

Biological Forum – An International Journal

13(2): 467-476(2021)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

Studies on Correlation for Growth, Yield and Quality Characters in Cherry Tomato [Solanum lycopersicum (L.) var. cerasiforme Mill.]

E. Venkadeswaran^{1*}, P. Irene Vethamoni¹, T. Arumugam², N. Manivannan³ and S. Harish⁴

¹Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore - 641 003, India. ²Horticultural College and Research Institute, Periyakulam - 625 604, India. ³Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore - 641 003, India.

⁴Agricultural College and Research Institute, Madurai - 625 104, India.

(Corresponding author: E. Venkadeswaran*) (Received 25 April 2021, Accepted 22 June, 2021) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: A filed experiment was conducted in the university orchard, Department of Vegetable Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. The 24 cherry tomato genotypes were evaluated to estimate the nature and magnitude of associations of different characters with fruit yield. The experiment was conducted using Randomized Block Design and replicated thrice. The correlation coefficients of the cherry tomato genotypes revealed that the yield hectare⁻¹ showed positive and significant association at genotypic level with plant height at flowering, plant height at final harvest, number of primary branches plant⁻¹ at flowering, days to first flowering, number of flowering clusters (truss) plant⁻¹, number of fruits cluster⁻¹, number of fruit cluster plant⁻¹, number of fruits plant⁻¹, fruit length, number of locules fruit⁻¹, fruit weight, number of seeds fruit⁻¹, weight of 1000 seeds, yield plant⁻¹, shelf life of fruits, total sugars, titrable acidity and lycopene. The yield hectare⁻¹ showed positive and significant association at phenotypic level with number of primary branches plant⁻¹ at final harvest, number of flowers cluster⁻¹, fruit weight of seeds fruit⁻¹, fruit firmness, total soluble solids and total carotenoids. Hence, these traits may lead to the development of high yielding genotypes of cherry tomato.

Key words: Cerasiforme, cherry tomato, correlation, Lycopersicum, quality, yield.

INTRODUCTION

Most of the rural population is vegetarian and greatly depend fruits and vegetables to fulfill the daily need of carbohydrate, proteins, vitamins and minerals (Shukla, 2017). The vegetables and fruits played a crucial role in the human diet being considered as protective foods (Bharathi, 2021).Vegetables are the important component of the daily diet (Kirtane, 2018). Tomato [Solanum lycopersicum (L.)] is the second most cultivated vegetable crop in the world, after potato (Ojo and Umar, 2013). Cherry tomato [Solanum lycopersicum (L.) var. cerasiforme Mill.] is a wild ancestor of tomato rich in antioxidants such as lycopene, ascorbic acid and phenolics. It contains high concentrations of sugars and acids, contributing to its unique tomato flavour. The large variety of colours, flavors, vitamins and mineral salts that comprise the menu of vegetables attests to their importance in the daily diet (Simarelli, 2001). There is good scope for cultivation of cherry tomato due to reasonable and constant market price. Cherry tomatoes, one of the promising wild types of Solanum, in breeding programs

offers great potential because of their valuable characteristics in terms of genetic diversity for selection of parental material and their broad geographic range (Medina and Lobo, 2001). They are source of germplasm for providing disease resistance and adaptability to cool and hot seasons. Therefore, potential value of cherry tomatoes has to be improved by evaluating the cultivated species for its desirable characters under various agro climatic regions (Prema et al., 2011). To incorporate desirable yield and quality traits in a hybrid/variety, there is a need to understand the inter-relationships between yield and yield contributing traits, direct and indirect effect of the characters (Ara et al., 2009). As, yield is the resultant of combined effect of several component characters and environment. understanding the interaction of characters among themselves and with environment has been of great use in the plant breeding. A crop breeding programme, aimed at increasing the plant productivity requires consideration not only of yield but also of its components that have a direct or indirect bearing on yield, the necessity of correlation coefficient to describe the degree of association between independent and

Venkadeswaran et al.,

Biological Forum – An International Journal

13(2): 467-476(2021) 467

dependent variables. This study will help the breeder to know the degree of association between traits, which can be used for crop improvement through selection of component traits. Character association studies are of great significance in the process of selection by which simultaneous improvement of more than one trait is possible. It is obvious that improvement of one trait results in the simultaneous improvement of all positively associated component traits (Kalloo, 1988). There is only one research work carried out in cherry tomato at Tamil Nadu Agricultural University, Coimbatore. Hence, this study has been proposed to make advantage of the suitable cherry tomato genotype for development variety or hybrids.

MATERIAL AND METHODS

The experiment was conducted in the university orchard, Department of Vegetable crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu. Twenty four cherry tomato genotypes were collected from various research institutes across the country viz., Indian Institute of Horticultural Research, Bengaluru (IIHR 2753, IIHR 2754, IIHR 2871, IIHR 2873 and IIHR 2876), Indian Agricultural Research Institute, New Delhi (Pusa Cherry Tomato 1), Govind Ballabh Pant University of Agriculture and Technology, Pantnagar (Pant Cherry Tomato 1) and Tamil Nadu Agricultural University, Coimbatore (ATL-01-19, HAT 20, LE 13, LE 87, LE 89, LE 315, LE 338, LE 598, LE 887, LE 1223, PAV 2373, VGT 89, VGT 90, VGT 95, VR 35, VRCT 17 and VRCT 155). The experiment was conducted using Randomized Block Design and replicated thrice. All other recommended cultural practices for the crop were followed. Five randomly selected competitive plants from each row in each replication were tagged for the purpose of recording of the observations on different characters. Genotypic correlation coefficients were worked out among different traits using per se values. Correlations analysis was carried out as suggested by (Al-Jibouri et al., 1958).

RESULT AND DISCUSSION

The genotypic and phenotypic correlation coefficients between yield hectare⁻¹ and interrelationship among the traits were computed. It was observed that in genotypic correlation coefficients were of higher magnitude than the phenotypic correlation coefficients (Table 1). Based on genotypic and phenotypic correlation coefficients between yield hectare⁻¹ and interrelationship among the traits it was observed that in genotypic correlation coefficients were of higher magnitude than the phenotypic correlation coefficients. The higher level of genotypic correlation is due to its masking effect on the influence of environment in the total expression of the traits by the genotypes.

The present investigation on twenty four cherry tomato germplasm revealed that the yield hectare⁻¹ showed positive and significant association at genotypic level with plant height at flowering (2.386), plant height at final harvest (1.317), number of primary branches plant⁻¹ at flowering (1.564), days to first flowering (0.971), number of flower clusters (truss) plant⁻¹ (0.881), number of fruits cluster⁻¹ (0.483), Number of fruit clusters plant⁻¹ (1.429), number of fruits plant⁻¹ (1.262), fruit length (1.331), number of locules fruit⁻¹ (1.857), fruit weight (1.124), number of seeds fruit⁻¹ (1.231), shelf life of fruits (1.572), total sugars (0.761), titrable acidity (1.288) andlycopene (1.445).

