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ABSTRACT: Weibull distribution and exponential distributions are widely used in modeling and analyzing 

of lifetime data. In spite of these, some other distributions are also useful for analyzing of lifetime data. The 

present paper considers the estimation of the scale parameter of three parameter generalized gamma type 

distribution with known shape parameters. Maximum likelihood estimation is also discussed. Bayes estimator 
is obtained by using Jeffreys’ prior under Linex loss function, Asymmetric Precautionary Loss function and 

Square error loss function. Relative efficiencies of the estimators are also calculated for the data set and it is 

observed that Bayes estimator fairs better than MLE in all cases. 
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I. INTRODUCTION 

Weibull distribution and exponential distributions are widely used as a lifetime distribution in analyzing of lifetime 

data. Besides these, gamma, log normal, inverse gamma and the generalized gamma are also suggested as a lifetime 

distributions. Here we use a three parameters generalized gamma type model whose probability density function is   

given as 
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Where θ is a scale parameter and k and p are shape parameters. This model includes exponential (p = k =1), Weibull 

(k=1), gamma (p=1) and model proposed by Stacy (
pαθ = ) as special cases. Its utility as a lifetime model has been 

examined by Shukla and Kumar (2006) by applying this model on various sets of lifetime data. Pandey and Rao 
(2006) have obtained Bayes estimators of scale parameter by using precautionary loss function whereas Shukla and 

Kumar (2008) have derived Bayes estimators of scale parameter for different priors by using Lindley approach for 

this distribution. They (2009) have also derived Bayes estimators of shape parameters for different priors under the 

assumption that scale parameter is known. The maximum likelihood (ML) method of estimation is quite efficient 

and very popular. In Bayesian approach, a prior distribution for the parameter is considered and then the posterior 

distribution is obtained by conditioning on the data and after that the inference is done based on the posterior.  

Ahmed et al.(2010) have considered ML and Bayesian estimation of the scale parameter of Weibull 

distribution with known shape and compared their performance under squared error loss. Pandey et.al. (2011) have 

made the comparison between Bayesian and maximum likelihood estimation of scale parameter in Weibull 

distribution under linex loss function. Saima et.al. (2015) have shown Bayesian estimators of unknown parameters 

of a three parameter generalized gamma distribution, based on different priors using different loss functions. They 
also presented posterior means and variances for α under different priors by using different loss functions. 

et



Shukla, Kumar, Shukla and Goswami                                                                                                                 289 

 

In this paper, ML estimator and Bayes estimator of the scale parameter of the three parameters generalized 

gamma distribution is considered under linex loss function, asymmetric precautionary loss function and square error 

loss function with the assumption that the shape parameters are known. 

 

II. MAXIMUM LIKELIHOOD FUNCTION 

Let 
n

xxxx −−−−−−,,, 321 be a random sample of size n from the proposed life testing model, whose p.d.f. is given by 

(1), then Likelihood function (L) is given by 
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Logarithm of this likelihood function is  
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The MLE 0f θ  can be obtained as   ∑
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Where p and k are known. 

III. BAYESIAN ESTIMATION PRIOR DISTRIBUTION 

In Bayesian inference, the prior distribution or a prior probability distribution, often called simply the prior, is a key 

part and represents the information about an uncertain parameter θ that is combined with the probability distribution 

of new data to yield the posterior distribution, which in turn is used for future inferences and decisions involving. 

The derivation of the prior distribution based on information other than the current data is impossible or rather 

difficult because the likelihood function and the prior provide quite difficult posterior forms which are impossible to 

analyze analytically and are even very challenging from the usual numerical perspective. Moreover, the statistician 

may be required to employ as little subjective input as possible, so that the conclusion may appear solely based on 

sampling model and the current data.  

Jeffreys proposed a formal rule for obtaining a non-informative prior. It is proportional to the square root of 

the determinant of the Fisher information: 

)()( θθ Ig ∝         … (5) 

Where θ is k-vector valued parameter and I(θ) is the Fisher's information matrix of order k ×k. In particular, 

if θ is a scalar parameter, Jeffreys non-informative prior for θ is )()( θθ Ig ∝ . Thus in our problem, we consider 
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 Where c is a constant. 

IV. POSTERIOR DISTRIBUTION 

The posterior distribution of θ given the random sample when p and k are fixed is given as 
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Where g (θ) is a prior of θ. A distinctive feature of the Bayesian approach is the introduction of a prior 

density to represent prior information about the possible values of the parameters of the model. There are three 

distinct Bayesian approaches for selection of prior distribution [Diaconis and Ylvisker (1985)]. The choice of a 

convenient prior distribution which combines easily with the likelihood function has recently been simplified by the 

construction of conjugate family. The concept of conjugate family was introduced first by Bernard (1954) and fully 

explained by Raiffa and Schlaifer (1961). The restriction to the conjugate family is not necessary, but it has the 

advantage that the posterior distribution belongs to the same family.   
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V. LOSS FUNCTION 

The loss function plays an important role in Bayesian inference. A loss function is a function that maps an event or 

values of one or more variables onto a real number intuitively representing some "cost" associated with the event. 

