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ABSTRACT: The solution of the problem of existence of non-uniqueness of the flow of visco-elastic (Non-

Newtonian) fluid past a stretching sheet is reinvestigated by simple analytical procedure by introducing four 

boundary conditions for fourth order highly non-linear ordinary differential equation of motion of visco-

elastic fluid, Walter’s liquid B’model. The uniqueness of the solution of the visco-elastic fluid past a stretching 

sheet is examined. The solution of the problem may not be necessarily unique. 
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I.  INTRODUCTION 

The study of boundary layer behavior over a 

continuously moving flat wall finds wide applications 
in technological manufacturing process in industry. 

These includes aerodynamic extrusion of plastic sheets, 

rolling and extrusion in manufacturing process, the 

cooling of an infinite metallic plate in a cool bath, the 

boundary layer along a liquid film in condensation 

process and the controlled cooling system. 

Rao et al. [1] have studied the momentum and heat 

transfer in a power-law fluid with arbitrary 

injection/suction at a moving wall. Sakiadis [2] has 

initiated the study of boundary layer flow over a 

continuously moving surface in a viscous fluid, which 

finds its application in the problem of polymer sheet 
extruded continuously from a dye. Markovitz and 

Coleman [3] have investigated the visco-elastic 

boundary layer flow over a stretching plastic sheet. 

Prasad et al. [4] analyzed the study of heat and mass 

transfer in a porous medium over a non-isothermal 

stretching sheet with the influence of momentum. Sonth 

et al. [5] have studied the effect of heat and mass 

transfer in a visco-elastic fluid flow over an 

accelerating surface with heat source. Gupta and  Gupta 

[6] have examined the study of heat and mass transfer 

on stretching sheet with suction or blowing.. Kumaran  

and Ramanaiah  [7] analyzed the boundary layer flow 

over a stretching sheet. Vajravelu and Nayfeh  [8] have 
studied the convective heat and mass transfer in a 

electrically conducting stretching sheet through porous 

medium. Vajravelu [9] investigated in the convection of 

heat and mass transfer through a stretching sheet with 

suction or blowing. Hopwell [10] has studied 

momentum and heat transfer on a continuous moving 

surface in power law fluid. Chiam [11] has  analysed 

the study of the magneto-hydrodynamic heat and  mass 

transfer over a non- isothermal stretching sheet. Yih 

[12] has studied about the influence of non-Darcy 

forced convection flow over a flat plate with variable 

wall temperature in the porous medium. Acrivos et al. 
[13] made an analysis on  momentum and heat transfer 

in laminar boundary-layer flows of non-newtonian 

fluids past external surfaces. Amkadni  et al. [14] have 

discussed the exact solutions of laminar magneto hydro 

dynamic viscous flow over the stretching sheet. Troy et 

al. [15]  analyzed the uniqueness of flow of a second 

order fluid past a stretching sheet in the presence of 

magnetic field. Cortell [16] has studied flow and heat 

transfer of a fluid through porous media over stretching 

surface with internal heat absorption and blowing.  
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Howell et al. [17] have analyzed Momentum and  heat transfer on a continuous moving surface in power law fluid. 

Idress et al. [18] have studied visco-elastic flow past stretching sheet in a porous media. Naseem and Khan  [19]  

have studied the boundary layer flow past a stretching plate with suction. Surmadevi  et al. [20] have analyzed the 

boundary layer flow caused by a stretching/continuously moving sheet for different thermo-physical situations using 

variety of fluid models and boundary conditions. McCormack and Crane [21] have analyzed comprehensive analysis 
on boundary layer flow including the flow caused by stretching of flat surface and between two surfaces under 

different physical situations.  Rajagopal,  Na and Gupta [22] have studied the flow of a visco-elastic fluid over a 

stretching sheet. Wen-Dong Chang [23] studied that the solution of the problem is not necessarily unique. Beard and 

Walters [24] have studied the elastico-viscous boundary layer flows. 

II.  MATHEMATICAL FORMULATION 

The non-dimensional form of momentum equation for the boundary layer model developed by using similarity 

solution principles for Walter’ liquid B’ model is of the type. 

})(2{)(
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1

2
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            (2a, b, c) 

Where the non-dimensional physical quantity 1k
 
is positive constant and suffix η

 
denotes the differentiation with 

respect to η
 
first, second,  third and fourth time. Equations (1) and (2) represent a two point fourth-order non-linear 

differential equation having only three boundary conditions. The fourth boundary condition is obtained by using (2a) 

and (2b) in equation (1) as  
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Again  differentiating equation (1) with respect to η  and applying the boundary conditions (2a) and (2b) we get  
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It is very clearly noted that )0(ηηηηg  in equation (5) becomes infinity for 1k =1.Thus the limit of the applicability 

of the solution of the problem with respect to the non-dimensional positive physical quantity 1k <1. 