The yield hectare⁻¹ showed negative and significant association at genotypic level with number of primary branches plant⁻¹ at final harvest (-0.582), number of flowers cluster⁻¹ (-0.660), fruit width (-0.920), weight of seeds fruit⁻¹ (-0.726), pericarp thickness (-0.417), total soluble solids (-1.100) and total carotenoids (-0.578). The present investigation on twenty four cherry tomato germplasm revealed that the yield hectare⁻¹ showed positive and significant association at phenotypic level with number of primary branches plant⁻¹ at final harvest (0.784), number of flowers cluster⁻¹ (0.336), fruit width (0.890), weight of seeds fruit⁻¹ (0.336), fruit firmness (0.906), total soluble solids (0.893) and total carotenoids (0.790). The yield hectare⁻¹ showed negative and significant association at phenotypic level fruit length (-0.456) and fruit weight (-0.481).

A. Growth and yield contributing characters

The interrelationship genotypic level of various yield components showed that the plant height at flowering exhibited positive and significant relationship with number of primary branches plant⁻¹ at final harvest (1.822), number of flowers cluster⁻¹ (2.624), number of fruits cluster⁻¹ (1.074), fruit length (0.697), fruit width (1.937), number of locules fruit⁻¹ (0.371), number of seeds fruit⁻¹ (0.950), weight of seeds fruit⁻¹ (1.392), fruit firmness (1.540), pericarp thickness (1.110), total soluble solids (1.368), total sugars (0.989), total carotenoids (1.827) and yield hectare⁻¹ (2.386). The negative and significant association at genotypic level was registered with plant height at final harvest (-1.214), days to first flowering (-1.179), number of flower clusters (truss) plant⁻¹ (-0.605), Number of fruit clusters plant⁻¹ (-0.490), number of fruits plant⁻¹ (-0.598), fruit weight (-0.357), yield plant⁻¹ (-0.880), shelf life of fruits (-0.796), ascorbic acid (-1.001), titrable acidity (-1.178) and lycopene (-0.442).

Venkadeswaran et al.,

Traits	G&P	PHFL	PHFH	NPBF	NPBH	DFFL	NFLC	NFLP	NFTC	NFCP	NFTP	FTLT	FTWD	NLOF	FTWT
PHFL	G	1.000	-1.214**	-0.100	1.822**	-1.179**	2.624**	-0.605**	1.074**	-0.490**	-0.598**	0.697**	1.937**	0.371*	-0.357*
PHFL	Р	1.000	0.862**	0.046	-0.200	0.868**	-0.237	0.768**	-0.097	0.127	0.795**	0.014	-0.317	0.029	0.056
PHFH	G		1.000	-0.607**	1.153**	-0.915**	1.664**	-0.873**	0.922**	-0.667**	-0.742**	0.399*	1.239**	-0.138	-0.334*
	Р		1.000	0.122	-0.303	0.867**	-0.211	0.667**	-0.368*	0.210	0.747**	-0.263	-0.321	0.005	0.046
NPBF	G			1.000	1.224**	-0.409*	1.057**	0.526**	0.457**	-0.951**	0.609**	0.116	0.721**	-0.686**	-0.928**
	Р			1.000	-0.306	-0.154	-0.006	-0.267	-0.362*	0.866**	-0.232	0.081	-0.188	0.807**	0.798**
NPBH	G				1.000	0.964**	-0.863**	1.369**	-0.460**	0.903**	1.035**	0.270	-0.847**	0.693**	0.406*
	Р				1.000	-0.173	0.769**	-0.245	0.202	-0.275	0.094	-0.065	0.869**	-0.023	-0.276
DFFL	G					1.000	1.203**	-0.976**	1.006**	-0.435**	-0.735**	0.539**	1.106**	0.056	-0.156
DITL	Р					1.000	-0.176	0.793**	-0.204	-0.080	0.747**	-0.240	-0.229	-0.236	-0.178
NFLC	G						1.000	1.594**	0.373*	0.759**	2.362**	0.900**	-0.972**	0.939**	0.442**
INFLC	Р						1.000	-0.330*	-0.164	0.048	-0.014	-0.261	0.844**	0.167	-0.108
NFLP	G							1.000	1.287**	0.297	-0.842**	1.216**	1.058**	1.232**	0.511**
TTE LA	Р							1.000	-0.171	-0.315	0.763**	-0.252	-0.282	-0.474**	-0.434**
NFTC	G								1.000	0.118	1.288**	-1.091**	0.044	-0.404**	-0.329*
iu ie	Р								1.000	-0.320	-0.156	0.777**	-0.072	-0.050	0.034
NFCP	G									1.000	0.227	-0.002	0.827**	-0.868**	-0.919**
iu ci	Р									1.000	-0.208	0.163	-0.205	0.866**	0.862**
NFTP	G										1.000	1.120**	1.056**	1.061**	0.418**
111 11	Р										1.000	-0.319	0.059	-0.293	-0.358*
FTLT	G											1.000	0.695*	-0.368*	-0.592**
F1L1	Р											1.000	-0.317	0.368*	0.474**
FTWD	G												1.000	0.683**	0.519**
	Р												1.000	-0.011	-0.316
NLOF	G													1.000	-1.139**
	Р													1.000	0.895**
FTWT	G														1.000
	Р														1.000

Table 1: Genotypic and phenotypic correlation coefficients among growth, yield and quality traits in cherry tomato.

*Significant at 5 per cent level

**Significant at 1 per cent level

PHFL	Plant height at flowering (cm)	NFTC	NFTC Number of fruits cluster ⁻¹		SDF Number of seeds fruit ⁻¹		Shelf life of fruits (days)
PHFH	Plant height at final harvest (cm)		Number of fruit clusters plant ⁻¹	WSDF	Weight of seeds fruit ⁻¹ (g)	TTSS	Total soluble solids (°Brix)
NPBF	Number of primary branches plant ⁻¹ at flowering		Number of fruits plant ⁻¹	WTSD	SD Weight of 1000 seeds (g)		Total sugars (mg 100 g ⁻¹)
NPBH	Number of primary branches plant ⁻¹ at final harvest	FTLT	Fruit length (cm)	YLDP	Yield plant ⁻¹ (g)	TTAC	Titrable acidity (per cent)
DFFL	Days to first flowering	FTWD	Fruit width (cm)	YLDH	Yield hectare ⁻¹ (tonnes)	LYCP	Lycopene (mg 100 g ⁻¹)
NFLC	Number of flowers cluster ⁻¹	NLOF	Number of locules fruit ⁻¹	FTFM	Fruit firmness (kg sq. cm ⁻¹)	TTCR	Total carotenoids (mg 100 g ⁻¹)
NFLP	Number of flower clusters (truss) plant-1	FTWT	Fruit weight (g)	PRTK	Pericarp thickness (mm)		

