

International Journal on Emerging Technologies (Special Issue NCETST-2017) **8**(1): 205-208(2017) (*Published by Research Trend, Website:* www.researchtrend.net)

ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255

Single Layer Microstrip Antenna with S shape patch

Upendra Kumar Singh¹ and Monika Nanda² 1Assistant Professor, Amrapali Institute of Technology & Sciences, Shiksa Nagar, Lamachaur, Haldwani, Nainital, (U.K.), India ²Assistant Professor, Birla Institute of Applied Sciences, Bhimtal, Nainital, (U.K.), India

ABSTRACT: Now a days microstrip patch antenna is one of the most preferably used antenna because of its small structure size and ease of manufacturing. A single layer microstrip antenna with S shape patch is designed and thoroughly simulated on HFSS software in this paper. The designed antenna is worked at Resonant frequency of 1.58GHz, which lies in L band and that can be used in GPS antenna and various other Communication related applications. It is shown that the simulated results are in acceptable agreement.

Keywords: Compact, high frequency structural simulator (HFSS), Patch, Global Positioning System (GPS), Resonant frequency.

I. INTRODUCTION

In recent years, demand for small antennas on wireless communication has increased the interest of research work on compact microstrip antenna design among microwave and wireless engineers [1-6]. Because of their simplicity and compatibility with printed-circuit technology microstrip antennas are widely used in the microwave frequency spectrum. Simply a microstrip antenna is a rectangular or other shape, patch of metal on top of a grounded dielectric substrate. Microstrip patch antennas are attractive in antenna applications for many reasons. They are easy and cheap to manufacture, lightweight, and planar to list just a few advantages. Also they can be manufactured either as a stand-alone element or as part of an array[11-12]. However, these advantages are offset by low efficiency and limited bandwidth. In recent years much research and testing has been done to increase both the bandwidth and radiation efficiency of microstrip antennas [7-8]. Due to the recent interest in broadband antennas a microstrip patch antenna was developed to meet the need for a cheap, low profile, broadband antenna.

This antenna could be used in a wide range of applications such as in the communications industry for cell phones or satellite communication. Our aim is to reduce the size of the antenna as well as increase the operating bandwidth. The proposed antenna (substrate with $\varepsilon r = 4.4$) has a gain of 6.24 dBi. The simulation has been carried out by HFSS software. Due to the small size, low cost and low weight this antenna is a good entrant for the application of L-Band microwave

Singh and Nanda

communication and RADAR communication & satellite communication.

The L band defined by an IEEE standard for radio waves and radar engineering with frequencies that ranges from 1.0 to 2.0 GHz [10]. The L band is used for short range tracking, missile guidance, marine, radar and air bone intercept. Especially it is used for radar communication and GPS. The GPS (Global Positioning System) has revolutionized modern day navigation and position location. GPS is now the most common means of tracking and location mapping in most of the ships, aircraft carriers and even in automobiles. With advancement in technology and science, GPS applications are even used by common public for the knowledge of updating location, tracking purposes and even travelling from one place to another. Most of the GPS Antennas require circular polarization and this is achieved by microstrip antennas which satisfy criteria like low cost (economically feasible), ease of fabrication, miniaturization along with high precision and reliability.

II. FEEDING TECHNIQUE

Microstrip patch antennas can be served by a different feeding methods [8]. These methods can be divided into two parts- contacting and non-contacting. In the contacting method, the radio power is fed directly to the radiating patch by using a connecting element such as a microstrip line. In the non-contacting scheme, electromagnetic field link is completed by transferring radio power between the microstrip line and the radiating patch. The most four most popular feeding techniques used are microstrip line feeding and coaxial probe feeding, examples of contacting schemes feeding, aperture coupling and proximity coupling, examples of noncontacting schemes feeding. These techniques have several advantages and disadvantages. These are used according to their applications. In this paper we use the microstrip line feeding technique for proposed antenna.

A. Microstrip Line Feeding

This type of feeding technique has a conducting strip that is associated directly to the edge of the Microstrip patch.

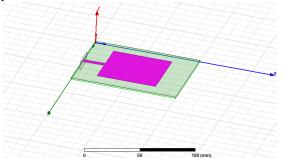


Fig. 1. Side view of line feeding.

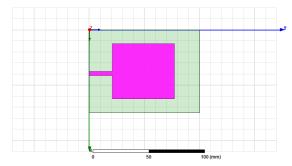


Fig. 2. Top view of line feeding.

The width of conducting strip is smaller as compared to the patch. This category of feeding arrangement has the advantage that this type of feeding can be removed on the same substrate to transport a planar structure. This method has many advantages due to its simple planar structure. Though as the thickness of the dielectric substrate being used, increases, surface waves and spurious feed radiation also increases, which offers the bandwidth 1.5-5% of the antenna. This feed radiation also leads to undesired cross polarized radiation. The side view and top view is shown in fig.1 and fig.2.

