
Bamboat et al., International Journal on Emerging Technologies 12(1): 25-30(2021) 25

International Journal on Emerging Technologies 12(1): 25-30(2021)

ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Performance of RDF Library of Java, C# and Python on Large RDF Models

Mustafa Ali Bamboat
1
, Abdul Hafeez Khan

2
 and Asif Wagan

3

1
Department of Computer Science, Sindh Madressatul Islam University (SMIU), Karachi, (Sindh), Pakistan.

2
Department of Software Engineering, Sindh Madressatul Islam University (SMIU) Karachi, (Sindh), Pakistan.
 3Department of Computer Science, Sindh Madressatul Islam University (SMIU), Karachi (Sindh), Pakistan.

(Corresponding author: Mustafa Ali Bamboat)
 (Received 03 November 2020, Revised 22 December 2020, Accepted 28 January 2021)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: The semantic web is an extension of the traditional web, in which contents are understandable
to the machine and human. RDF is a Semantic Web technology used to create data stores, build
vocabularies, and write rules for approachable LinkedData. RDF Framework expresses the Web Data using
Uniform Resource Identifiers, which elaborate the resource in triples consisting of subject, predicate, and
object. This study examines RDF libraries' performance on three platforms like Java, DotNet, and Python. We
analyzed the performance of Apache Jena, DotNetRDF, and RDFlib libraries on the RDF model of
LinkedMovie and Medical Subject Headings (MeSH) in aspects measuring matrices such as loading time, file
traversal time, query response time, and memory utilization of each dataset. SPARQL is the RDF model's
query language; we used six queries, three for each dataset, to analyze each query's response time on the
selected RDF libraries.

Keywords: dotNetRDF, Apache Jena, RDFlib, LinkedMovie, MeSH.

I. INTRODUCTION

In the 1990s, we have conventional web pages
understandable by the human brain,consisting of links to
other web pages or documents [1]; computers process a
file and display the contents written in the HTML format.
However, the file content is not machine-
understandable. The conventional web extended its
reach into the semantic web around 1997, seeking to
make the material relevant to computer machines and to
mutate web documents into web data [1].
The semantic web represents data so that humans and
computers can understand it and perform various
queries based on the content rather than traditional web
links [2]. In 1999, Tim Berners-Lee expressed his vision
of the web as a vast database [3], where the relational
model cannot manage such massive data, so he came
up with the semantic model, which stores data into
triples [4]. The semantic web mostly depends on formal
ontology. According to Gruber, ontology narrates
concepts and relations in a well-organized manner
rather than other knowledge representation models,
such as glossaries, taxonomies thesaurus, and many
more [5]. There are standardizer and recommended
technologies by W3C to encode semantic data based
on formal ontology, such as Resource Description
Framework (RDF), Web Ontology Language (OWL),
and Darpa Agent Markup Language (DAML). To
facilitate the integration and interoperability of ontology
and described formally in logic-based syntaxes [3, 6].
Fundamentally, RDF is the standard framework to
express web data, which can identify the web resource
(pages) and things by using URI's (Uniform Resource
Identifiers) and explain the resources in the form of
triples, where a triple consisting of subject, predicate,
and object [7]. In 2008, the RDF Data Access Working
Group (DAWG) acknowledged a language specifically
designed to retrieve and manipulate the RDF model
known as SPARQL, an acronym for SPARQL Protocol
and RDF Query Language [8]. There are three forms of
the query in SPARQL, SELECT, CONSTRUCT, and
ASK.

Various comparisons have published on RDF
Framework, and Libraries such as RDF Triple stores [4],
Ontology development in dot Net [2, 6], and many
comparisons between RDF Database and Relational
Database, even Empirical study of RDF libraries
performed between two languages, Java and C# or
Python and Java. This paper compares the open-source
RDF libraries of Apache Jena, dotNetRDF, and RDFLib
based on Java, C#, and Python languages, respectively,
to compare the query response time among them. The
pattern of the paper is as follows. Section II presents
related studies. Section III presents the methods,
section IV presents the study results, and a conclusion
ends the paper in the last section.