Biological Forum – An International Journal

(continue	ed)													
Traits	G&P	NSDF	WSDF	WTSD	YLDP	FTFM	PRTK	SLFT	TTSS	TTSG	TTAC	LYCP	TTCR	YLDH
PHFL	G	0.950**	1.392**	-0.225	-0.880**	1.540**	1.110**	-0.796**	1.368**	0.989**	-1.178**	-0.442**	1.827**	2.386**
	Р	0.193	-0.472**	-0.045	0.871**	-0.518**	-0.310**	0.372*	-0.344*	0.015	0.884**	0.060	-0.200	-0.234
PHFH	G	0.429**	0.479**	-0.373*	-0.932**	1.045**	0.110	-0.900**	0.896**	0.637**	-1.001**	-0.834**	1.190**	1.317**
	Р	-0.120	-0.426**	0.056	0.827**	-0.454**	-0.355*	0.475**	-0.286	-0.317	0.990**	0.126	-0.307	-0.235
NPBF	G	1.358**	1.434**	-0.896**	-0.043	0.564**	2.100**	-0.856**	0.600**	0.568**	-0.614**	-1.002**	1.215**	1.564**
	Р	-0.240	0.036	0.792**	-0.178	-0.211	-0.014	0.721**	-0.131	-0.206	0.101	0.895**	-0.308	-0.214
NPBH	G	0.140	0.428**	0.601**	1.314**	-0.658**	0.658**	1.207**	-0.829**	-0.169	1.152**	1.179**	-1.001**	-0.582**
	Р	0.063	-0.051	-0.244	-0.158	0.688**	-0.276	-0.233	0.796**	0.141	-0.296	-0.305	0.995**	0.784**
DFFL	G	0.426**	0.330*	-0.057	-0.974**	0.861**	-0.021	-0.768**	0.734**	0.700**	-0.902**	-0.654**	0.986**	0.971**
	Р	0.034	-0.467**	-0.239	0.881**	-0.363*	-0.362*	0.220	-0.214	-0.185	0.871**	-0.143	-0.172	-0.133
NFLC	G	1.029**	0.433**	0.524**	1.959**	-1.072**	0.815**	1.221**	-1.218**	0.235	1.667**	0.882**	-0.859**	-0.660**
	Р	-0.250	0.070	0.016	-0.202	0.781**	-0.237	0.086	0.811**	-0.184	-0.214	0.041	0.786**	0.842**
NFLP	G	1.172**	-0.210	0.519**	-1.020**	0.616**	-0.393*	-0.048	0.633**	1.365**	-0.865**	0.388**	1.361**	0.881**
	P	0.076	-0.047	-0.479**	0.869**	-0.280	0.094	-0.049	-0.258	-0.160	0.691**	-0.285	-0.246	-0.060
NFTC	G	-1.147**	0.284	-0.367*	1.200**	0.252	0.414*	0.374*	0.161	-1.091**	0.962**	0.417*	-0.432**	0.483**
-	P	0.815**	-0.240	-0.225	-0.229	-0.178	-0.035	-0.473**	-0.219	0.897**	-0.362*	-0.363*	0.211	-0.224
NFCP	G	0.775**	1.736**	-0.944** 0.872**	-0.075	0.646**	1.933**	-0.936**	0.584**	0.276	-0.672**	-1.010**	0.883**	1.429**
	P	-0.194 1.151**	-0.151 0.200	0.872** 0.450**	-0.154 -0.745**	-0.315 0.819	-0.185 0.111	0.866**	-0.194 0.546**	-0.156 1.098**	0.186	0.890** 0.259	-0.282 1.095**	-0.295 1.262**
NFTP	G P	-0.018	-0.260	-0.376*	0.848**	-0.108	-0.237	-0.135	0.038	-0.194	0.775**	-0.239	0.091	0.150
		-0.018	-0.260	-0.633**	0.848**	-0.108		0.071	0.038	-0.194	0.775***	0.336*		1.331**
FTLT	G P	-0.875**	-0.244	0.225	-0.277	-0.439**	1.556** 0.004	-0.032	-0.464**	-0.938** 0.895**	-0.268	0.336*	0.252	-0.456**
FTWD	G P	0.813**	-0.244	0.223	1.452**	-0.439***	-0.066	-0.032	-1.026**	0.893**	-0.208	0.108	-0.842**	-0.436***
	P	-0.215	0.142	-0.194	-0.207	0.864**	-0.186	-0.158	0.922**	-0.156	-0.319	-0.190	0.874**	0.890**
	G	0.566**	2.433**	-1.086**	0.680**	0.744**	2.834**	-0.657**	0.703**	-0.150	-0.123	-0.751**	0.874**	1.857**
NLOF	P	0.026	-0.197	0.857**	-0.308	-0.197	-0.241	0.753**	-0.067	0.112	-0.019	0.843**	-0.025	-0.179
	G	0.148	1.448**	-0.963**	0.102	0.604**	1.785**	-0.812**	0.504**	-0.280	-0.332**	-0.926**	0.410*	1.124**
FTWT	P	0.096	-0.296	0.836**	-0.279	-0.449**	-0.225	0.675**	-0.320	0.184	0.026	0.835**	-0.280	-0.481**
	G	1.000	1.629**	0.117	0.815**	0.773**	2.313**	0.569**	0.861**	-0.946**	0.514**	1.558**	0.108	1.377**
NSDF	P	1.000	-0.323	-0.164	0.046	-0.366*	-0.055	-0.263	-0.366**	0.887**	-0.114	-0.236	0.077	-0.293
	G		1.000	1.253**	0.143	-0.939**	-1.003**	1.936**	-0.558**	0.969**	0.439**	2.048**	0.418**	-0.726**
WSDF	P		1.000	-0.153	-0.303	0.448**	0.830**	-0.235	0.201	-0.276	-0.427**	0.023	-0.055	0.336**
N/TCD	G			1.000	0.169	0.563**	1.243**	-0.804**	0.706**	-0.281	-0.364**	-0.949**	0.586**	1.274**
WTSD	Р			1.000	-0.325*	-0.285	-0.139	0.746**	-0.185	-0.079	0.032	0.801**	-0.249	-0.312
VIDD	G				1.000	0.928**	-0.220	-0.472**	0.846**	1.083**	-0.922**	-0.263	1.321**	1.231**
YLDP	Р				1.000	-0.315	-0.201	0.151	-0.193	-0.206	0.862**	-0.188	-0.157	-0.044
FTFM	G					1.000	-0.665**	0.871**	-0.952**	0.368**	1.023**	0.585**	-0.652**	-1.148
FIFM	Р					1.000	0.103	-0.300	0.904**	-0.283	-0.451**	-0.222	0.703**	0.906**
PRTK	G						1.000	1.780**	-0.158	1.139**	0.096	2.774**	0.661**	-0.417*
ININ	Р						1.000	-0.305	-0.149	-0.037	-0.352*	-0.040	-0.281	0.029
SLFT	G							1.000	0.804**	0.451**	-0.900**	-0.992**	1.210**	1.572**
SLF I	Р							1.000	-0.148	-0.307	0.459**	0.837**	-0.239	-0.195
TTSS	G								1.000	0.353*	0.876**	0.543**	-0.818**	-1.100**
1100	Р								1.000	-0.314	-0.283	-0.144	0.807**	0.893**
TTSG	G									1.000	0.711**	0.659**	-0.195	0.761**
1100	P									1.000	-0.314	-0.199	0.150	-0.291
TTAC	G										1.000	-0.832**	1.185**	1.288**
	P										1.000	0.108	-0.299	-0.224
LYCP	G											1.000	1.184	1.445**
-	P											1.000	-0.309	-0.230
TTCR	G												1.000	-0.578**
	Р												1.000	0.790**

(continued).....