III.  METHOD OF SOLUTION 

 To obtain the solution of momentum equation (1) it is assumed the solution is of the type     

                                         GAg −=         (6) 

By substituting  
ηα H

e
−

 for  G and differentiating.  w.r.t η
 
equation (1) converts to                    
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The non-zero roots of equation (7) are   
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Thus the solution of equation (1) can be designated as  }{ 21 ηη HH
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By  using  equation (8) in equations (2a) and (2b), the constants D and E are expressed in terms   of  A,   H1 and  H2   

as  
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Using equation (7) in equation (10) the solutions for )0(ηηg   and )0(ηηηg  in terms of   A  can be obtained as 
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Combining equation (3) and (11) we get   
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and the roots of equation (12) are given by  
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It is very interesting to note that for
2

1
1 =k , the non-dimensional velocity gradient at the wall )0(ηηg from the 

additional boundary condition (3), is found to be 2± .This observation might give a clue for finding out the 

second closed-form solution for
2

1
1 =k . Since there are two values for ( )2α−A  two closed-form solutions are 

found here for all values of )1,0(1 ∈k . 

First solution, For )1()( 1

2 kA −=− α from equation (7) the values of   H1   and  H2 are derived as  
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And from equation (11) the values of   D & E are re designated as 
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From equations (9), (14) and (15) the first solution of the problem is obtained as  
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                                                            Where  B= ( )α−A  

In order to satisfy boundary condition (2c), the positive value of A from (14a, b) is considered in 

equation (16) 

From second solution,
1
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A =− α   equation (7) yields the roots H as  
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And equation (10) yields the values of the constants D & E as follows 
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From equations (8), (17) and (18), the second solution of the problem is found to be 
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Where    

11 22 kAk

ηη
ξ ==    η

η
ζ

11

3

2

1

2

3

kAk
==   

 In equation (19) the value of A is considered to be positive so as to satisfy the boundary conditions (2c). 

 These two solutions given in equations (16) and (19) are found to be quite different. It can be verified from 

equations (16) and (19) that for all   10 1 << k  as  ∞→η , 0)( →ηηηg , whereas at 0=η ,   

0
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The values of  )0(ηηg  can be obtained directly from equation (11) by substituting the values of A as   

( )11 k−±α        and         

1

1
k

±α     respectively. 

IV.   VALIDITY OF THE SOLUTION 

Equations (16) and (19) are representing two solutions for equation (1) with the boundary conditions (2) when 

01 =k . Troy et al. [15]  found the first solution of the problem as given in equation (16). Another solution of the 

problem for the case 
2

1
1 =k , obtained by Wen-Dong Chang  [23],  can be found from equation (19). It has been 

proved simultaneously by McLeod and  Rajagopal [22] and by Troy et al. [15]  that equations (1) and (2) have 

unique solution. 
ηη −−= eg 1)(

  
for  01 =k , in which 0)( <ηηηg  for all ∞<<η0 . 

Though for 01 ≡k , two solutions exist for the present problem, the important constraint needed to get the realistic 

solution of the physical problem, which was missed in [23], is 

0)( ≤ηηηg
 
for all  ∞<<η0  

The  requirement of  0)( <ηηηg  everywhere to get a realistic solution in the present study. 

 By physical intuition, one should expect that a slightly elastic fluid will produce a boundary layer only 

slightly altered in its dimensions from a viscous one. For a small value of 1k  (say 0.0001), the dimensionless 

velocity gradient at the wall from the first solution is 00005.1)0( −=ηηg  and its value from the second solution 

is obtained as 999900 for 01 =k , 1)0( −=ηηg
 
such a drastic change in the value of )0(ηηg  for small value of 

1k  obtained from the second solution is not reasonable. Since the first solution gives insight into the boundary layer 

for weakly elastic fluids, in the sense that 11 ≤k . It is realistic solution for  10 1 << k . 

Rajagopal  et al.  [22] used a perturbation analysis by expanding the solution in powers of 1k  and obtained 

numerical estimates on the behavior of the solution of equations by using the function suggested by Troy et al.  [15] 

(which is nothing but the first solution of the   0)()( 2

1 =−+−− αα AHHAk ). 

Since the first solution gives the boundary layer behavior for 10 1 << k , the velocity gradient  0)0( <ηηg  

everywhere for the present problem. 

Beard  and  Walters  [24] have extended the prandtl  boundary layer theory for an idealized elastic 

-viscous liquid. The boundary layer equations are solved numerically for the case of two- dimensional flow near a 

stagnation point. It is demonstrated that the main effect of elasticity is to increase the velocity in the boundary layer 

and also to increase the stress on the solid boundary. It is noticed from the first solution that the magnitude of the 

velocity gradient at the wall increases with 1k . From the second solution, it is found that the velocity gradient at the 

wall decreases drastically with 1k . 
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Regarding the validity of small values of 1k , 

Surmadevi and Nath  [20] pointed out that the second 
order fluid ( i.e. visco-elastic fluid) governed by 

equation (1) represents the behavior of fluids with short 

memory and the characteristic time scale associated 

with the motion is large compared with time 

representing the memory of the fluid. Hence, the 

assumption of small values of 1k  is valid especially for 

dilute polymer solutions. 

Based on the observations above, the first solution 
given in equation (16) represents a realistic solution for 

the present physical problem for all.
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