we have
listed the algorithms and three key properties:
1. Number of messages. The number of messages
required for a process to enter and exit a critical region.
2. Delay before entry. The delay before entry can
occur (assuming messages are passed sequentially over
a network), and some problems associated with each
algorithm. Extreme, the token may sometimes circulate
for hours without anyone being interested in it. In this
case, the number of messages per entry into a critical
region is unbounded.

Gandhi and Thakur 24

The delay from the moment a process needs to enter a
critical region until its actual entry also varies for the
three algorithms. When critical regions are short and
rarely used, the dominant factor in the delay is the
actual mechanism for entering a critical region. When
they are long and frequently used, the dominant factor
is waiting for everyone else to take their turn. It takes
only two message times to enter a critical region in the
centralized case, but 2(n - 1) message times in the
distributed case, assuming that messages are sent one

after the other. For the token ring, the time varies from
0 (token just arrived) to n - 1 (token just departed) [9].

3. Event of crashes. All these algorithms suffer badly
in the event of crashes. Special measures and additional
complexity must be introduced to avoid having a crash
bring down the entire system. It is ironic that the
distributed algorithms are even more sensitive to
crashes than the centralized one. In a fault-tolerant
system, none of these would be suitable, but if crashes
are very infrequent, they might do.

Table 1. Comparison of mutual exclusion algorithms.

Algorithm Message Per Entry
/Exit

Delay before Entry
(In Message Times)

Problems

Centralized 2 2 Coordinator Crash

Distributed 2(n-1) 2(n-1) Crash of any Process

Token Ring 1 to ∞ 0 to n-1 Lost token, Process Crash

The centralized algorithm is simplest and also most
efficient. It requires only three messages to enter and
leave a critical region: a request, a grant to enter, and a
release to exit. The distributed algorithm requires n -1
request messages, one to each of the other processes,
and an additional n -1 grant messages, for a total of 2(n-

-to-point
communication channels are used.) With the token ring
algorithm, the number is variable. If every process
constantly wants to enter a critical region, then each
token pass will result in one entry and exit, for an
average of one message per critical region entered.
Finally, The Centralized algorithm is simple and
efficient, but suffers from a single point-of failure. The
Distributed algorithm has nothing going for it – it is
slow, complicated, and inefficient of network
bandwidth, and not very robust. The Token-Ring
algorithm suffers from the fact that it can sometimes
take a long time to reenter a critical region having just
exited it. All perform poorly when a process crashes,
and they are all generally poorer technologies than their
non-distributed counterparts. Only in situations where
crashes are very infrequent should any of these
techniques be considered. The main points to consider
when evaluating the above algorithms with respect to
fault tolerance are:
• What happens when messages are lost?
• What happens when a process crashes?

VII. NEED AND SIGNIFICANCE OF ELECTION
ALGORITHM

Mutual exclusion distributed algorithms require one
process to act as a coordinator or in general perform
some special role. None of the algorithms that we have
described would tolerate the loss of messages, if the
channels were unreliable.

(i). Central algorithm. At initialization or whenever
the coordinator crashes, a new coordinator has to be
elected. The coordinator is a single point of failure, so if
it crashes, the entire system may go down. If processes
normally block after making a request, they cannot
distinguish a dead coordinator from ‘‘permission
denied’’ since in both cases no message comes back. In
addition, in a large system, a single coordinator can
become a performance bottleneck.
The central server algorithm can tolerate the crash
failure of a client process that neither holds nor has
requested the token. For example, in the central-server
algorithm, if the server fails it must be established
whether it or one of the client processes held the token.

(ii). Distributed algorithm. The Ricart and Agrawala
algorithm as we have described it can be adapted to
tolerate the crash failure of such a process, by taking it
to grant all requests implicitly.

Gandhi and Thakur 25

Even with a reliable failure detector, care is required to
allow for failures at any point (including during a
recovery procedure), and to reconstruct the state of the
processes after a failure has been detected. The failure
of any process involved makes progress impossible if
no special recovery measures are taken.
Best of all no single point of failure exists.
Unfortunately, the single point of failure has been
replaced by n points of failure. If any process crashes, it
will fail to respond to requests. This silence will be
interpreted (incorrectly) as denial of permission, thus
blocking all subsequent attempts by all processes to
enter all critical regions. Since the probability of one of
the n processes failing is at least n times as large as a
single coordinator failing, we have managed to replace
a poor algorithm with one that is more than n times
worse and requires much more network traffic to boot.

(iii). Token ring algorithm. When the process holding
the token fails, a new process has to be elected which
generates the new token.
If the token is ever lost, it must be regenerated. In fact,
detecting that it is lost is difficult, since the amount of
time between successive appearances of the token on
the network is unbounded. The fact that the token has
not been spotted for an hour does not mean that it has
been lost somebody may still be using it. The algorithm
also runs into trouble if a process crashes.

VIII. CONCLUSION

After studying and comparing all the mutual exclusion
algorithms we conclude that it does not matter which
process is elected. What important is that one and only
one process is chosen we call this process the
coordinator and all processes agree on this decision.
Election is typically started after a failure occurs. The
detection of a failure (e.g. the crash of the current
coordinator) is normally based on time-out if a process
that gets no response for a period of time suspects a
failure and initiates an election process. An election
process is typically performed in two phases: (a). Select
a leader with the highest priority. (b). Inform all
processes about the winner. An election algorithm is an
algorithm for solving the coordinator election problem.

REFERENCES
[1]. Tanenbaum A.S, "Distributed Operating System”,
Pearson Education, (2007).
[2]. Sinha P.K., “Distributed Operating Systems
Concepts and Design”, Prentice-Hall of India private
Limited, (2008).
[3]. Lamport, L. (1978). "Time, clocks, and the
ordering of events in a distributed
system". Communications of the ACM 21 (7): 558–
565.doi:10.1145/359545.359563.
[4]. LIN, S.D., LlAN, Q., CHEN, M., , and ZHANG,
Z.: "A Practical Distributed Mutual Exclusion Protocol
in Dynamic Peer-to-Peer Systems." Proc. Third Int'l
Workshop on Peer-to- Peer Systems, vol. 3279 of Lect.
Notes Compo Sc., (La Jolla, CA). Berlin: Springer-
Verlag, 2004. pp. 1] -21. Cited on pages 254, 255.
[5]. Maekawa (1985). Ricart and Agrawala. fully
symmetric algorithm: all processes run exactly the same
algorithm. improvements by fiddling with messages.
[6]. The Ricart-Agrawala algorithm (RA) [RA81] for
achieving mutual exclusion in computer networks.
Comm. ACM, 24(1): 9–17, 1981. Corr. ibid. 1981,
p.581
[7]. Savio S.H. Tse and Francis C.M. Lau. An
approximation solution for the 2-median problem on
two-dimensional meshes. Advanced Information
Networking and Applications, International Conference
on, 2: 457–460, 2005.
[8]. G. Cao and M. Singhal, “A Delay-Optimal
Quorum-Based Mutual Exclusion Algorithm for
Distributed Systems", IEEE Transactions on Parallel
and Distributed Systems, Vol. 12, No. 12, pp. 1256-
1268, Dec. 2001.
[9]. Y. Chang, M. Singhal, and Mike Liu, “A Fault-
Tolerant Mutual Exclusion Algorithm for Distributed
Systems”, in the Proc. of the 9th Symposium on Reliable
Distributed Software and Systems, October 1990, pp.
146-154.
[10]. A. Goscinski, “Two Algorithms for Mutual
Exclusion in Real-Time Distributed Computing
Systems”, Journal of Parallel and Distributed
Computing, Vol. 9, 1990.

