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ABSTRACT: The authors obtained a forecast of the enterprise tax base. In this paper, the authors evaluated 
ARIMA models according to the Box-Jenkins method and regression models with dummy variables to 
account for additive and multiplicative seasonality. On a sample of 48 observations on the tax basis of the 
estimated model ARMA (1;0), ARMA (1;1), SARMA (1, 1) x (0,1) 6, a model with seasonal dummy variables. 
The authors focused on the method of selecting the most valid model according to the criteria RMSE and AIC 
used the method of selection of the designated circle of the most simple model with the fewest parameters. 
The reliability of the results is confirmed by the information criterion of Akaike, the mean square error of the 
forecast, the diagnosis of residues on the normal distribution using a special test and the absence of 
autocorrelation using the Ljung-Box test. The statistical significance of regression models with dummy 
variables for seasonality was not confirmed. A promising direction of development of this study can be a 
combination of forecasts, as well as the use of polynomial trends. 
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I. INTRODUCTION 

In Economics, there are often processes in which the 
use of statistical methods does not always give 
adequate results. In these conditions, it is necessary to 
be able to analyze the dynamics of the predicted 
indicator, to understand what this dynamics is, and to 
select a suitable forecast model. A number of studies in 
the field of forecasting have shown that the use of 
complex, statistically based methods does not 
necessarily lead to an increase in the accuracy of 
forecasts. Model autoregressive regressions, which is 
considered statistically reasonable, may not be 
sufficiently accurate [1, 2]. Therefore, a practicing 
forecaster should have at his disposal much more tools 
of forecasting methods and models than mathematical 
statistics offers him. Forecasting is one of the most 
popular tasks of business analysts in terms of 
prospective assessments of the tax base. The purpose 
of tax forecasting is to identify for a certain time period 
the tax payments of the enterprise, which are due to the 
dynamics of the company's income [3, 4]. Tax 
forecasting, closely interacting with such management 
functions as marketing, Finance, accounting, personnel 
policy, supply, at the same time is one of the basic tools 
for generating performance indicators of the enterprise. 
Therefore, tax forecasting should become a mandatory 
tool in the management kit of a Russian enterprise when 
making a management decision [5]. The basic 
prerequisite for forecasting a one-dimensional time 
series of the tax base (income) of the enterprise is its 
stationarity. The dynamics of the tax base (income) of 
enterprises with seasonal production is often non-
stationary and contains a trend and seasonal 
fluctuations. Therefore, the forecast of the tax base is 
convenient to obtain with the help of ARIMA model, 
additive or multiplicative trend-seasonal model, 
regression model with fictitious seasonal variables [6], 
and then choose the most accurate by the minimum 
value of the mean square error of the forecast. The aim 

of the study was to develop methodological and practical 
recommendations to improve the process of tax 
forecasting in the enterprise. The hypothesis of the study 
–the tax base of the enterprise has seasonality and a 
tendency to increase. 

II. METHODS 

The study used monthly data on the tax base of the 
company from 2015 to 2018, obtained from the open 
financial statements. Estimation of ARIMA models 
performed with the software Gretl–GNU Regression, 
Econometrics and Time-series Library. 
The highly flexible software products, a model of type 
ARIMA is a classic in the predictive estimates. To build 
ARIMA-type models, we used the Box-Jenkins approach 
[7; 8], which consists of the following procedures: 
1. Graphical analysis of the time series (is the time 
series stationary?); 
2. Construction of ACF and PACF diagrams for the initial 
time series (with a slow decrease in the ACF 
correlogram, there is reason to believe that the time 
series is not stationary); 
3. Conducting the Dickey-Fuller test (ADF test, null 
hypothesis of unsteadiness [9]) for the initial time series 
(if the series is not stationary, then taking the first 
difference between the levels (d=1)); 
4. Conducting the Dickey-Fuller test (ADF test) for the 
first time series difference; 
5. Charting ACF and PACF for the first difference of the 
time series to identify the order p (for PACF), and q (for 
ACF); 
6. Evaluation of ARIMA model (p, d, q) or several 
models by the first time series difference; 
7. Diagnostics of ARIMA model residues (p, d, q) for 
autocorrelation and normality (Ljung-Box test [10]); 
8. The choice of the model ARIMA (p, d, q) according to 
the minimum AIC criterion. 
9. Using ARIMA model (p, d, q) for prediction; 
10. RMSE forecast error calculation. 
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Modeling of seasonal variations using fictitious variables 
is possible by including fictitious variables in a constant 
(corresponds to the construction of a model with additive 
seasonality), or by including fictitious variables in the 
slope angle (corresponds to the construction of a model 
with multiplicative seasonality). In the case of quarterly 
data, a dummy variable s-1 can be entered to account 
for additive seasonality in the model: 