Venkadeswaran et al.,

Biological Forum – An International Journal

13(2): 467-476(2021)

The interrelationship phenotypic level of various yield components showed that the plant height at flowering exhibited positive and significant relationship with plant height at final harvest (0.862), days to first flowering (0.868), number of flower clusters (truss) plant⁻¹ (0.768), number of fruits plant⁻¹ (0.795), yield plant⁻¹ (0.871), shelf life of fruits (0.372), total soluble solids (-0.344) and titrable acidity (0.884). The negative and significant association at phenotypic level was registered with weight of seeds fruit⁻¹ (-0.472), fruit firmness (-0.518) and pericarp thickness (-0.310). Plant height at final harvest exhibited positive and significant relationship with number of primary branches plant⁻¹ at final harvest (1.153), inter nodal length of mainstem (1.166), number of flowers cluster⁻¹ (1.664), number of fruits cluster⁻¹ (0.922), fruit length (0.399), fruit width (1.239), number of seeds fruit⁻¹ (0.429), weight of seeds fruit⁻¹ (0.479), fruit firmness (1.045), total soluble solids (0.896), total sugars (0.637), total carotenoids (1.190) and yield hectare⁻¹ (1.317). The negative and significant association at genotypic level was registered with number of primary branches plant⁻¹ at flowering (-0.607), days to first flowering (-0.915), number of flowering clusters (truss) plant⁻¹ (-0.873), Number of fruit clusters plant⁻¹ (-0.667), number of fruits plant⁻¹ (-0.742), fruit weight (-0.334), weight of 1000 seeds (-0.373), yield plant⁻¹ (-0.932), shelf life of fruits (-0.900), ascorbic acid (-1.222), titrable acidity (-1.001) and lycopene (-0.834). Similar results were also observed by Mohanty (2002), Manivannan et al., (2005). Mayavel et al. (2005). Raut et al., (2005). Dhankhar and Dhankar (2006), Kumar and Dudi (2011), Mahapatra et al., (2013), Sherpa et al., (2014) and Kumar et al., (2020).

Number of primary branches plant⁻¹ at flowering was positively and significantly correlated with number of primary branches plant⁻¹ at final harvest (1.224), number of flowers cluster⁻¹ (1.057), number of flower clusters (truss) plant⁻¹ (0.526), number of fruits cluster⁻¹ (0.457), days from fruit set to fruit maturity (1.302), number of fruits plant⁻¹ (0.609), fruit girth (0.826), fruit width (0.721), number of seeds fruit⁻¹ (1.358), weight of seeds fruit⁻¹ (1.434), fruit firmness (0.564), pericarp thickness (2.100), total soluble solids (0.600), total sugars (0.568), total carotenoids (1.215) and yield hectare⁻¹ (1.564). The negative and significant association at genotypic level was registered with days to first flowering (-0.409), Number of fruit clusters plant⁻¹ (-0.951), number of locules fruit⁻¹ (-0.686), fruit weight (-0.928), weight of 1000 seeds (-0.896), shelf life of fruits (-0.856), titrable acidity (-0.614) and lycopene (-1.002). Plant height at final harvest exhibited positive and significant relationship with days to first flowering (0.867), number of flower clusters (truss) plant⁻¹ (0.667), number of fruits plant⁻¹ (0.747), yield plant⁻¹ (0.827), shelf life of fruits (0.475) and titrable acidity (0.990). The negative and significant

association at phenotypic level was registered with stem girth (-0.451), number of fruits cluster⁻¹ (-0.368), weight of seeds fruit⁻¹ (-0.426), fruit firmness (-0.454) and pericarp thickness (-0.355). Number of primary branches plant⁻¹ at flowering was positively and significantly correlated with number of locules fruit¹ (0.807), fruit weight (0.798), weight of 1000 seeds (0.792), shelf life of fruits (0.721) and lycopene (0.895). The negative and significant association at phenotypic level was registered with number of fruits cluster⁻¹ (-0.362) and yield hectare⁻¹ (-0.214). Number of primary branches plant⁻¹ at final harvest exhibited positive and significant relationship with days to first flowering (0.964), number of flower clusters (truss) plant⁻¹ (1.369), Number of fruit clusters plant⁻¹ (0.903), per cent fruit set (0.550), number of fruits plant⁻¹ (1.035), number of loculesfruit⁻¹ (0.693), fruit weight (0.406), weight of seeds fruit⁻¹ (0.428), weight of 1000seeds (0.601), yield plant⁻¹ (1.314), pericarp thickness (0.658), shelf life of fruits (1.207), titrable acidity (1.152) and lycopene (1.179). The negative and significant association at genotypic level was registered with number of flowers cluster⁻¹ (-0.863), number of fruits cluster⁻¹ (-0.460), fruit width (-0.847), fruit firmness (-0.658), total soluble solids (-0.829), total carotenoids (-1.001) and yield hectare⁻¹ (-0.582). Number of primary branches plant⁻¹ at final harvest exhibited positive and significant relationship with number of flowers cluster⁻¹ (0.769), Number of fruit clusters plant⁻¹ (0.866), fruit width (0.869), fruit firmness (0.688), total soluble solids (0.796), total carotenoids (0.995) and yield hectare⁻¹ (0.784). The negative and significant association at phenotypic level was registered stem girth (-0.347), number of fruits cluster⁻¹ (-0.362) and days from fruit set to fruit maturity (-0.455). Similar results were also observed by Mohanty (2002), Prashanth (2003), Manivannan et al. (2005), Mayavel et al. (2005), Mehta and Asati (2008), Ara et al. (2009), Regassa et al. (2012), Kumar and Dudi (2011), Mahapatra et al. (2013) and Kumar et al. (2020).

