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ABSTRACT: The basin of Ravi has a very weak network of rain gauges. This issue excels the importance of 
SPEs to be used extensively instead of gauge products for different hydrological investigations like flash 
flood modeling etc. The primary purpose of this research was to assess the SPEs and make them useful for 
flash flood studies by applying bias correction procedure on it. The SPEs showed a linear correlation with 
rain gauge products however under and overestimations in comparison with the gauge products were also 
observed. A comprehensive statistical analysis was carried out and multiplicative bias correction procedure 
was applied on SPEs individually for point precipitation of each rain gauge, then whole examined area and at 
the end for average basin precipitation, after categorizing them on the basis of intensity. A percentage bias 
of 16.75 % was observed for point precipitation and 6.30 % for average basin precipitation of the study area, 
which were then significantly reduced to 0.78% and 0.31% respectively after bias corrections. Flash floods 
modelling was performed using gauge products, biased and corrected GSMaP products for the years 2014-
2016. Upstream boundary condition was provided by a flow hydrograph observed at Jassar stream gauging 
station. The modelling results on flash flood showed improvement because of bias correction procedure 
applied on GSMaP product. The results of bias correction of rainfalls using multiplicative bias correction 
factor showed better match with ground-based estimates. This was proved with improved values of 
statistical indices. 

Keywords: Satellite Precipitation Estimates (SPEs), GSMaP, Bias Correction, Flash Flood Modelling, Ravi River, 
Pakistan. 

Abbreviations: SPEs, Satellite Precipitation Estimates; GSMaP, Global Satellite Mapping of Precipitation; DEM, 
Digital Elevation Model; HEC-HMS, Hydrologic Engineering Centre-Hydrological Modelling System; PMD, Pakistan 
Meteorological Department; PST, Pakistan Standard Time; RMC, Regional Meteorological Centre; CN, Curve 
Number. 

I. INTRODUCTION 

During the years 2010-2014, Pakistan faced floods and 
flash floods which resulted the loss of over 1-million-
acre crop lands. In 2014 heavy monsoon rains and 
floods in the basins of Indian eastern rivers of Jhelum, 
Ravi, Sutlej and Chenab induced flash floods in Punjab 
and other provinces of Pakistan [24]. The Basin of Ravi 
River is located in Punjab Province of Pakistan, 
containing the cities of Zone B and D where the 
temperature is normally ≤ 25°C for the day time in cold 
season (October to March), while it is ≥ 40°C during hot 
season (April to September). Generally light rainfall is 
observed during cold season, but extreme rain events 
are perceived during hot season [26]. In order to 
estimate flash floods, rain gauge networks existing on 
ground are too scarce, therefore large assumptions are 
demanded to plan isohytal charts over the study area 
[19]. 
For the management of freshwater resources and the 
prediction of heavy influence weather events like 
typhoons, hurricanes and heavy rains which produce 