II. RELATED WORKS

There are many libraries developed to implement a
machine-understandable Web. Therefore, in this
section, we explorer the studies conducted on RDF
libraries.
Authors measured the loading time, query execution
time, query response time, and storage capacity of
OWL/RDF Ontologies in a dot NET environment using
two libraries, dotNetRDF, and SemWeb, respectively.
According to their analysis, SemWeb performance is
much better on small and medium datasets, whereas,
on the other hand, dotNetRDF shows better
performance on small datasets. Both libraries quit
harder to implement for beginner programmers due to a
lack of Graphic User Interface support [2].
Authors have selected ten ontologies datasets fetched
from the internet such as OntoDPM, WikiMovie,
Agriculture and Forestry Ontology, Tero, Aksiomitveke,
lexvo, Gene Ontology (GO), Gene, and Drug Ontology
(DRON) and performed the following measures:
Loading Time: Ontology datasets loaded in the
memory at least ten times each to calculate the average
loading time [2]. They have observed that dotNetRDF
quickly loaded small datasets. In contrast, SemWeb has
better loading time on a medium and large dataset.
Furthermore, dotNetRDF failed to load Gene and
DRON.

e
t

Bamboat et al., International Journal on Emerging Technologies 12(1): 25-30(2021) 26

Query Execution Time: They have observed that
dotNetRDF is two times speedy than Sem Web because
of SPARQL query execution time.
Query Response Time: They noticed that dotNetRDF
query response time is quicker than SemWeb, except
for the Gene (GO), Gene, and DRON dataset,
dotNetRDF has thrown OutOfMemoryException.
Overall, both libraries' performance is average on
medium and small datasets. dotNetRDF has a speedy
response time compared to SemWeb, whereas the
loading time of SemWeb is much better than dotNetRDF
on medium and large size datasets. It is also noticeable
that dotNetRDF failed to load some datasets and thrown
OutOfMemoryException at query response time [2].
Authors evaluated and compared the two dotNET based
tools for ontology, namely, dotNetRDF and SemWeb,
freely available. The dotNetRDF and SemWeb APIs are
developed in C#, loads the RDF data in-memory, and
support the SPARQL engine for querying the loaded
RDF dataset. The authors adopted metrics-based
frameworks consisting of six factors, such as a General
description of tools, Software architecture and evolution,
Interoperability with other ontology development tools
and languages, Knowledge representation, Inference
services attached to the tool, and Usability, whereas for
the performance comparison, authors select ten
ontology datasets to analysis the APIs in terms of
Loading Time (LT), Query Execution Time (QET), and
Query Response Time (QRT). The QET and QRT
calculated using a SPARQL query that retrieves all
classes and subclasses of datasets. The study
illustrates that on medium-size ontologies, SemWeb
performs better, and dotNetRDF offers a rapid response
compared to SemWeb on small ontologies. However,
none of these methods could process OWL ontologies
with very minimal internal memory storage [6].
Authors have broadened the comparison of dotNET
based RDF libraries SemWeb and dotNetRDF against
Open-Source libraries such as Apache Jena, Protégé,
and RDF4J. In contrast, Jena and SemWeb are
command-line interfaces, and Protégé, RDF4J, and
dotNetRDF have both GUI and command-line
interfaces. The authors applied a qualitative approach to
comparison metrics collected from the literature and a
quantitative approach to experiments and analysis of
these libraries' performance. They parted comparison
into four layers, development, storage media, ontology
retrieval, and comparison layers [9]. Same metric
measures as discussed in [2] used in this study, i.e.,

loading time, query execution time, and query response
time, conducted on the selected five datasets,
OntoDPM, WikiMovie, Tero, Gene, and AFO.
Based on the loading time results, it is noticeable that
Jena has shown tremendous performance, followed by
Protégé and RFD4J. In contrast, SemWeb performance
was much better than dotNetRDF, but it failed to load
the Gene dataset.
The authors' used the SPARQL query of 'SELECT' form
on the five datasets, and their results showed that Jean
and RFD4J had achieved faster query execution time. In
contrast, SemWeb and dotNetRDF are slower, and
even they failed to execute a SPARQL query on Gene
due to memory lacking.
Based on the Query Response Time results in [9], they
observed that Jena, RDF4J, and Protégé have speedy
response time compared to the rest of the libraries. In
contrast, SemWeb and dotNetRDF failed to accomplish
the query results.
Overall, it reveals that open-source libraries (Jean,
Protégé, and RDF4J) much better than dotNET based
libraries, and there is more room for improvement
dotNetRDF and SemWeb libraries [9].
Researchers compared six ontology editing tools
accessible in Desktop and Online versions, such as
OntoStudio3.1, Protégé 5.0, SWOOP, TODE, OwlGrEd,
and Odase. The parameters, such as architecture,
storage, interoperability, library, and GUI design, were
considered in this research. The study concluded that
the selected six ontology editing tools have user-friendly
interfaces and perform almost identical tasks; in
addition, it depends on the level of experience of the
user and the size of the ontology to choose the
appropriate tool; in the authors' opinion, Protégé is ideal
for beginners, followed by SWOOP, while OWLGrED is
preferable for UML notation or visualization, and for the
large size ontologies OntoStudio is suitable [22].