Days to first flowering exhibited positive and significant relationship with number of flowers cluster⁻¹ (1.203), number of fruits cluster⁻¹ (1.006), fruit length (0.539), fruit width (1.106), number of seeds fruit⁻¹ (0.426), weight of seeds fruit⁻¹ (0.330), fruit firmness (0.861), total soluble solids (0.734), total sugars (0.700), total carotenoids (0.986) and yield hectare⁻¹ (0.971). The negative and significant association at genotypic level was registered with number of flower clusters (truss) plant⁻¹ (-0.976), Number of fruit clusters plant⁻¹ (-0.435), number of fruits plant⁻¹ (-0.735), yield plant⁻¹ (-0.974), shelf life of fruits (-0.768), titrable acidity (-0.902) and lycopene (-0.654). Days to first flowering exhibited positive and significant relationship with number of flower clusters (truss) plant⁻¹ (0.793), number of fruits plant⁻¹ (0.747), yield plant⁻¹ (0.881)

and titrable acidity (0.871). The negative and significant association at phenotypic level was registered with weight of seeds fruit⁻¹ (-0.467), fruit firmness (-0.363) and pericarp thickness (-0.362). Similar results were also observed by Sherpa *et al.* (2014) and Kumar *et al.* (2020)

Number of flowers cluster⁻¹ was positively and significantly correlated with number of flower clusters (truss) plant⁻¹ (1.594), number of fruits cluster⁻¹ (0.373), number of fruit clusters plant⁻¹ (0.759), number of fruits plant⁻¹ (2.362), fruit length (0.900), number of locules fruit⁻¹ (0.939), fruit weight (0.442), number of seeds fruit⁻¹ (1.029), weight of seeds fruit⁻¹ (0.433), weight of 1000 seeds (0.524), yield plant⁻¹ (1.959), pericarp thickness (0.815), shelf life of fruits (1.221), titrable acidity (1.667) and lycopene (0.882). The negative and significant association at genotypic level was registered with fruit width (-0.972), fruit firmness (-1.072), total soluble solids (-1.218), total carotenoids (-0.859) and hectare⁻¹ (-0.660).Number of flowers cluster⁻¹ vield was positively and significantly correlated with fruit width (0.844), fruit firmness (0.781), total soluble solids (0.811), total carotenoids (0.786) and yield hectare⁻¹ (0.842). The negative and significant association at phenotypic level was registered with number of flower clusters (truss) plant⁻¹ (-0.330) and per cent fruit set (-0.365).Number of fruits cluster⁻¹ was positively and significantly correlated with fruit length (0.777), number of seeds fruit⁻¹ (0.815) and total sugars (0.897). The negative and significant association at phenotypic level was registered with days from fruit set tofruit maturity (-0.337), shelf life of fruits (-0.473), titrable acidity (-0.362) and lycopene (-0.363). Similar results were also observed by Regassa et al., (2012).Number of flower clusters (truss) plant⁻¹ exhibited positive and significant relationship with number of fruits cluster⁻¹ (1.287), fruit length (1.216), fruit width (1.058), number of locules fruit⁻¹ (1.232), fruit weight (0.511), number of seeds fruit (1.222), weight of 1000 seeds (0.519), fruit firmness (0.616), total soluble solids (0.633), total sugars (1.365), lycopene (0.388), total carotenoids (1.361) and yield hectare⁻¹ (0.881). The negative and significant association at genotypic level was registered with number of fruits $plant^{-1}$ (-0.842), yield $plant^{-1}$ (-1.020), pericarp thickness (-0.393), as corbicacid (-0.597) and titrable acidity (-0.865).Number of flower clusters (truss) plant⁻¹ exhibited positive and significant relationship with number of fruits plant⁻¹ (0.763), yield plant⁻¹ (0.869) and titrable acidity (0.691). The negative and significant association at phenotypic level was registered with number of locules fruit⁻¹ (-0.474), fruit weight (-0.434) and weight of 1000 seeds (-0.479). Similar results were also observed by Mehta and Asati (2008), Kumar and Dudi (2011) and Mahapatra et al. (2013).

Number of fruits cluster⁻¹ was positively and significantly correlated with number of fruits plant⁻¹ (1.288), yield plant⁻¹ (1.200), pericarp thickness (0.414), shelf life of fruits (0.374), titrable acidity (0.962), lycopene (0.417) and yield hectare⁻¹ (0.483). The negative and significant association at genotypic level was registered with fruit length (-1.091), number of locules fruit⁻¹ (-0.404), fruit weight (-0.329), number of seeds fruit⁻¹ (-1.147), weight of 1000 seeds (-0.367), total sugars (-1.091) and total carotenoids (-0.432). These results were in agreement with findings of Ara et al. (2009), Kumar et al. (2013) and Sherpa et al. (2014). Number of fruit clusters plant⁻¹ exhibited positive and significant relationship with fruit width (0.827), number of seeds fruit⁻¹ (0.775), weight of seeds fruit⁻¹ (1.736), fruit firmness (0.646), pericarp thickness (1.933), total soluble solids (0.584), total carotenoids (0.883)and yield hectare⁻¹ (1.429). The negative and significant association at genotypic level was registered with number of locules fruit⁻¹ (-0.868), fruit weight (-0.919), weight of 1000 seeds (-0.944), shelf life of fruits (-0.936), titrable acidity (-0.672) and lycopene (-1.010). Number of fruit clusters plant⁻¹ exhibited positive and significant relationship with number of locules fruit⁻¹ (0.866), fruit weight (0.862), weight of 1000 seeds (0.872), shelf life of fruits (0.866) and lycopene (0.890). There was no negative and significant association at phenotypic level was registered for this trait. These results were in agreement with findings of Ara et al. (2009) and Kumar et al. (2020).

Number of fruits plant⁻¹ exhibited positive and significant relationship with fruit length (1.120), fruit width (1.056), number of locules fruit⁻¹ (1.061), fruit weight (0.418), number of seeds fruit⁻¹ (1.151), weight of 1000 seeds (0.450), total soluble solids (0.546), total sugars (1.098), total carotenoids (1.095) and yield hectare⁻¹ (1.262). The negative and significant association at genotypic level was registered with yield plant⁻¹ (-0.745) and titrable acidity (-0.751). Number of fruits plant⁻¹ exhibited positive and significant relationship with yield $plant^{-1}$ (0.848) and titrable acidity (0.775). The negative and significant association at phenotypic level was registered with fruit weight (-0.358) and weight of 1000 seeds (-0.376). Mohanty (2002), Mehta and Asati (2008), Indu Rani et al. (2010), Kumar and Dudi (2011), Regassa et al., (2012), Tasisa et al., (2012), Mahapatra et al., (2013) and Sherpa et al., (2014) also reported that the fruit number plant⁻¹ was observed to be correlated with these traits. Fruit length was positively and significantly correlated with fruit width (0.695), weight of seeds fruit⁻¹ (1.639), vield plant⁻¹ (0.884), fruit firmness (0.692), pericarp thickness (1.556), total soluble solids (0.665), titrable acidity (0.450), lycopene (0.336) and yield hectare⁻¹ (1.331). The negative and significant association at genotypic level was registered with number of locules fruit⁻¹ (-0.368), fruit weight (-0.592), number of seeds