landslide and heavy floods, the availability of unfailing 
global rainfall data and truthful time-based precipitation 
evaluations are necessary [11]. However, the 
precipitation estimation is one of the utmost problematic 
observational chores of climatology as the precipitation 
takes place occasionally and with distinct topographical 
and temporal unpredictability [2]. Traditional rain gauge 
structures yield relatively accurate point-based 
precipitation estimates [6, 7]. However, irregular 
distribution of these gauges and restricted sampling 
area under their coverage, produce significant 
complications for usefulness of their spatial extent [37]. 
Additionally, the deserted and far-off areas are not 
shielded under rain gauges [6, 7]. Furthermore, radars 
used for the estimation of precipitation have quantitative 
coverage limited to 150 Km, therefore, gauge, radar and 
satellite products must be combined to enhance the 
quality of temporal and spatial rainfall estimations [4, 6, 
7]. 
The only standing base of data for operational 
hydrologic and flash flood prediction because of spatial 
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limitations of gauge evaluations are the Satellite-built 
Precipitation Estimates (SPEs). Unlike ground-built rain 
gauges, SPEs are unprotected from huge systematic 
flaws and extra uncertainty bases [31]. Presently 
numerous satellite-built precipitation datasets are 
reachable which offer temporal-based and spatial-based 
distribution of rainfall over the area under investigation 
[20]. Satellite-built rainfall products estimate 
precipitation by means of indirect methods and thus 
their quantities are dissimilar in comparison to rain 
gauge measurements. Although remarkable progress 
has been accomplished in recent years for the 
improvement and accessibility of real-time SPEs, but 
still they exhibit significant inaccuracies that are 
essential to be corrected for any hydrological practice 
for example real-time or periodic flow forecasting. These 
uncertainties are lying because of flawed evaluation of 
spatial-based and temporal-based climatic factors, or 
the improper understanding of precipitation producing 
mechanisms [34]. 
Although, SPEs are accessible without restrictions for 
most of the countries on the globe, there are some 
limitations in these estimates, mainly due to indirect 
precipitation retrieving approaches. SPEs algorithms 
approximate precipitation by means of remote sensing 
techniques in which electromagnetic spectrum is used 
having sensors which are sensitive to visible, infrared 
(IR) and microwave [1]. Visible and infrared (IR) sensors 
are reachable on geostationary circumnavigating 
satellites and the precipitation data is offered by them 
on finer temporal scales. The precipitation products 
prearranged by these sensors are often unpolished as 
the temperature of cloud-top is meanderingly and 
weakly connected to rainfall [25]. Current satellites-
based estimates fuse the data from different bases for 
example rain gauges, IR and PMW to operate the 
advantage of their strength. Few of free and open 
access SPEs are TRMM [14], TMPA [12], CMORPH 
[16, 38], PERSIANN and PERSIANN-CDR [30], GSMaP 
[18] and IMERG [13].   
Only few studies have been perceived in which SPEs 
are analyzed, corrected and further applied for floods 
investigations in the Ravi basin [19]. [3] adjusted the 
TRMM product for Indus river basin, Pakistan by means 
of regression and geographical differential analysis. [21] 
conducted the uncertainty analysis of SPEs via couple 
method. [19] conducted the introductory valuation of 
IMERG research and IMERG real time product for the 
five different climate zones of Pakistan. [19] took 
GSMaP product, corrected it by applying bias correction 
procedure and went for flash flood simulation using 
Hydro-BEAM model. 
Many studies are done using hydrological models, but 
now modern studies are utilizing hydraulic models for 
this purpose. [28] evaluated and bias corrected 
GSMaP_MVK product via power function and 
generalized additive model, in his study of flood 
examining in Kyushu, Japan. However, the functioning 
of SPEs especially GSMaP has not been conducted 
over Ravi river basin for different hydrological studies 
before. 

In general, many studies can be seen worldwide in 
which the SPEs are analyzed for various hydrological 
investigations like rainfall runoff modelling, flash flood 
modeling, hydrological modelling and flood monitoring 
etc. [8] investigated GSMaP and TRMM satellite 
products and calibrated the aforementioned products by 
comparing with gauge products. The rainfall runoff 
simulation was executed by using LANDPINE model. 
[35] examined three SPEs namely TMPA 3B42, 
PERSIANN and CMORPH by concentrating on the 
capability of these SPEs to perceive low rainfall patterns 
which will possibly bring about the droughts. Each of 
these SPEs underestimated the precipitation during dry 
times of the year. [31] investigated the SPEs, gauge and 
radar products by emerging a tactic which flawlessly 
intermingle all the three products. For intermingling 
these products, the bias of each product comparative to 
each other was eradicated. The multiplicative bias 
correction factor was applied in this investigation on 
hourly SPEs and the results were compared with 
previously applied bias correction techniques. [9] 
examined the CMPORPH satellite product for rainfall 
runoff modelling, after removing the bias from SPEs 
HBV model was applied to conduct rainfall runoff 
modelling. In another research conducted by [34], two 
bias correction techniques namely; Quantile Mapping 
and the Principal Component-based technique were 
adopted. Later the HYMOD_DS hydrological model was 
used for hydrological forecasting. [22] evaluated three 
SPEs which were TMPA, CMORPH and CHIRPS. A 
comprehensive comparison was done on various 
temporal scales for the period of 2008-12. The 
topographic operated model (TOPMODEL) was 
implemented to see the influence of bias in SPEs on the 
closure of water balance. 
In this research, the daily precipitation estimates of 
GSMaP satellite product were statistically evaluated and 
corrected by applying multiplicative bias correction 
procedure [25, 31, 32] for seven rain gauges stations. 
The selected region is Ravi river basin which is a very 
fertile plain land in Punjab, Pakistan. This kind of 
research is novel for this basin. The SPEs were 
comprehensively analyzed step by step, by considering 
each station’s point rainfall, entire study area’s point 
rainfall and then the average basin rainfall for the years 
2014-16. After the bias correction of satellite product, 
the hydrological model HEC-HMS was used for 
modeling the flash floods generated by gauge 
precipitation, biased satellite precipitation and corrected 
satellite precipitation. 