III. ANTENNA DESIGN

The configuration of the designed antenna is shown in Figure 1 where a rectangular patch of dimensions L=56 mm, W=50 mm, lies above the substrate (FR4 Epoxy) thickness h = 1.6 mm, dielectric constant $\varepsilon r = 4.4$. *Singh and Nanda*

The feeding of the antenna is done by line feeding method. Assuming practical patch width W=50 mm for efficient radiation and using the equation [9],

$$f_r = \frac{c}{2W} \times \sqrt{\frac{2}{(1+\epsilon_r)}}$$

Where, c = velocity of light in free space. Using the following equation [9] we determined the practical length L (=6mm).

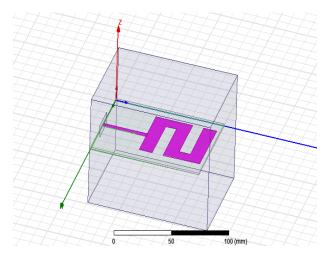
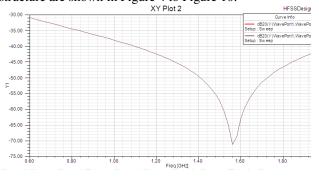
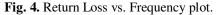
 $L = L_{eff} - 2\Delta L$

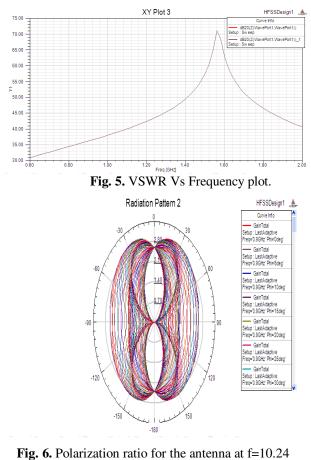
Where
$$\frac{\Delta L}{h} = \left[0.412 \times \frac{(\mathbb{E}_{\text{reff}} + 0.3) \times (W/h + 0.264)}{(\mathbb{E}_{\text{reff}} - 0.258) \times (W/h + 0.8)} \right]$$

 $\mathcal{E}_{reff} = \left[\left(\frac{\mathcal{E}_{\Gamma} + 1}{2} \right) + \frac{\mathcal{E}_{\Gamma} - 1}{\left(2 \times \sqrt{\left(1 + 12 \times \frac{h}{W} \right)} \right)} \right]$
and $L_{eff} = \left[\frac{c}{2 \times f_{\Gamma} \times \sqrt{\epsilon_{eff}}} \right]$

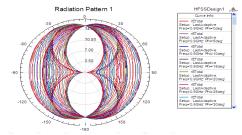
Where, Leff = Effective length of the patch, $\Delta L/h$ =Normalized extension of the patch length, $\epsilon reff$ = Effective dielectric constant. The given table shows the different parameters of designed antenna.

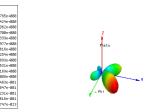
Sr.No.	AntennaParameter	Value
1	Length of patch (Lp)	56 mm
2	Width of Patch (Wp)	50mm
3	Dielectric Constant of	4.4
	Substrate(ε_{r})	
4	Thickness of Substrate	1.6mm
5	Substrate Length	100mm
6	Substrate Width	75mm
7	Dimensions of slit on	10mm*40mm
	patch	


Fig. 3. Proposed Antenna configuration.

IV. RESULTS AND DISCUSSION


The designed antenna is Simulated thoroughly (using HFSS [13]). The results for the simulated antenna structure are shown in Figure 4 to Figure 10.



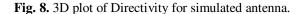

GHz.

Fig. 7. Total Directivity for the antenna at f=10.24 GHz.