III. METHODOLOGY

In this paper, we appraised RDF libraries' performance
in DotNET, Java, and Python. We measured the
loading, traversal, query response times, and memory
usage of the whole process.

A. Datasets
The first part of this study was mostly in analyzing the
different datasets; we have chosen two datasets of
various sizes; details are as under:

Table 1: RDF Datasets of different size.

Dataset Alias used in this paper Total Triples Format File Size

LinkedMovie DS-1 3,579,616 N-Triples 428 MB
Medical Subject

Headings (MeSH)
DS-2 16,442,022 N-Triples 1.91 GB

Linked Movie Dataset (DS-1): The majority of peoples
are interested in movies; they liked to discuss various
film contents, such as the birthdates of all actors in the
specific film or any relation among actors of any
particular movie. Unfortunately, the traditional web
cannot answer these questions because it does not
perform content-based searching compared to the
semantic web. LinkedMovie is the RDF dataset, which
contains entities of movies, actors, directors, even it
provides relationships between all of these entities [12].
It was consisting of 3,579,616 triples in the N-Triples
format and occupied a disk size of 428MB.

Furthermore, it furnishes various Linking Open Data
(LOD) cloud datasets, such as DBpedia, YAGO,
Geonames, and Rotten Tomatoes. In contrast, LOD is
the powerful blend of Linked Data and Open Data,
which broaden the scope of SPARQL queries related to
relationships among all entities.
Medical Subject Heading-MeSH Dataset (DS-2): In

2014, the National Library of Medicine established a
group named as Linked Data Infrastructure Working
Group to form NLM linked data for the semantic web.
One of this group's significant tasks is maintaining NLM
datasets quality and providing more robust linking
between NLM and datasets on the web. MeSH-RDF

Bamboat et al., International Journal on Emerging Technologies 12(1): 25-30(2021) 27

consists of vocabulary thesaurus come by medical
books, journals, and audiovisuals. The structure of
MeSH-RDF is a three-tier; the first tier comprises of
'Descriptors (headings), Qualifiers (subheadings), and
Supplementary Concept Records (chemicals, drugs,
rare diseases).'The second tier comprises 'Concepts'
that are the collection of synonymous Terms, and the
third-tier comprises 'Terms.' In other words, MeSH-RDF
easy our job to fetch NLM data of any level. This study
uses the currently available MeSH-RDF dataset
consisting of 16,442,022 triples in the N-Triples format
and the occupied disk size of 1.91GB [13].