II. MATERIALS AND METHODS 

A. Study Area 
The area under investigation was Ravi river basin, 
located in almost middle part of province Punjab in 
Pakistan as shown in Figure 1a. It extends between 
30°30’N - 32°48’N latitude ranges and 71°48’E - 
75°48’E longitude ranges. The climate classification of 
the study area is divided into Zone B and D which 
includes both dry winter and rainy summer season [26]. 
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Fig. 1 (a) The total catchment area of Ravi Basin 
delineated by means of SRTM 90 m DEM. 

When the basin was outlined by means of 30 m Digital 
Elevation Model (DEM) in ArcGIS, total area of Ravi 
basin was perceived as 52,800 Km

2
 (Figure 1a), out of 

which 33264 Km
2
 lies in Pakistan and the rest of the 

area is included in Indian territory. In this study, only 
Pakistani basin area of river Ravi was considered. 
By exercising Thiessen Polygons algorithm in ArcGIS, it 
became evident that the seven rain gauge stations (Fig. 
1b), which were covering the study area, shielded 
31488.44 Km

2
 area of Pakistani Ravi basin. The 

remaining area of Pakistani Ravi basin is supposed to 
be under the coverage of Indian rain gauges. However, 
while working on average basin precipitation only the 
area estimated by Thiessen Polygons algorithm was 
compared for gauges and GSMaP precipitation. 
The cities inside and around the basin area are 
Faisalabad, Lahore, Multan, Toba Tek Singh, Sahiwal, 
Gujranwala and Okara. The Ravi river flows through the 
streams of these towns and finally discharges into 
Chenab river near Multan [19]. The summer season 
(April to September) is relatively rainier as compared to 
winter season (October to March) which is drier. During 
summer heavy rainfall events occur in the months of 
July, August and September [26]. The soil is quite 
fertile, good for farming and classified as alluvial soil 
[27].  

 

Fig. 1 (b) Study area (Green Color) showing the 
location of Rain Gauging Stations. 

B. Gauge built and Satellite built rainfall datasets 
The daily rainfall data with spatial resolution 0.1° × 0.1° 
for three years 2014 to 2016 was downloaded from 
Japan based GSMaP’s official website named as Jaxa 
Global Rainfall Watch. The locations of rain gauge 
stations were simply entered in GSMaP’s website one 
by one, and the results were collected as a point value 
of precipitation in the form of pixel value. The 
observation time in Pakistan for rain gauges is set as 
08:00 AM by Pakistan Meteorological Department 
(PMD). GSMaP follows UTC which is 5 hours behind 
Pakistan Standard Time (PST). So, the observation time 
was set as 03:00 to 03:00 for GSMaP to match the 
observation time. The link to the GSMaP official website 
is given as; 
https://sharaku.eorc.jaxa.jp/GSMaP/ 
Table 1 shows the specifications of GSMaP dataset.  
The daily rainfall data for seven rain gauge stations was 
obtained from Regional Meteorological Centre (RMC), 
PMD, Lahore, Pakistan for years 2014 to 2016. The 
particulars related to these rain gauge stations are 
hereby listed in Table 2. Fig. 1b is showing the location 
of rain gauging observatories covering the study area. 
The locations of rain gauge stations listed in Table 2 
were collected from the website of PMD. 

Table 1: Details of SPE product [25, 28]. 

Characteristics of GSMaP product 

Sensors Microwave and Infrared Sensors 

Spatial Resolution 0.1° × 0.1° and 0.25° × 0.25° grids 

Temporal Resolution Hourly and Daily 

Start Date March 2000 

Coverage 60°N to 60°S 

Table 2: Rain Gauge Stations Details. 

S.No. Name of Station Longitude (X) Latitude (Y) 

1. Faisalabad 73°7’60” 31°25’60” 

2. Lahore 74°19’27.89” 31°32’34.13” 

3. Multan 71°25’30.89” 30°11’50.04” 

4. Toba Tek Singh 72°46’60” 30°58’60” 

5. Sahiwal 73°10’00” 30°38’60” 

6. Gujranwala 74°20’60” 32°10’26.90” 

7. Okara 73°25’60” 30°48’00” 
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C. Description of Hydrological Model and its Execution 
Flash flood simulations were modelled using HEC-HMS 
for daily rainfall data of years 2014 to 2016. The model 
was set to function by fixing the loss method as SCS-
Curve Number method, runoff estimation method as 
SCS-Unit Hydrograph method and flow routing method 
as Muskingum method, were adopted. By bearing in 
mind the study area, the lag time was taken as 24 
hours, which is the time taken by rain water to reach the 
river channel. The Curve Number (CN) was taken as 78 
as the Punjab soil is classified as agricultural alluvial 
soil, booked in Hydrological Soil Group B [23, 27]. The 
time interval for control specification was taken as 1 
day, owing to the availability of daily rainfall data. The 
Upstream boundary condition was provided by a flow 
hydrograph observed at Jassar stream gauging station. 
The flood simulation results were attained in the form of 
graphs, displaying peak discharge for daily rainfall 
values (Fig. 9). The governing equations used in HEC-
HMS are; 