t t 1 1 2 2 3 3 ty y b season b season b season= + + + + ε   

The coefficients of such a model can be estimated by 
the usual least squares method. The standard in this 
case is the fourth quarter, for which the model takes the 

form: ε+=
tt

yy . To account for multiplicative 

seasonality, you must add dummy variables to the slope 
of a simple linear model: 

t 0 1 1 1 2 2 3 3y a a t b season t b season t b season t= + + ⋅ + ⋅ + ⋅ + ε  

In this case, with the growth of the value of t, the value 

of y will grow seasonally. For example, for quarterly data 
on the first observation in the first season, y will be 
higher than the reference by b1*1, and on the fifth (a 
year later)-higher than the standard by b1*5 . This 
specification adequately reflects the economically 
intuitive to the growing trend of tax base successfully 
developing company. 

III. RESULTS AND DISCUSSION 

Dynamics of the tax base of the enterprise (Fig.1) most 
likely demonstrates a stationary time series. 
The result of the extended Dickey-Fuller test with a 
constant (p-value was 0.0054) allows us to formulate a 
conclusion about the stationarity of the initial time series 
of the tax base of the enterprise at all possible levels of 
significance. Autocorrelation function and private 
autocorrelation function (Fig. 2) time series contain 
significant correlation coefficients on the first lag. 

 

Fig. 1. Dynamics of the enterprise tax base. 

 

Fig. 2. Correlogram of initial levels of the tax base time series. 
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Therefore, we estimate the ARIMA model (1, 0, 1), 
where p = 1, q = 1, which is equivalent to the ARMA 
model (1,1) (Fig. 3). 
In ARMA (1,1) model the parameter theta_1 is not 
significant, so we estimate ARMA (1,0). Also on the 
ACF chart (Fig. 2) we see a significant coefficient on the 
6 lag, which makes it possible to evaluate the model c 
seasonal MA-component: SARMA (1,1) x (0,1)6.  
Diagnosis of the residues of the models pointed to the 
observance of the null hypothesis of normal distribution 
of residuals and absence of autocorrelation for all 
possible levels of significance (Table 1). Therefore, the 
choice of the most correct model from Table 1 for 
forecasting accounts payable is feasible by the least 
Akaike criterion (AIC), which contains a penalty for the 
complexity of the model, and the least mean square 
error (RMSE), which measures the accuracy of the 

model. The table shows that the RMSE and AIC criteria 
for the model SARMA (1,1)x(0,1)6 are the maximum, so 
the choice of the best model for forecasting the tax base 
will be carried out between ARMA (1,1) and ARMA 
(1,0).  According to the generally accepted practice of 
choosing between complexity and accuracy, the model 
with the least number of parameters should be chosen 
from these models, provided that its accuracy is not 
significantly different from another model (the deviation 
between the RMSE ratio of the models should not 
exceed 10%). Compare between average quadratic 
error of the models: 18833/18802 = 1,002 (i.e., the 
deviation is 0.2%). We will give preference to the ARMA 
model (1;0) with a smaller value of the Akaike 
information criterion and predict the tax base for the 12 
months of 2019. 