B. RDF Libraries
This paper evaluated the RDF libraries' performance of
three different platforms, Java, DotNET, and Python.
This section explained the implementation of these
libraries in C#, Java, and Python Languages.
Apache Jena (Java): It is an open-source framework of
Java, which provides API to draw out data or modify the
RDF graphs [9]. We have found that Jena is very stable
and robust to fetch RDF data and provide much
betterLinkedData features. It supports various RDF
formats for both parser and writer, such as Turtle,
RDF/XML, N-Triples, JSON-LD, RDF/JSON, TriG, N-
Quads, Trix, and RDF Binary. In Jena, the application
code written in Java directly acknowledged the RDF
API, whereas Ontology API and SPARQL API are the
RDF API subsets. It also facilitates the optional features
of Inference API and Store API [14].
We developed a Java program using Jena API in
Eclipse IDE to execute each RDF dataset file [10,11].
First, we create a model by using the 'ModelFactory'
class, which provide standards kinds of models, then
'RDFDataMgr' class open the RDF file of N-Triples
format, which return 'InputStream,' used to build a
model bypassing as an argument to the 'read' method of
the model. After that, a 'QueryFactory' class method
'create' is used to form the SPARQL query from the
given string, which returns an object of the 'Query' class.
'Query' object passed to QueryExecution class along
with the dataset object 'model' on which query will
execute by using the 'exeSelect()' method of
QueryExecution class, it returns a 'ResultSet' of the
executed query.
As compared to other libraries, Jena is the most reliable
API and easy to use; even naive programmers can
easily install it. We found Jena Tutorial quite helpful in
achieving our goals in no time. Jena is capable of
handling various sizes of datasets, from small to larger.
dotNetRDF (DotNET): It is an open-source .Net API of
RDF developed in C# language, and it shows good
performance on the smaller to medium size datasets. It
also supports third-party stores, such as AllegroGraph,
4store, and Virtuoso [9, 15].
We have created a console application in C# using
dotNetRDF API in Visual Studio 2019 for the 4.0
dotNET Framework. It was easier to install the API by
the built-in tool of NuGet Package Manager in VS-2019.
First, we created an IGraph object, an interface of
Graphs used to form Graphs mathematically. As
mentioned in the UserGuide [16], dotNetRDF supports
the same formats as Jean except for the RDF Binary; in
our program, we used NTriplesParser classto load the
RDF file of N-Triples format, passing the IGraph object
as a parameter, it loads the file in memory. To parse the
string's SPARQL query, we used SparqlQueryParser
class, which returns an object of SparqlQuery. We call a
method of SparqlQuery named 'ExecuteQuery,' which

returns an object of SparqlResultSet, which contains our
query results.
While programing in this API, we observed that working
in it not easier as compare to Jena. It needs a moderate
to a high level of programming skills to implement. The
User-Guide of dotNetRDF is not comprehensive, and
not much help is found over the web than Jena.
RDFLib (Python): An open-source RDF library
developed in Python for the semantic web; it consists of
various parsers to support almost all RDF formats, such
as Turtle, N-Triples, and JSON-LD. RDFLib supports
both in-memory and persistent Graph to perform RDF
manipulation and SPARQL quires on it [17]. In our
study, we used RDFLib 5.0, a stable version of it so far.
Python programmers can efficiently work in it.
We have created a console program in Python using
RDFlib API in Eclipse IDE. Python emphasizes the
indenting programming in readability aspects, which is
an annoying behavior for the Java programmer. It
provides the kick start documentation, which requires
basic knowledge of Python programming; by following
the RDFlib documentation, we created a Graph object
and used the 'parse' function to load the dataset by
explicitly defining the format the RDF file as the second
parameter of this function. After that, we called the
'query' function to get the results of the executed quires.
We have examined that RDFLib is the slowest library of
Python to manipulate or query the RDF Graphs; besides
that, a third-party library named 'RedLands' developed
in C language is speedy as compare to it.

C. Queries
To measure the performance of each RDF library, we
used three SPARQL queries of each dataset. This
section explained these queries and their expected
results. Query Q1, Q2, and Q3 are for theLinkedMovie
dataset [18, 20], and Query Q4, Q5, and Q6 are for the
MeSH dataset [21].
Query-1 (Q1) – "Cast of Pulp Fiction and Number of
Movies Acted In." This query fetches all actors who
acted in the movie "Pulp Fiction" and counts the number
of films they worked in their whole acting career.

Fig. 1. Expected Result of Query-1 (LinkedMovie-
Dataset).

The expected results of this query shown in Fig. 1,
observed that it returns two columns names of actors
and several movies against each actor in which they
acted.
Query-2 (Q2) – "Six Degrees of SPARQL." This query is
on the famous game of Six Degrees of Kevin Bacon,
where six or fewer peoples are not connected socially to
each other, somehow linked in a manner without
knowing each other personally. This query fetched the

Bamboat et al., International Journal on Emerging Technologies 12(1): 25-30(2021) 28

results of five movies and the connecting actors
between together.
The expected outcome result of this query, shown in
Fig. 2, returns the name of movies and actors related to
each other somehow, either as a competitor or as a co-
worker of actor Hugh Jackman or Kevin Bacon, or both.
For example, RomolaGarai British actress was in the
movie Scoop-2006 with Hugh Jackman, whereas the
same actress acted with Geoff Bell, who was in the
movie "You Should Have Left" with Kevin Bacon.

Fig. 2. Expected Result of Query-2 (LinkedMovie-

Dataset).