�� = � �in mm
 ×  0.2                                           (1) 

� = ������ − 10                                            (2) 

���� = ��.�×����
�.�
�����×��. 
                                             (3) 

! = �"#$%&' ()&*+,#-./0-1&' ()&*+,#-.
�                                         (4) 

Where �� is initial abstraction which is the loss of water 
due to evaporation, infiltration and interception. This is 
calculated in mm and is dependent on Curve Number 
(CN). S is maximum retention in watershed. CN is 
Curve Number. ���� is the lag time i.e. the time taken by 

water to reach the river channel.Y is the slope and L is 
the length between higher and lower elevation. The flow 
diagram showing the brief methodology in steps is 
attached (Fig. 2). 

 

Fig. 2. Flow Diagram Showing Research Methodology. 

 
 
 

D. Comparison of Gauge and GSMaP precipitation 
datasets 
The gauge and GSMaP rainfall products were 
compared primarily for the assessment of GSMaP 
product, over the Ravi river basin. To make the spatial 
resolution of gauge rainfall dataset harmonious with the 
GSMaP dataset, it was interpolated to 0.1° × 0.1° spatial 
resolution grid by applying the algorithm for generation 
of programmed Thiessen Polygons [10]. This was done 
by assigning the equal rainfall value to the pixels 
neighboring the gauge station. This interpolation 
practice essentially depends upon the concentration of 
gauge networks in the study area, and it can additionally 
introduce further errors in rainfall dataset. The 
geostatistical models which are more comprehensive, 
require denser network of rain gauge stations for 
characterization of error formation. One good example 
for such models is Kriging [25]. 
The comparison between the two datasets was made at 
different scenarios i.e. the comparison between the 
point precipitation of rain gauge and pixel value of 
GSMaP for each station, the same comparison by 
considering the point/pixel values for complete study 
zone and finally the comparison between average basin 
precipitations estimated using Thiessen Polygon 
algorithm, for gauge and GSMaP datasets. All these 
comparisons were established on the basis of daily 
rainfall records. The heavy rainfall events were given 
special attention during the comprehensive statistical 
analysis, as these events are crucial in flash flood 
modelling or simulations. 

E. Statistical Parameters 
The comparison between the gauge and GSMaP rainfall 
datasets was established by evaluating four statistical 
parameters [15, 19, 25] which are; Bias (B), Relative 
Bias (RB), Root Mean Square Error (RMSE) and 
Correlation Coefficient (CC), shown in Table 3. B 
represents the average value of difference between rain 
gauge rainfall values and SPEs. B can be positive or 
negative, if B is positive it represents overestimation and 
if it is negative it indicates underestimation. RB shows 
the systematic error present in SPEs. RB also shows 
positive and negative values, depicting overestimation 
and underestimation accordingly. RMSE is the most 
commonly applied method and gives absolute value of 
average error and is sensitive to larger values of error 
[5, 29]. CC is the agreement between the rain gauge 
values and SPEs.  
Further, there are some statistical parameters which 
were assessed for consistency and categorial 
authentication of datasets i.e. Probability of Detection 
(POD), False Alarm Ratio (FAR) and Critical Success 
Index (CSI). POD is the rate of hit values i.e. the fraction 
of accurately sensed rainfall events and ranges from 
zero to 1. FAR states the rainfall values which were 
incorrectly detected. Lastly, CSI is the segment of 
precipitation events appropriately perceived by GSMaP. 
Statistical parameters with their equations and best 
values are cataloged in the Table 3. 
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Table 3: Statistical Parameters used in the Comparison and Evaluation. 