Dir

ntenna Parameters					
Inputs					
Setup Name: In	nfinite Sphere1				
Solution: La	.astAdaptive			ОК	
Array Setup: R	Regular Array			Export	
			_ _	Export	
	Freq='0.9GHz'				port Fields
Design Variation:	DY='28mm' Gnd_pl_width='7		='7	sport rields	
intenna Parameters:					
Quantity		Value		Units	
Max U		0.36181		W/sr	
Peak Directivity		14.625			
Peak Gain	3.0494				
Peak Realized Gain	0.045469				
Radiated Power		0.31089		W	
Accepted Power	Accepted Power			1.491	
Incident Power	99.997		W		
Radiation Efficiency		0.20851			
Front to Back Ratio		1.9727			
Decay Factor		0			
faximum Field Data:					
taximum Field Data: rE Field	Va	ue	Units	At Phi	At Theta
	Va 16.517	lue	Units V	At Phi 35deg	At Theta 25deg
		lue			
rE Field	16.517	lue	V	35deg	25deg
rE Field Total X Y Z	16.517 8.3953	lue	v v	35deg 45deg	25deg 90deg
rE Field Total X Y	16.517 8.3953 16.137 8.889 15.765	lue	V V V	35deg 45deg 25deg	25deg 90deg 20deg 45deg 30deg
rE Field Total X Y Z	16.517 8.3953 16.137 8.889	lue	V V V V	35deg 45deg 25deg 85deg	25deg 90deg 20deg 45deg
rE Field Total X Y Z Phi	16.517 8.3953 16.137 8.889 15.765		<pre></pre>	35deg 45deg 25deg 85deg 10deg	25deg 90deg 20deg 45deg 30deg
rE Field Total X Y Z Phi Theta	16.517 8.3953 16.137 8.889 15.765 16.147 12.99 12.795	ue	V V V V V V	35deg 45deg 25deg 85deg 10deg 90deg 210deg 30deg	25deg 90deg 20deg 45deg 30deg 15deg -140deg 35deg
rE Field Total X Y Z Phi Theta LHCP	16.517 8.3953 16.137 8.889 15.765 16.147 12.99	lue	> > > > > > >	35deg 45deg 25deg 85deg 10deg 90deg 210deg	25deg 90deg 20deg 45deg 30deg 15deg -140deg

Fig. 9. Antenna Parameters.

Singh and Nanda

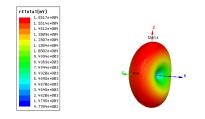


Fig. 10. E total 3D plot for simulated antenna.

The Designed Antenna parameters are shown in figure 10.Designed antenna is resonating at the frequency Introducing f=1.58 GHz which comes in L band with good percentage bandwidth, gain, return loss and efficiency.

V. CONCLUSION

This paper focused on the simulated design on differentially-driven microstrip antenna. Simulation studies of a single layer monopole microstrip patch antenna have been carried out using HFSS software. Designed antenna is resonating at the frequency Introducing f=1.58 GHz. The proposed antenna covers the L band with good percentage bandwidth, gain, return loss and efficiency. Therefore the proposed antenna has many applications such as GPS, mobile service, satellite navigation, telecommunication uses such as GSM phones, aircraft surveillance such as Automatic dependent surveillance-broadcast, amateur radio, digital audio broadcasting used by military for telemetry and astronomy.

REFERENCES

[1] Sarkar, I., P. P. Sarkar, and S. K. Chowdhury. "A new compact printed antenna for mobile

communication." Antennas & Propagation Conference, 2009. LAPC 2009. Loughborough. IEEE, 2009.

[2] Chatterjee, Samiran, et al. "Compact microstrip antenna for mobile communication." *Microwave and Optical Technology Letters* **55.5** (2013): 954-957.

[3] Wu, J-W., et al. "Dual broadband design of rectangular slot antenna for 2.4 and 5 GHz wireless communication." *Electronics Letters* **40.23** (2004): 1461-1463.

[4] Chakraborty, Ujjal, et al. "A comact microstrip patch antenna for wireless communication." *Progress In Electromagnetics Research C* **18** (2011): 211-220.

[5] Raj, Rohith K., et al. "A new compact microstrip-fed dualband coplanar antenna for WLAN applications." *IEEE Transactions on Antennas and Propagation* **54.12** (2006): 3755-3762.

[6] Zhang, Zhijun, et al. "Dual-band WLAN dipole antenna using an internal matching circuit." *IEEE Transactions on Antennas and Propagation* **53.5** (2005): 1813-1818.

[7] Chatterjee, Samiran, *et al.* "A printed patch antenna for mobile communication." *Convergence of Optics and Electronics conference*. 2011.

[8] Balanis, Constantine A. Antenna theory: analysis and design. John Wiley & Sons, 2016.

[9] Jana, Supriya, et al. "Single Layer Monopole Hexagonal Microstrip Patch Antenna for Microwave Communication." *International Refereed Journal of Engineering and Science (IRJES), ISSN (Online)* (2012): 2319-1821.

[10] Das, Arnab, et al. "Multi-band microstrip slotted patch antenna for application in microwave communication." *International Journal of Science and Advanced Technology*,(*ISSN 2221-8386*) **2.9** (2012): 91-95.

[11] Singh, Upendra Kumar, and Monika Nanda. "Single Layer Monopole Slotted Microstrip Antenna for Ku-Band Applications."

[12] Singh, Upendra Kumar, and Monika Nanda. "Single Layer Monopole Microstrip Antenna for X-Band Application." *IJRECE* **1.3** (2013): 68-70.

[13] Ansoft Software Inc. HFSS. Web: http://www.ansoft.com /