Fig. 3. Graphical View of Six Degree of Kevin Bacon,
taken from The Oracle of Bacon [19].

Query-3 (Q3) – "Display identifier and title of all movie
topics defined in Linked Movie Database." This query
fetched 179 records of all subjects along with their titles
as declared in the datasets, a UNION operator used to
combine the results of SKOS (Simple Knowledge
Organization – a web dataset) and LinkedMovie dataset
and return the DISTINCT records based on subject and
title, as shown in the Fig. 4.

Fig. 4: Expected Result of Query-3 (LinkedMovie-
Dataset).

Query-4 (Q4) – "Retrieve all MeSH descriptors or
concepts with infection anywhere in its name." This
query fetches the 321 records of all descriptors and their
Concept and the name of the infection.

Fig. 5. Expected Result of Query-4 (MeSH-Dataset).

Query-5 (Q5) – "Find all active MeSH descriptors with
an allowable qualifier of 'adverse effects.'" This query
fetches the 1000 records of all descriptors along with
their names of harmful effects.

Fig. 6. Expected Result of Query-5 (MeSH-Dataset).

Query-6 (Q6) – "Descriptors and SCRs that have the
Pharmacological Action 'Anti-Bacterial Agents'." This
query fetches the 422 records of all descriptors along
with their names of Anti-Bacterial.

Fig. 7. Expected Result of Query-6 (MeSH-Dataset).

IV. RESULTS AND ANALYSIS

A. Hardware and Software Tools
We have performed this study on the AMD hardware
A4-6300B @ 3.70 GHz processor, 8 GB RAM, and
Windows 10 operating system.
Three open-source RDF libraries, dotNetRDF, Apache
Jena, and RDFLib, are used to compare performance
among them. The IDEs utilized are Microsoft Visual
Studio 2019 for the dotNetRDF library using C#
programming language and Eclipse for Jena and RDFlib
libraries using Java and Python programming
languages.

B. Performance Metrics
We examined RDF libraries' performance on their
loading time, traversal time, query response time, and
memory usage of the complete process.
Loading Time: We have evaluated the loading time in
seconds of each dataset using dotNetRDF, Jena, and
RDFlib APIs. Table 2 reflects these APIs' outcomes, the
loading time taken by each RDF library in seconds. We
have examined that Jean and RDFlib have loaded
datasets successfully, whereas dotNetRDF has failed to
load the MeSH dataset.
Fig. 8 depicts the loading time data presented in Table
2; it reflects that RDFlib has taken a colossalloading
time compared to Jena and dotNetRDF, whereas
dotNetRDF failed to load the MeSH RDF file due to
larger size. In contrast, Jena's performance is
outstanding from the rest of the libraries.

Bamboat et al., International Journal on Emerging Technologies 12(1): 25-30(2021) 29

Table 2: Loading Time of Datasets in RDF Libraries.

Datasets Apache
Jena

dotNetRDF RDFlib

LinkedMovie 63 sec 189 sec 419 sec

MeSH 249 sec - 7416 sec

Fig. 8. Loading Times of RDF Datasets in Apache Jena,
dotNetRDF and RDFlib.

In contrast, Jena's performance is outstanding from the
rest of the libraries.
Traversal Time: We have computed the RDF file's
traversal time, results expressed in Table 3, presents
each programming language's file traversal time on
each dataset, the graphical representation of traversal
time values in Fig. 9, we have examined that Python
has taken maximum traversal time on both datasets
compared to others; on the other hand, C# has shown
much better performance as compared to Java.

Table 1: Traversal Time of Datasets.

Datasets Java C# Python
LinkedMovie 58 sec 37 sec 665 sec

MeSH 318 sec 187 sec 790 sec

Fig. 9. Traversal Times of RDF Datasets.

Query Response Time:We have executed six SPARQL
queries, three for each dataset; in this sub-section, we
use aliases against each query such as Q1, Q2, Q3,
Q4, Q5, and Q6. SPARQL Queries, as explained in the
sub-section of METHODOLOGY, are implying in this
study.
Table 4 reflects the response times of each query
executed using RDF libraries. We examined that
dotNetRDF failed to load MeSH RDF; therefore, Q4 to
Q6 failed to execute, and Q2 throws TimeOutException.
The default timeout value is 3 minutes (180,000ms);
even after increasing its default value up to a maximum
limit does not return results of Q2.
Fig. 10 depicts the query response time data, as
reflected in Table 4; we observed RDFlib's maximum
time in Q2 to return records compared to others. There
is a mixed result of Jean and RDFlib. On Q1 and Q2,
Jean showed outstanding performance, whereas, on Q3

to Q6, RDFlib results are much better than Jena.
dotNetRDF performance cannot be measured except
Q1 and Q3, whereas the rest of the query executions
are successful.