Model 1: ARMA, using observations 2015:01-2018:12 (T = 48) 
Estimated using Kalman filter (exact ML) 
Dependent variable: v1 
Standard errors based on Hessian 
coefficient     std. error      z       p-value  
----------------------------------------------------------- 
const      41638.7         5370.29       7.754    8.94e-015 *** 
phi_1      0.457176       0.216583    2.111    0.0348      ** 
theta_1   0.0924766     0.229911    0.4022   0.6875    
Mean dependent var   41419.25   S.D. dependent var   22430.81 
Mean of innovations−74.8974   S.D. of innovations  18801.65 
Log-likelihood−540.6736        Akaike criterion     1089.347 
Schwarz criterion    1096.832       Hannan-Quinn         1092.176 

Fig. 3. The results of the evaluation of the ARIMA model (1 ,0, 1). 

Table 1: Evaluation results of ARMA models. 

Моdel Specification AIC RMSE 
Р-value test for the 

normal distribution of 
residues 

Р-value test 
Ljung-Box 

ARMA (1,1) Yt=41638,7
(***)

+0,457
(**)

Yt-1 +0,092ɛt-1+ɛt 1089,347 18 802 0,51830 0,7339 

ARMA (1,0) Yt=41786,3+0,524Yt-1 +ɛt 1087,504 18 833 0,55754 0,8018 

SARMA 
(1,1)x(0,1)6. 

Yt=42616,3
(***)

+0,501
 (**)

Yt-1  + 0,088 ɛt-1 + 
0,224 ɛt-6 + 0,088*0,224 ɛt-7+ɛt 

1089,604 18 334 0,38297 0,8174 

 

Fig. 4. Forecast of the enterprise tax base in 2019. 
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Table 2 : Results of the forecast of the enterprise tax base in 2019, thousand rubles. ARMA model (1:0). 

Period Forecast Standard error Lower limit Upper limit 
2019:01 38686.21 18833.355 1773.51 75598.90 

2019:02 40161.06 21264.596 1516.78 81838.90 
2019:03 40934.27 21885.555 1960.63 83829.17 

2019:04 41339.63 22053.162 1883.77 84563.03 

2019:05 41552.15 22099.006 1761.11 84865.40 
2019:06 41663.56 22111.589 1674.36 85001.48 

2019:07 41721.97 22115.047 1622.73 85066.66 
2019:08 41752.59 22115.997 1593.97 85099.15 

2019:09 41768.64 22116.258 1578.42 85115.71 

2019:10 41777.06 22116.330 1570.15 85124.27 

2019:11 41781.47 22116.349 1565.77 85128.72 

2019:12 41783.79 22116.355 1563.47 85131.05 

Table 3: Summary table of the seasonal modeling results using dummy variables. 

Regressors 
Dependent variable – tax base 

Additive model (1) Multiplicative model (2) 

Trend -233,866 (232,545) -343,885 (282,581) 

Q1 Dummy 11945,0  (9085,13)  

Q2 Dummy -8870,69 (8950,21)  
Q3 Dummy -2501,60 (8868,26)  

Q1 and Trend Dummy intersection  169,658 (346,323) 

Q2 and Trend Dummy intersection  -38,385 (324,487) 

Q3 and Trend Dummy intersection  138,790 (306,821) 

Free ratio 
47005,8*** 
(9195,57) 

48314,7*** 
(6776,44) 

P-value (F) 0,136 0,734 

R2 0,147 0,045 

We use the rule of thumb that simple linear models often 
produce better predictions. Some researchers believe 
that the simplicity and compactness of linear models 
makes them more resistant to incorrect specifications, 
which is important for long-term forecasting [11]. 
Therefore, we apply linear regression models with 
additive seasonality and multiplicative seasonality to the 
tax base forecast (Table 3). 
As can be seen from Table 3, regression models with 
additive seasonality and multiplicative seasonality turned 
out to be statistically insignificant, as well as seasonal 
coefficients of these models are insignificant, which does 
not allow them to be used to obtain forecast estimates of 
the tax base. 