fruit⁻¹ (-0.873), weight of 1000 seeds (-0.633) and total sugars (-0.938). Fruit length was positively and significantly correlated with number of locules fruit⁻¹ (0.368), fruit weight (0.474), number of seeds fruit⁻¹ (0.815) and total sugars (0.895). The negative and significant association at phenotypic level was registered with fruit firmness (-0.439), total soluble solids (-0.464) and yield hectare⁻¹ (-0.456). Similar results were also observed by Manna and Paul (2012), Tasisa et al., (2012), Chernet et al., (2013), Kumar et al. (2013) and Mahapatra et al., (2013).Fruit width exhibited was positively and significantly correlated with number of locules fruit⁻¹ (0.683), fruit weight (0.519), number of seeds fruit⁻¹ (0.904), weight of 1000 seeds (0.597), yield plant⁻¹ (1.452), shelf life of fruits (1.042), titrable acidity (1.239) and lycopene (0.679). The negative and significant association at genotypic level was registered with weight of seeds fruit¹ (-0.401), fruit firmness (-0.984), total soluble solids (-1.026), total carotenoids (-0.842) and yield hectare⁻¹ (-0.920). Fruit width exhibited was positively and significantly correlated withfruit firmness (0.864), total soluble solids (0.922), total carotenoids (0.874) and yield hectare⁻¹ (0.890). There was no negative and significant association at phenotypic level was registered for this trait. The result of the present investigation was in consonance with findings of Golani et al., (2007), Senugupta et al., (2009), Chernet et al. (2013), Kumar et al., (2013), Manna and Paul (2012) and Mahapatra et al., (2013).

Number of locules fruit⁻¹ exhibited positive and significant relationship with number of seeds fruit⁻¹ (0.566), weight of seeds fruit⁻¹ (2.433), yield plant⁻¹ (0.680), fruit firmness (0.744), pericarp thickness (2.834), total soluble solids (0.703), ascorbic acid (0.374), total carotenoids (0.709) and yield hectare⁻¹ (1.857). The negative and significant association at genotypic level was registered with fruit weight (-1.139), weight of 1000 seeds (-1.086), shelf life of fruits (-0.657) and lycopene (-0.751). Number of exhibited positive and significant locules fruit⁻¹ relationship with fruit weight (0.895), weight of 1000 seeds (0.857), shelf life of fruits (0.753) and lycopene (0.843) while, the negative and significant association at phenotypic level was registered with yield hectare⁻¹ (-0.179). Similar results were also reported by Golani et al., (2007), Kumar and Dudi (2011), Manna and Paul (2012), Mahapatra et al. (2013), Saini et al., (2013) and Sherpa et al., (2014). Fruit weight was positively and significantly correlated with weight of seedsfruit⁻¹ (1.448), fruit firmness (0.604), pericarp thickness (1.785), total soluble solids (0.504), total carotenoids (0.410) and yield hectare⁻¹ (1.124). The negative and significant association at genotypic level was registered with weight of 1000 seeds (-0.963), shelf life of fruits (-0.812), titrable acidity (-0.332) and lycopene (-0.926). Fruit weight was positively and significantly correlated

with weight of 1000 seeds (0.836), shelf life of fruits (0.675) and lycopene (0.835). The negative and significant association at phenotypic level was registered with weight of seeds fruit⁻¹ (-0.296), fruit firmness (-0.449) and yield hectare⁻¹ (-0.481). Similar results were also reported by Dhankar *et al.*, (2001), Singh (2005), Mehta and Asati (2008), Senugupta *et al.*, (2009), Kumar and Dudi (2011), Buckseth *et al.*, (2012) and Mahapatra *et al.*, (2013).

Number of seeds fruit⁻¹ exhibited positive and significant relationship with weight of seeds fruit⁻¹ (1.629), yield plant⁻¹ (0.815), fruit firmness (0.773), pericarp thickness (2.313), shelf life of fruits (0.569), total soluble solids (0.861), ascorbic acid (0.853), titrable acidity (0.514), lycopene (1.558) and yield hectare⁻¹ (1.377) while, the negative and significant association at genotypic level was registered in total sugars (-0.946). Number of seeds fruit⁻¹ exhibited positive and significant relationship with total sugars (0.887) while, the negative and significant association at phenotypic level was registered in fruit firmness (-0.366) and total soluble solids (-0.366). Weight of seeds fruit⁻¹ exhibited positive and significant relationship with weight of 1000 seeds (1.253), shelf life of fruits (1.936), total sugars (0.969), titrable acidity (0.439), lycopene (2.048) and total carotenoids (0.418) whereas, the negative and significant association at genotypic level was registered with fruit firmness (-0.939), pericarp thickness (-1.003), total soluble solids (-0.558) and yield hectare⁻¹ (-0.726). Weight of seeds fruit⁻¹ exhibited positive and significant relationship with fruit firmness (0.448), pericarp thickness (0.830) and yield hectare⁻¹ (0.336) whereas, the negative and significant association at phenotypic level was registered with titrable acidity (-0.427). Weight of 1000 seeds exhibited positive and significant relationship with fruit firmness (0.563), pericarp thickness (1.243), total soluble solids (0.706), total carotenoids (0.586) and yield hectare⁻¹ (1.274) while, the negative and significant association at genotypic level was registered with shelf life of fruits (-0.804), titrable acidity (-0.364) and lycopene (-0.949). Weight of 1000 seeds exhibited positive and significant relationship with shelf life of fruits (0.746) and lycopene (0.801) while, the negative and significant association at phenotypic level was registered with yield plant⁻¹ (-0.325). These results were in accordance with the reports of Kumar and Dudi (2011), Tasisa et al., (2012) and Mahapatra et al., (2013). Yield plant⁻¹ was positively and significantly correlated with fruit firmness (0.928), total soluble solids (0.846), total sugars (1.083), total carotenoids (1.321) and yield hectare⁻¹ (1.231) whereas, the negative and significant association at genotypic level was registered with shelf life of fruits (-0.472) and titrable acidity (-0.922). Yield plant⁻¹ exhibited was positively and significantly correlated with titrable acidity (0.862). There was no negative and significant

Venkadeswaran et al.,

association at phenotypic level was registered for this trait. The results were in concurrence withfindings of Aravinda kumar and Mulge (2002), Tiwari (2002), Prashanth (2003), Joshi *et al.*, (2004), Lakshmikant and Mani (2004), Mayavel *et al.*, (2005), Raut *et al.* (2005), Ara *et al.*, (2009), Kaushik *et al.*, (2011), Buckseth *et al.*, (2012), Regassa *et al.*, (2012), Mahapatra *et al.* (2013) and Nadeem *et al.*, (2013).