Table 2: Query Response Time of Datasets in
Apache Jena, dotNetRDF and RDFlib.

Query
Apache

Jena
dotNetRDF RDFlib

Q1 2.06 sec 4 sec 4 sec

Q2 26 sec
Timeout

Exception
180 sec

Q3 0.32 sec 0.18 sec 0.13 sec

Q4 11 sec - 7 sec

Q5 3.45 sec - 0.05 sec
Q6 1.29 sec - 0.05 sec

Fig. 10. Query Response Time of SPARQL queries on
each RDF Library.

Memory Usage: We have examined the total memory
utilization in GBs, of the RDF libraries, from the loading
process to all queries' response.
Fig. 11 depicts the total memory utilization of Jena,
dotNetRDF, and RDFlib, as dotNetRDF failed to load
the MeSH RDF; therefore, we observed that dotNetRDF
had utilized 7.29 GB for file traversal time computing
only. In contrast, Jena's memory utilization is much
better than the rest of the libraries' memory utilization.

Fig. 11. Memory Utilization of Jena, dotNetRDF, and
RDFlib.

V. CONCLUSION

We have conducted this study to evaluate the
performance of open-source RDF libraries, Apache
Jena, dotNetRDF, and RDFlib, developed in Java, C#,
and Python programming languages. Various measure
metrics such as loading time, traversal time, query
response time, and memory utilization used to compute
each library's performance. We have used two RDF
datasets of N-Triples format of different sizes,
LinkedMovie consists of 3,579,616 triples, and Medical
Subject Heading (MeSH) consists of 16,442,022 triples.
Linked Movie dataset is the collection of movies, actors,

Bamboat et al., International Journal on Emerging Technologies 12(1): 25-30(2021) 30

directors, and the relationships among them. In contrast,
the MeSH dataset containing vocabulary thesaurus from
medical books, journals, and audiovisuals. We have
used six SPARQL queries and three queries for each
dataset. Apache Jena and RDFlib implemented in Java
and Python programming using Eclipse IDE, whereas
dotNetRDF was implemented in the C# program using
Microsoft Visual Studio 2019.
We have examined that Jena's installation and
implementation were quick and easy, followed by
dotNetRDF and RDFlib, query Q1, Q2, and Q3 related
to LinkedMovie Q4, Q5, and Q6 are related to the MeSH
dataset. Jena has taken 63 seconds and 249 seconds
to load LinkedMovie and MeSH,
respectively;dotNetRDF failed to load MeSH, whereas
RDFlib took a huge loading time compared to Jena.
Python took maximum traversal time compared to C#
and Java. On the other hand, we have computed Query
Response Time by executing six queries on each
library, divided into three queries for each dataset. Fig.
10 represented that Jena and RDFlib have executed all
six queries. In contrast, dotNetRDF has thrown Time
Out Exception at the time of Q2 execution and unable to
load MeSH, so the execution of Q4 to Q6 failed on it. In
aspects of Memory Usage, Jena has shown outstanding
performance, followed by RDFlib and dotNetRDF, as
presented in Fig. 11.
This study has witnessed that dotNetRDF is suitable for
smaller or medium-sized datasets, whereas the RDFlib
is the Python's slowest RDF library. In contrast, the
overall performance of Apache Jena is tremendous; it
can support various sizes of datasets from smaller to
larger. On the other hand, both dotNetRDF and RDFlib
took a massive amount of time and maximum memory
usage to process larger RDF datasets.

VI. FUTURE SCOPE

The next step of this will be to evaluate other RDF
libraries, and we will use larger RDF datasets. It will
help us to find the more in-depth performance of the
libraries

Conflict of Interest. There is no conflict of interest in
this work.