Statistical Parameters Equations Best Values 

Bias/Mean Error (B/ME) B = 
�2 ∑ ��4 − 54
246�  0 

Relative/Percent Bias (RB/PB) 78 = ∑ ��4 − 54
246�∑ 54246�  9 100% 0 

Root Mean Square Error (RMSE) 7;�< = =1> ?��4 − 54
@2
46�

 0 

Correlation Coefficient (CC) 
AA = ∑ B54 − 5C��4 − �
246�

D∑ �54 − 5
@246� D∑ ��4 − �
@246�
 

1 

Probability of Detection (POD) EFG = HH + A 1 

False Alarm Ratio (FAR) JH7 = 8H + 8 0 

Critical Success Index (CSI) A�� = HH + 8 + A 1 

Where, n is the quantity of rain gauge or GSMaP 
values; Si is the satellite-built estimations and Gi is rain 
gauge-built amounts. A is “hit” i.e. accurately measured 
rainfall events by GSMaP in comparison with rain 
gauge. B is “false alarm” i.e. when no rainfall is 
happened actually, but GSMaP estimates the rainfall. C 
is “miss” i.e. when rainfall occurs but GSMaP show zero 
value of rainfall [28]. 

F. Bias Correction of GSMaP Precipitation Product 
The precise simulations for flash flood are possible if we 
are using corrected satellites estimates and matching 
them with simulation results of rain gauge precipitation 
values [36]. Therefore, it was examined in hydrological 
model HEC-HMS that whether the corrected GSMaP 
rainfall product, along with gauge estimates, is giving 
improved flood simulations or not. The GSMaP data 
was corrected by means of simple multiplicative bias 
correction factor because of the presence of scarce 
system of rain gauge stations [31]. In a study conducted 
by [32] additive and multiplicative error removal 
techniques were devised, and proposed the practice of 
multiplicative bias correction factor for SPEs present in 
the shape of daily rainfall information. The bias 
correction was performed by employing the monthly-
based bias rectification factor for the correction of hourly 
rainfall data, which was then converted to daily 
precipitation data [25]. The equation for multiplicative 
bias factor is given below; 8KLM ANOOPQRKN> JLQRNO �8J
 = S�T�U VWUX4Y4Z�Z4[2 �S\
S�]�V VWUX4Y4Z�Z4[2 ��\
   (5) 5�;LE�[WWUXZU^B�4_`aaC = 8KLM ANOOPQRKN> JLQRNO �8J
 × 5�;LE EOPQKbbKRLRKN>��4
                                           (6) 
The bias correction was done very carefully by 
categorizing the incorrect GSMaP rainfall data into 
different ranges, and the values where the error was 
more than 50% a factor of 2 was utilized for its bias 
correction [25]. In this way, most of the data points 
reached nearer to 45° reference line in scatter plot. For 
the bigger rainfall values more deviation from the 
reference line was detected. 

G. Calibration and Validation of HEC-HMS 
Calibration of HEC-HMS model was executed in order 
to acquire the peak discharge and the time of that peak 
discharge both manually and by using software. The 
Shuffled Complex Evaluation (SCE) algorithm was used 
for the calibration of hydrological model [25]. However, 
mainly the volume of discharge was simulated in this 
research. Therefore, the model calibration was attained 

by taking into account the volume of simulated 
discharge. Initially software-based calibration was done 
by considering the peak flow months (July, August and 
September) for year 2014 to 2016, which was then 
compared with manual calibration. The model’s 
sensitivity was improved by applying SCE algorithm 
again and again. The model functioning was evaluated 
by the parameters CC, RMSE, B and RB respectively.  
The validation of model was carried out by taking into 
account the same indices as that used for calibration but 
different time was chosen i.e. April, May and June 2014 
to 2016. The detailed discussion on the performance of 
HEC-HMS model is given in results and discussion 
section.   

III. RESULTS AND DISCUSSION 

A. Point Precipitation Comparison 
The comparison for point precipitations of gauge and 
GSMaP products was constructed expansively, by 
taking all the gauge stations into account one after 
another and then considering the entire study area 
under examination. The statistical parameters were 
evaluated and analyzed broadly, before and after 
applying the bias correction technique on GSMaP 
dataset. The evaluated parameters were B, RB, RMSE 
and CC. The categorial authentication indices were 
determined only for biased GSMaP products in 
comparison with gauge estimates. The detailed results 
and discussions are given in below sections. The 
statistical parameters and categorial authentication 
factors are listed in Table 4, 5 and Fig. 8. 
Before the operation of multiplicative bias removal factor 
for Faisalabad station, the two concerned datasets were 
indicating the B value of 0.74 which is showing 
overestimation i.e. GSMaP overestimated the rainfall as 
compared to Gauge, RB value of 14.95% which is also 
an overestimation signal, RMSE of 78.64 which was 
highest among all stations under study area, the bigger 
value is also representing the sensitivity of RMSE to 
larger errors [28]. CC came to be 0.20 which shows very 
weak connection between gauge and GSMaP datasets. 
However, the POD was 0.73 which is acceptable but not 
upright, FAR was 0.70 which illustrates that there were 
many events for which GSMaP estimated some rainfall 
value but actually there wasn’t any precipitation.  
CSI value was spotted 0.27 i.e. out of 1 part only 0.27 
was the accurately assessed data (Table 4 and  5). 8KLM JLQRNO =  S\�\                                                         (7) �4_�[WW = 8J × �4                                                         (8) 