B. Quality characters

Fruit firmness exhibited positive and significant relationship with shelf life of fruits (0.871), total sugars (0.368), titrable acidity (1.023) and lycopene (0.585) while, the negative and significant association at genotypic level was registered with pericarp thickness (-0.665), total soluble solids (-0.952) and total carotenoids (-0.652). Fruit firmness exhibited positive and significant relationship with total soluble solids (0.904), total carotenoids (0.703) and yield hectare⁻¹ (0.906). The negative and significant association at phenotypic level was registered with titrable acidity (-0.451). Similar results were also reported by Joshi et al., (2004), Singh (2005) and Mahapatra et al., (2013). Pericarp thickness was positively and significantly correlated withshelf life of fruits (1.780), total sugars (1.139), lycopene (2.774) and total carotenoids (0.661) whereas, the negative and significant association at genotypic level was registered with yield hectare⁻¹ (-0.417). Pericarp thickness was positively and significantly correlated with total antioxidant (0.908) whereas, the negative and significant association at phenotypic level was registered with titrable acidity (-0.352). Similar results for correlation of pericarp thickness with these component characters were also cited by Kumar and Dudi (2011), Buckseth et al. (2012), Manna and Paul (2012) and Mahapatra et al. (2013).Shelf life of fruits exhibited positive and significant relationship with total soluble solids (0.804), total sugars (0.451), total carotenoids (1.210) and yield hectare⁻¹ (1.572) while, the negative and significant association at genotypic level was registered with titrable acidity (-0.900) and lycopene (-0.992). Shelf life of fruits exhibited positive and significant relationship with as corbicacid (0.384), titrable acidity (0.459) and lycopene (0.837). There was no negative and significant association at phenotypic level was registered for this trait. Similar results were noted by Indu Rani et al. (2010) and Manna and Paul (2012).

Total soluble solids exhibited positive and significant relationship with total sugars (0.353), titrable acidity (0.876) and lycopene (0.543) whereas, the negative and significant association at genotypic level was registered with total carotenoids (-0.818) and yield hectare⁻¹ (-1.100). Total soluble solids exhibited positive and significant relationship with total carotenoids (0.807) and yield hectare⁻¹ (0.893). Similar results were noted by Indu Rani *et al.*, (2010), Buckseth *et al.*, (2012), Manna and Paul (2012) and Kumar *et al.*, (2013). Total

sugars exhibited positive and significant relationship with as corbicacid (0.940), titrable acidity (0.711), lycopene (0.659) and yield hectare⁻¹ (0.761). There was no positive or negative and significant association at phenotypic level was registered for total sugars. Similar results were also noted by Kumar and Dudi (2011) for this quality trait. Titrable acidity exhibited positive and significant relationship with total carotenoids (1.185) and yield hectare⁻¹ (1.288) whereas, the negative and significant association at genotypic level was registered with lycopene (-0.832). There was no negative and significant association at phenotypic level was registered for titrable acidity. Similar results were noted by Manna and Paul (2012) and Indu Rani *et al.*, (2010), Kumar and Dudi (2011) and Manna and Paul (2012).

Lycopene was positively and significantly correlated withyield hectare⁻¹ (1.445). There was no positive or negative and significant association at phenotypic level was registered for lycopene. Similar results were also noted by Indu Rani *et al.*, (2010) and Kumar and Dudi (2011). Total carotenoids exhibited negative and significant association at genotypic level was registered with yield hectare⁻¹ (-0.578). Total carotenoids exhibited positive and significant relationship with yield hectare⁻¹ (0.790) whereas, there was no negative and significant association at phenotypic level was registered for this trait. Similar results were also noted by Kumar and Dudi (2011) for this quality trait.

CONCLUSION

The correlation coefficients of the cherry tomato germplasm revealed that the yield hectare⁻¹ showed positive and significant association at genotypic level with plant height at flowering, plant height at final harvest, number of primary branches plant⁻¹ at flowering, days to first flowering, number of flowering clusters (truss) plant⁻¹, number of fruits cluster⁻¹, number of fruit cluster plant⁻¹, number of fruits plant⁻¹, fruit length, number of locules fruit⁻¹, fruit weight, number of seeds fruit⁻¹, weight of 1000 seeds, yield plant⁻¹, shelf life of fruits, total sugars, titrable acidity and lycopene. The yield hectare⁻¹ showed positive and significant association at phenotypic level with number of primary branches plant⁻¹ at final harvest, number of flowers cluster⁻¹, fruit width, weight of seeds fruit⁻¹, fruit firmness, total soluble solids and total carotenoids. Hence, these traits may lead to the development of high yielding genotypes of cherry tomato.

Acknowledgement. The authors are highly grateful to the Department of Vegetable Crops, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu and University Grants Commission, New Delhi, India for providing technical and financial assistance during the research programme.

Conflict of Interest. Nil.

Venkadeswaran et al.,

Biological Forum – An International Journal

13(2): 467-476(2021)

474

REFERENCES

- Al-Jibouri, H. A., Miller, P. A., & Robinson, H. F. (1958). Genotypic and environmental variances and covariances in an upland cotton cross of inter specific origin. *Agron. J.*, 50: 633-636.
- Ara, A., Narayan, R., Ahmed, N., & Khan, S. H. (2009). Genetic variability and selection parameters for yield and quality attributes in tomato. *Indian J. Hort.*, 66(1): 73-78.
- Aravindakumar, J. S., & Mulge, R. (2002). Influence of environments on association of yield and its components traits in tomato (*Lycopersicum esculentum* Mill.). Veg. Sci., 29(1): 27-29.
- Bharathi, R. (2021). Dietary and nutrient intakes of rural and urban women: a study from South India. *International Journal of Theoretical & Applied Sciences*, 13(1): 19-25.
- Buckseth, T., Sharma, M. K., & Thakur, K. S. (2012). Genetic diversity and path analysis in tomato (*Solanum lycopersicum* L.). Veg. Sci., 39(2): 221-223.
- Chernet, S., Belew, D., & Abay, F. (2013). Genetic variability and association of characters in tomato (*Solanum lycopersicum* L.). *Int. J. Agric. Res.*, 1: 1-10.
- Dhankar, S. K., Dhankar, B. S., & Sharma, N.K. (2001). Correlation and path analysis in tomato under normal and high temperature conditions. *Haryana J. Hort. Sci.*, 30(1-2): 89-92.
- Dhankhar, S. K., & Dhankar, S. S. (2006). Variability, heritability, correlation and path coefficient studies in tomato. *Haryana J. Hort. Sci.*, 35(1&2): 179-181.
- Golani, T. J., Mehta, D. R., Purohit, V. L., Pandya, H. M., & Kanzariya, M. V. (2007). Genetic variability, correlation and path coefficient studies in tomato. *Indian J. Agric. Res.*, 41(2):146-149.
- Indu Rani, C., Muthuvel, I., & Veeraragavathatham, D. (2010). Correlation and path coefficient for yield components and quality traits in tomato (Lycopersicum esculentum Mill.). Agr. Sci. Digest, 30(1): 11-14.
- Joshi, A., Vikram, A., & Thakur, M. C. (2004). Studies on genetic variability, correlation and path analysis for yield and physico-chemical traits in tomato (Lycopersicum esculentum Mill.). Progr. Hort., 36(1):51-58.
- Kalloo, G. (1988). Vegetable breeding Volume I. C.R.C. Press. Inc. Boca Raton, Florida, pp. 105-128.
- Kaushik, S.K., Tomar, D. S., & Dixit, A. K. (2011). Genetics of fruit yield and it's contributing characters in tomato (*Solanum lycopersicum*). J. Agri. Biotech. Sust. Dev., 3(10): 209-213.
- Kirtane, S. A. (2018). Comparative mutagenic effectiveness and efficiency of sodium azideand gamma radiation in onion (Allium cepa L.). International Journal of Theoretical & Applied Sciences, 10(1): 169-173.
- Kumar, B. R., Reddy, D. S., Reddaiah, K., & Sunil, N. (2013). Studies on genetic variability, heritability and genetic advance for yield and quality traits in tomato (*Solanum lycopersicum L.*). *Int. J. Curr. Microbiol. App. Sci.*, 2(9): 238-244.
- Kumar, K., Sharma, D., Singh, J., & Thakur, P. (2020). Correlation and path coefficient analysis intomato (Solanum lycopersicum L.). Int. J. Curr. Microbiol. App. Sci.,9(6): 1944-152.