REFERENCES

[1]. Dineshpathak, A. (2021). Semantic Web. Retrieved
from https://devopedia.org/semantic-web.
[2]. Mahoro, L. J., & Fonou-Dombeu, J. V. (2019). An
Empirical Evaluation of dot NET-Based Tools for
OWL/RDF Ontologies Processing. 2019 International
Conference on Advances in Big Data, Computing and
Data Communication Systems (icABCD).
doi:10.1109/icabcd.2019.8851017.
[3]. Semantic Web (2021). Retrieved
fromhttps://en.wikipedia.org/wiki/Semantic_Web.
[4]. Banane, M., & Belangour, A. (2019). A Comparative
Study of RDF Triple Stores. SSRN Electronic Journal.
doi:10.2139/ssrn.3349399.
[5]. Eine, B., Jurisch, M., & Quint, W. (2017). Ontology-
Based Big Data Management. Systems, 5(3), 45.
doi:10.3390/systems5030045.

[6]. Fonou-Dombeu, J. V., & Kadiata, V. K. (2019).
Ontology Development in dot NET Platform: An
Empirical Assessment. 2019 International Conference
on Advances in Big Data, Computing and Data
Communication Systems (icABCD).
doi:10.1109/icabcd.2019.8851027.
[7]. Nacional, T., Niinimaki, M., & Heikkurinen, M.
(2019). Rdf Databases – Case Study and Performance
Evaluation. MATTER: International Journal of Science
and Technology, 5(3), 01-14.
doi:10.20319/mijst.2019.53.0114.
[8]. SPARQL. (2021). Retrieved from
https://en.wikipedia.org/wiki/SPARQL.
[9]. Mahoro, L. J., & Fonou-Dombeu, J. V. (2020). A
Comparative Analysis of dot NET-Based and Open
Source Platforms for Ontologies Development. 2020
International Conference on Artificial Intelligence, Big
Data, Computing and Data Communication Systems
(icABCD). doi:10.1109/icabcd49160.2020.9183887
[10]. Linkedmdb - dataset by linked-data. (2017).
Retrieved from https://data.world/linked-data/linkedmdb
[11]. MeSH RDF Technical Documentation. (n.d.).
Retrieved from https://hhs.github.io/meshrdf/
[12]. Hassanzadeh, O., & Consens, M. P. (1970). [PDF]
Linked Movie Database: Semantic Scholar. Retrieved
from https://www.semanticscholar.org/paper/Linked-
Movie-Data-Base-Hassanzadeh-
Consens/0bf1c4ddc8f32b96666bbae0dafdc591254a99a
5.
[13]. Bushman, B., Anderson, D., & Fu, G. (2015).
Transforming the Medical Subject Headings into Linked
Data: Creating the Authorized Version of MeSH in RDF.
Journal of Library Metadata, 15(3-4), 157-176.
doi:10.1080/19386389.2015.1099967.
[14]. Getting started with Apache Jena. (n.d.). Retrieved
from https://jena.apache.org/getting_started/
[15]. DotNetRDF. (n.d.). Retrieved from
https://www.w3.org/2001/sw/wiki/DotNetRDF
[16]. Dotnetrdf. (n.d.). Dotnetrdf/dotnetrdf. Retrieved
from
https://github.com/dotnetrdf/dotnetrdf/wiki/UserGuide
[17]. Rdflib 5.0.0. (n.d.). Retrieved from
https://rdflib.readthedocs.io/en/stable/
[18]. Linkedmdb - dataset by linked-data. (2017).
Retrieved from https://data.world/linked-data/linkedmdb
[19]. The Oracle of Bacon. (n.d.). Retrieved from
https://oracleofbacon.org/movielinks.php
[20]. Lecture Slides from Artificial Intelligence
Laboratory, "SPARQL QUERY LANGUAGE," slide no.
10, URL: http://ai.fon.bg.ac.rs/wp-
content/uploads/2015/04/SPARQL-examples-20141.pdf
[21]. MeSH RDF Technical Documentation. (n.d.).
Retrieved from https://hhs.github.io/meshrdf/sample-
queries
[22]. Rastogi, N., Verma, P., & Kumar, P. (2017).
Analyzing Ontology Editing Tools for Effective Semantic
Information Retrieval. International Journal of
Engineering Sciences and Research Technology
(IJESRT). doi: 10.5281/zenodo.571593.

How to cite this article: Bamboat, M. A., Khan, A. H. and Wagan, A. (2021). Performance of RDF Library of
Java, C# and Python on Large RDF Models. International Journal on Emerging Technologies, 12(1): 25–30.