Abdullah
   
et al.,               International Journal on Emerging Technologies   11(5): 545-557(2020)            550 

 

Fig. 3. Linear Scatter Plots for Daily Point Precipitations (a) For Faisalabad station involving Gauge and GSMaP 
products (b) For Faisalabad station involving Gauge and Corrected GSMaP product (c) For Lahore station involving 

Gauge and GSMaP products (d) For Lahore station involving Gauge and Corrected GSMaP product. 

Later, when GSMaP was rectified through bias 
correction procedure (Eqns. 7 and 8), B value reduced 
from 0.74 to 0.11, RB shrunk from 14.95% to 2.23%, 
RMSE lowered from 78.64 to 1.76 and CC improved 
from 0.20 to 0.98 changing the relationship between 
products from weak to strong [34]. The bias correction 
mechanism showed much improvement in GSMaP 
product (Fig. 8).  

Consequently, this improved the flash flood simulation 
results [25]. The scatter plots before and after the 
implementation of bias removal method are clearly 
representing the behavior of data before and the 
correction. The improvement in the linear regression 
can obviously be perceived in given plots (Fig. 3a and 
3b). 

 

Fig. 4. Linear Scatter Plots for Daily Point Precipitations (a) For Multan station involving Gauge and GSMaP products 
(b) For Multan station involving Gauge and Corrected GSMaP product (c) For Gujranwala station involving Gauge 

and GSMaP products (d) For Gujranwala station involving Gauge and Corrected GSMaP product. 
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For Lahore station as evident from Fig. 3b and 3c, 
initially B, RB, RMSE and CC were -2.20, -30.93%, 
40.88 and 0.46 respectively (Table 4). The value of B 
and RB are negative in this case, which confirms 
underestimation of rainfall magnitude by GSMaP as 
compared to rain gauge. RMSE is 40.88 which is quite 
bigger value because of large errors in the data, but 
lesser than that of Faisalabad station. CC is 0.46 which 
indicates that almost half of the gauge and GSMaP data 
is accurately correlated for this station. Remaining 
parameters POD, FAR and CSI were 0.38, 0.48 and 
0.28 (Fig. 8). 
The POD is low as compared to Faisalabad station, 
which signifies that only 38% rain events were 

accurately sensed in this case. FAR is quite elevated 
which is also not fine, as it means that almost half of the 
times GSMaP measured rainfall when actually there 
was not any rainfall there. And lastly, CSI is almost 
same like that of Faisalabad station. These statistics 
were improved after the bias correction was carried on 
i.e. B, RB, RMSE and CC changed to 0.01, 0.19%, 1.11 
and 0.99 respectively. The correlation between the 
gauge and corrected GSMaP got pretty solid, making 
the flood modelling more accurate and reliable. The bias 
correction of GSMaP rendered it to be suitable for 
hydrological modelling, which is very evident from the 
scatter plots in Fig. 3c and d. 

 

Fig. 5. Linear Scatter Plots for Daily Point Precipitations (a) For Toba Tek Singh station involving Gauge and GSMaP 
products (b) For Toba Tek Singh station involving Gauge and Corrected GSMaP product (c) For Sahiwal station 
involving Gauge and GSMaP products (d) For Sahiwal station involving Gauge and Corrected GSMaP product. 

In case of Multan station, the indices of B, RB, RMSE 
and CC developed from 0.68 to -0.01, 21.29% to -
0.24%, 61.48 to 0.01 and 0.60 to 0.99 respectively 
(Table 4 and 5, Fig. 8). Here if we notice the 
development in the GSMaP data, the B and RB have 
become almost negligible. RMSE was second highest in 
this case as compared to other stations, which is also 
reduced to almost zero. Fig. 4a and 4b are showing the 
behavior of data related to Multan station. This station’s 
data was having a highest value of CC with GSMaP as 
compared to other station, which is also further 
improved by bias correction.  Moreover, the indices 
associated to categorial authentication i.e. POD, FAR 
and CSI were sensed 0.64, 0.78 and 0.19 respectively 
(Table 4). The improvement in the GSMaP product for 
Multan station can be analyzed from above plots. The 
bias removal ultimately improved the results of flash 
flood modelling in HEC-HMS. 