IV. SUMMARY 

In the process of forecasting the tax base of the 
enterprise, the method of predicting values by 
autoregressive models and models with a seasonal 
dummy variable was chosen. The hypothesis of the 
study on seasonality  and tax base of the enterprise has 
not been confirmed. The obvious advantages of ARIMA 
models are the following: the presence of a formalized 
and the most detailed developed methodology, following 
which you can choose the model that is most suitable for 
each specific time series. Developed methods for 
automatic selection of the best ARIMA [12, 13] and is 
"greatly facilitate life" of the forecaster. In addition, point 
and interval forecasts follow from the model itself and do 
not require separate estimation. The advantages of 
modeling seasonality using dummy variables are the 
following: the method does not require classical 
decomposition of the time series and there is no loss of 
observations; the method allows to include seasonality in 
any regression model, not only in the trend model, which 
can be useful if we are trying to predict some indicator 
based on the values of another known; to estimate the 
parameters it is enough to use the usual method of least 
squares. 
One of the obvious drawbacks of ARIMA models is the 
requirement for data series: to build an adequate ARIMA 

model requires at least 40 observations, and for 
SARIMA- about 6-10 seasons, which is not always 
possible in practice. The second serious drawback is the 
lack of adaptability of autoregression models: when 
receiving new data, the model should be periodically 
overestimated, and sometimes re-identified. The very 
same construction of the model is rather an "art", i.e. 
requires a lot of experience on the part of the forecaster.  
At the end of the last century, studies conducted by the 
International Institute of Forecasters have shown that 
ARIMA models have shown themselves to be no better 
than exponential smoothing models, and in each case 
you need to use your model [14]. Moreover, the use of 
models AR(1), AR(2) and ARMA(1,1) bypassing the 
Boxing-Jenkins methodology (i.e. without studying 
correlograms and estimating residuals) gives no less 
accurate predictions than the ARIMA models built on the 
basis of the Box-Jenkins methodology [15]. The 
construction of ARIMA models is based on the 
assumption that the time series is generated infinitely in 
accordance with some function whose parameters need 
to be identified and evaluated. However, economic 
processes, as we already know, are essentially 
irreversible, and therefore such a "technical" attitude to 
them does not allow to take into account their features 
and, as a result, does not allow to give accurate 
forecasts. In evolutionary economic processes, there are 
constant changes in all the characteristics of the 
distribution, and therefore the "race" for the best 
(unbiased, efficient and well-founded) estimates without 
heteroscedasticity and autocorrelation in the residues is 
more like a search for what does not exist, where it does 
not exist in principle. It is possible to point out the 
following disadvantages of seasonality modeling using 
dummy variables: the method involves averaging all 
seasonal coefficients and does not allow for the 
possibility of evolutionary changes in seasonal 
components over time; the method does not take into 
account possible "outliers" of data; it is required to pre-
select the type of function that best describes this 
process (for simple trend models it can be difficult when 
the trend component evolves over time).  
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V. CONCLUSIONS 

The advantage of linear models is due to their overall 
"robustness" of resistance to wrong specification of the 
model, the resistance to bias and inaccuracies in the 
evaluation of resistance to structural change and the drift 
of the model parameters. The obvious advantages of 
using linear models include the fact that it is based on a 
very clear mathematical and statistical justification, 
which makes them one of the most scientifically sound 
models of the whole set of models for predicting trends 
in time series. Another undeniable advantage is the 
formalized and most detailed developed method, 
following which you can choose the model that is most 
suitable for each specific time series. The perspective 
direction of development of this research can be 
obtaining forecast estimates of accounts payable on the 
basis of modeling of multidimensional time series 
through the elimination of false regression and analysis 
of co-integration. Polynomial trends described by 
discrete polynomials of low orders are also popular. 
Effective application in the construction of polynomial 
trends can find algorithms for their evaluation based on 
discrete transformations [16]. Also of practical interest is 
forecasting using fuzzy time series models [17]. In 
conditions where all individual models are imperfect 
approximations of the true process, a combination of 
forecasts may be optimal. In a series of papers, Granger 
and his co-authors developed a technique for obtaining 
an optimal combination of forecasts, when all individual 
models are only an approximation of the process that 
generates data [18,19]. In addition, it is likely that in 
many situations the predicted process itself is a 
combination of simpler microprocesses.  
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