- Kumar, M., & Dudi, B. S. (2011). Study of correlation for yield and quality characters in tomato (*Lycopersicum esculentum* Mill.). *Electronic J. of Plant Breeding*, 2(3): 453-460.
- Lakshmikant & Mani (2004). Association and contribution of different characters towards fruit yield in tomato (*Lycopersicum esculentum* Mill.) in North Western hill zone. *Indian J. Hort.*, 61(4): 327-330.
- Mahapatra, A. S., Singh, A. K., Manju Vani, V., Ramanand Mishra, Harit Kumar & Rajkumar, B. V. (2013). Interrelationship for various components and path coefficient analysis in tomato (*Lycopersicum esculentum* Mill). *Int. J. Curr. Microbiol. App. Sci.*, 2(9): 147-152.
- Manivannan, M. I., Prasad, D., & Mir, M. (2005). Correlation and path coefficient analysis in cherry tomato (Lycopersicum esculentum var. cerasiforme). New Agriculturist, 16(1/2): 151-154.
- Manna, M., & Paul, A. (2012). Studies of genetic variability and character association of fruit quality parameters in tomato. *Hort. Flora. Res. Spectrum*, 1(2): 110-116.
- Mayavel, A., Balakrishnamuthy, G., & Natarajan, S. (2005). Variability and heritability studies in tomato hybrids. *South Indian Hort.*, 53(1-6): 262-266.
- Medina, C. I., & Lobo, M. (2001). Variabilidadmorfológicaen el tomatepajarito (*Lycopersicum esculentum* var. *cerasiforme*), precursor del tomatecultivado. *Revista Corpoica*, 3(2): 39-50.
- Mehta, N. and Asati, B.S. (2008). Genetic relationship of growth and development traits with fruit yield in tomato (*Lycopersicum esculentum* Mill.). *Karnataka Journal of Agricultural Sciences*, 21(1): 92-96.
- Mohanty, B. K. (2002). Studies on variability, heritability, interrelationship and path analysis in tomato. *Ann. Agric. Res.*, 2(1): 65-69.
- Nadeem, K., Munawar, M., & Chisti, S. A. S. (2013). Genetic architecture and association of fruit yield and quality traits in tomato (*Solanum lycopersicum L.*). Univ. J. Agric. Res., 1(4): 155-159.
- Ojo, G. T., & Umar, I. (2013). Evaluation of some botanicals on root-knot nematode (*Meloidogyne javanica*) in tomato (*Lycopersicum esculentum*, Mill) in Yola Adamawa state, Nigeria. *Biological Forum - An International Journal*, 5(2): 31-36.
- Prashanth, S. J. (2003). Genetic variability and divergence study in tomato (*Lycopersicum esculentum* Mill.). M.Sc. Thesis, University of Agricultural Science, Dharwad.
- Prema, G., Indiresh, K. M., & Santhosha, H. M. (2011). Evaluation of cherry tomato (*Solanum lycopersicum* var. *cerasiforme*) genotypes for growth, yield and quality traits. *The Asian Journal of Horticulture*, 6(1): 181-184.
- Raut, R. L., Naidu, A. K., & Jain, P. K. (2005). Correlation study in tomato (*Lycopersiconesculentum* Mill.). *South Indian Hort.*,53(1-6): 258-261.
- Regassa, M. D., Mohammed, A., & Bantte, K. (2012). Evaluation of tomato (*Lycopersicum esculentum* Mill.) genotypes for yield and yield components. *African J. Plant Sci. Biotech.*, 6(1): 45-49.
- Saini, R., Sidhu, A. S., Singh, D., & Kumar, A. (2013). Studies on genetic diversity in growth and, yield and

Venkadeswaran et al.,

Biological Forum – An International Journal

13(2): 467-476(2021)

475

quality traits in tomato (*Lycopersicum esculentum* Mill.). *J. Hort. Sci.*, 8(1): 21-24.

- Senugupta, S. K., Mehta, A. K., & Gupta, J. K. (2009). Genetics studies for fruit yield and its components in tomato. *In: Proc. Int. Conf. Hort.*, 207-209.
- Sherpa, P., Pandiarana, N. Shende, V. D., Seth, T., Mukherjee, S., & Chattopadhyay, A. (2014). Estimation of genetic parameters and identification of selection indices in exotic tomato genotypes. *Electronic J. of Plant Breeding*, 5(3): 552-562.
- Shukla, S. K. (2017). Effect of *Pseudomonas fluorescens* on various growth parameters of lentil (*Lens* sp.): a healthy nutrition for rural India. *International Journal* of *Theoretical & Applied Sciences*, 9(2): 133-136.

- Simarelli, M. (2001). A riqueza da horta. *Panorama Rural*, 2: 30-43.
- Singh, A. K. (2005). Genetic variability, correlation and path coefficient studies in tomato (*Lycopersicum esculentum* Mill.) under cold arid region. *Progr. Hort.*, 37(2): 437-443.
- Tasisa, J., Belew, D., & Bantte, K. (2012). Genetic association analysis among some traits of tomato (*Lycopersicum esculentum* Mill.) genotypes in West Showa, Ethiopia. *Int. J. Plant Breed. Genet.*, 6(3): 129-139.
- Tiwari, J. K. (2002). Correlation studies in tomato. *Haryana J. Hort. Sci.*, *31*(1-2): 146-147.

How to cite this article: Venkadeswaran, E., Vethamoni, P. I., Arumugam, T., Manivannan, N. and Harish, S. (2021). Studies on Correlation for Growth, Yield and Quality Characters in Cherry Tomato [*Solanum lycopersicum* (L.) var. *cerasiforme* Mill.]. *Biological Forum – An International Journal*, *13*(2): 467-476.