For Gujranwala gauge station, when the statistical 
analysis was done before the bias correction the 
statistical indices i.e. B, RB, RMSE and CC came to be 
2.15, 31.49%, 40.58 and 0.18 respectively (Figg. 8). The 
values of B and RB are positive in this scenario, 
indicating the overestimation by GSMaP. RMSE is also 
very high as the large errors are also present in this 
case. The two datasets are very weakly correlated. If 
the GSMaP is used for flood modeling with these 
uncertainties present in it, it will generate very faulty 
results. The indices POD, FAR and CSI were 0.70, 0.74 
and 0.23 correspondingly (Table 4). When the 
multiplicative bias correction factor was applied, the 
better values of statistical indices were obtained i.e. B 
as -0.05, RB as -0.73%, RMSE as 0.94 and CC as 0.99 
(Figure 8). This is how the corrected GSMaP product 
can give us far better results of flash flood in the study 
area. 
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The parameters B, RB, RMSE and CC, in case of TT 
Singh station, were 1.39, 31.10%, 22.20 and 0.25 
respectively (Fig. 8). B and RB being positively high 
representing overvalued rainfall by GSMaP. RMSE is 
though relatively low but still not satisfactory. CC is 0.25 
which also not reasonable. These parameters are 
undoubtedly endorsing the improvement in GSMaP 
dataset for this station too. Categorial validation 

indicators i.e. POD, FAR and CSI stood 0.69, 0.73 and 
0.24 respectively, demonstrating the necessity of bias 
correction of GSMaP dataset (Fig. 5a and 5b). Improved 
B, RB, RMSE and CC were achieved as 0.12, 2.76, 
1.97 and 0.99 respectively, rendering the GSMaP 
product reliable for flash flood modelling (Table 4 and 
Table 5). 

Table 4: Statistical categorial parameters before the implementation of bias correction for various scenarios. 

S.No. 
Statistical 

Parameters 
Faisalabad 

Multan 

 

Lahore 

 

Gujranwala 

 

TT 

Singh 

Sahiwal 

 

Okara 

 

Whole 

Study 

Area 

Average 

Basin 

Precipitation 

1. CC 0.20 0.60 0.46 0.18 0.25 0.13 0.11 0.20 0.31 

2. B 0.74 0.68 -2.20 2.15 1.39 2.52 1.79 0.90 0.21 

3. RB 14.95 21.29 -30.93 31.49 31.1 61.49 31.61 16.75 6.30 

4. RMSE 78.64 61.48 40.88 40.58 22.2 38.78 27.77 39.95 4.95 

5. POD 0.73 0.64 0.38 0.70 0.69 0.82 0.76 0.62 0.77 

7. FAR 0.70 0.78 0.48 0.74 0.73 0.76 0.77 0.72 0.57 

8. CSI 0.27 0.19 0.28 0.23 0.24 0.23 0.21 0.24 0.38 

Table 5: Statistical categorial parameters after the implementation of bias correction for various scenarios. 

S.No. 
Statistical 

Parameters 
Faisalabad 

Multan 

 

Lahore 

 

Gujranwala 

 

TT 

Singh 

Sahiwal 

 

Okara 

 

Whole 

Study 

Area 

Average 

Basin 

Precipitation 

1 CC 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 

2 B 0.11 -0.01 0.01 -0.05 0.12 0.06 0.08 0.04 0.01 

3 RB 2.23 -0.24 0.19 -0.73 2.76 1.55 1.49 0.78 0.31 

4 RMSE 1.76 0.01 1.11 0.94 1.97 0.98 1.31 1.87 0.25 

  

Fig. 6. Linear Scatter Plots for Daily Point Precipitations (a) For Okara station involving Gauge and GSMaP products 
(b) For Okara station involving Gauge and Corrected GSMaP product (c) For entire study area involving Gauge and 

GSMaP products (d) For entire study area involving Gauge and Corrected GSMaP product. 