An optimization problem seeks to minimize a loss function. The estimator having the least expected loss is usually 

preferable compare to the others. Most authors use the simple quadratic (symmetric) loss function and obtain the 

posterior mean as the Bayesian estimate. However, in practice, the real loss function is often not symmetric. Varian 

(1975) introduced LINEX (Linear-Exponential) loss function, which is the simple generalization of squared error 

(SE) loss function and can be used in almost every situation.   

VI. LINEX LOSS FUNCTION 

The LINEX loss function is defined as follows: 
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VII. ESTIMATION UNDER LINEX LOSS  

To obtain the Bayes estimator, we minimize the posterior expected loss which is given as  
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Integrating, we have 
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We obtain Bayes Estimator as 
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VIII. ASYMMETRIC PRECAUTIONARY LOSS FUNCTION (APLF) 

A very useful and simple asymmetric precautionary loss function is 
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IX. ESTIMATION UNDER ASYMMETRIC PRECAUTIONARY LOSS 

To obtain the Bayes estimator, we minimize the posterior expected loss which is given as  
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Integrating, we have 

)1(

2

)2)(1(ˆ
ˆ

2

−
−

−−
+=

nk

k

nknk

t

θ
θρ ∑= p

ixtWhere  

… (17)

 

0
ˆ

=
∂

∂
ρ

θ
Solving  

We obtain Bayes Estimator as 

,0
ˆ

=
∂

∂

θ

ρ
Solving



Shukla, Kumar, Shukla and Goswami                                                                                                                 292 

 

∑=










−−
=

p

i

b

xtwhere

nknk

t
2

12

)2)(1(
θ̂

  

… (18)

 

X. SQUARED ERROR LOSS FUNCTION (SELF) 

A commonly used loss function is the squared error loss function (SELF) which is given as 
2)ˆ(),ˆ( θθθθ −=L    

19)

 

XI. ESTIMATION UNDER SQUARE ERROR LOSS  

To obtain the Bayes estimator, we minimize the posterior expected loss which is given as
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Integrating, we have 
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We obtain Bayes Estimator as 
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XII. RELATIVE EFFICIENCY 

The relative efficiency of the Bayes estimator with respect to the ML estimator is given by 
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XIII. NUMERICAL ILLUSTRATION 

In this study, we have generated random samples of size 100 from generalized gamma type distribution by using R-

3.1.2 software (p=1, k= 1 and theta = 2)   and compared the performance of ML and Bayes estimator based on them. 

In Table: 1, we present MLE, Bayes estimators of scale parameter by using different loss functions for Jeffrey’s 

Prior, their corresponding Risk functions and relative efficiencies. 
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Table: 1 

  MLE Bayes 
R MLE(Linex) R Bayes (Linex) RE 

N=100 a= -3 
1.792790943 

 

1.801665 0.045107526 
 

0.044998884 
 

1.002414328 
 

a= -2 
1.792790943 

 

1.792732 0.019933338 
 

0.019933336 
 

1.000000108 
 

a= -1 
1.792790943 

 

1.783857 0.00497927 
 

0.004966874 
 

1.002495818 
 

a= 1 
1.792790943 

 

1.766282 0.00504600 
 

0.00493400 
 

1.02271500 
 

a= 2 
1.792790943 

 

1.757581 0.020477578 
 

0.019671919 
 

1.040954813 
 

a= 3 
1.792790943 

 

1.748938 0.046991432 
 

0.044116579 
 

1.065164922 
 

  MLE Bayes 
R MLE(APLF) R Bayes (APLF) RE 

N=100 --------- 
1.792790943 
 

1.820115778 
 

0.018848142 
 

0.018431671 
 

1.022595 
 

  MLE Bayes 
R MLE(SELF) R Bayes (SELF) RE 

N = 100 ……….. 
1.792790943 
 

1.810899943 
 

0.033790779 
 

0.033462843 
 

1.009800 
 

XIV. CONCLUSION 

The present table explores ML and Bayesian estimation of scale parameter in generalized gamma type distribution 

under linex loss, asymmetric precautionary loss and square error lossand demonstrates that the Bayes estimator 

performs better than the MLE in all cases. Relative efficiency is minimum in case of linex loss function when a = -2 

and maximum when a =3. 
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