Statistical analysis prior the implementation of bias 
correction operation delivered the values of indices B, 
RB, RMSE and CC as 2.52, 61.49%, 38.78 and 0.13 
respectively for Sahiwal station (Fig. 8). Both B and RB 
are positive indicating the overrating of rainfall by 
GSMaP. Moreover, RB in this case highest as 
compared to other stations covering the study area. 
RMSE is relatively low as compared to other 
observatories, but needs rectification. POD, FAR and 
CSI were 0.82, 0.76 and 0.23 correspondingly (Table 4 

and 5). Multiplicative bias correction procedure 
dispensed the upgraded indices B, RB, RMSE and CC 
as 0.06, 1.55%, 0.98 and 0.99 (Fig. 5c and 5d), 
confirming the reliable productivity of flash flood 
modelling in the hydrologic model (Fig. 9). 
Similar to other gauge stations, covering the area of 
interest, the GSMaP precipitation product for Okara also 
station contains plenty of uncertainties. The analysis of 
statistical indicators yielded the values of B, RB, RMSE 
and CC as 1.79, 31.61%, 27.77 and 0.11 respectively 
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(Fig. 8). The statistical indicators are plainly illustrating 
the crudeness of GSMaP dataset in this case. The 
indices POD, FAR and CSI were 0.76, 0.77 and 0.21 
respectively (Table 4). It has been observed that FAR is 
usually high for all stations. CSI is also low in this case. 
The satellite-built dataset needs ultimate refinement, if it 
is to be used further in hydrological investigations. 
When bias eradication was implemented, the significant 
amendment in the statistical pointers was realized i.e. B, 
RB, RMSE and CC were developed to 0.08, 1.49%, 
1.31 and 0.99 correspondingly (Fig. 6a and 6b). In this 
way the station wise point precipitation for each gauge 
station was bias corrected, so that the analysis at 
temporal and spatial scales can be established 
excellently.  
For the extraction of more dependable results in the 
form of statistical indicators, the point precipitations of 
both gauge and GSMaP for complete study area was 
utilized. The statistical analysis for point precipitation 
expanded in that way. The parameters B, RB, RMSE 
and CC were obtained as 0.90, 16.75%, 39.95 and 0.20 

respectively, similar to results which [19] achieved for 
IMERG. The parameters are undoubtedly demonstrating 
the rawness of GSMaP dataset. While on the other 
hand the parameters POD, FAR and CSI were 0.62, 
0.72 and 0.24 correspondingly (Fig. 8). These results 
also showed agreement with study conducted by [28]. 
Though the results are demanding the rectification of 
GSMaP product, but we can say that these statistical 
indicators are more dependable as compared those for 
each station. When the same multiplicative bias 
correction factor was implemented in this scenario, the 
satellite-built rainfall products showed much 
improvement. The parameters B, RB, RMSE and CC 
improved to 0.04, 0.78%, 1.87 and 0.99 respectively 
(Figure 6c and 6d). The improvement in SPEs is 
evidently allowing the use of GSMaP dataset for 
hydrological modelling along with gauge datasets. 
Figure 6e is showing the mean annual rainfall of satellite 
product at various gauge stations and also for average 
basin precipitation. 

 

Fig. 6 (e) Mean Annual Gauge and GSMaP Rainfalls for all Stations of the Study Area. 

In the coming section, the comparison between gauge 
and GSMaP datasets on spatial scale is also 
comprehensively discussed in detailed. 

B. Comparison for Average Daily Basin Precipitation 
In this section, the average daily basin precipitation, 
estimated by means of Thiessen Polygons Algorithm in 
ArcGIS, was compared and bias corrected. The bias 
correction for average basin rainfall is quite essential, as 
the flash flood modelling was actually performed using 
average basin precipitation. The values of statistical 
factors B, RB, RMSE and CC were 0.21, 6.30%, 4.95 
and 0.31 respectively (Fig. 8), confirmed by [19] at 
regional scale for IMERG. These B, RB and RMSE are 
lowest in case of average precipitation comparison, as 
compared to point precipitations. This shows that the 
efficiency of GSMaP is quite better in measuring 
average basin rainfall as compared to point rainfall. The 
CC value is 0.31 which shows the satellite dataset still 

needs bias correction. The categorial confirmation 
indices POD, FAR and CSI were 0.77, 0.57 and 0.38 
respectively. These indices are also batter in this 
scenario as compared to point precipitation case of 
each station. However, the bias correction procedure 
rendered, the GSMaP based average basin rainfall, 
advantageous for flash flood estimation in HEC-HMS, 
along with gauge based average basin precipitation. 
The adjusted GSMaP dataset yielded the indices B, RB, 
RMSE and CC as 0.01, 0.31, 0.25 and 0.99 respectively 
(Fig. 7a and 7b). After bias correction, the GSMaP 
based average basin rainfall was used in HEC-HMS, 
and the results were very close to gauge-based flash 
flood values. 
The functioning of HEC-HMS model for gauge, GSMaP 
and Corrected GSMaP products are discussed in detail 
in coming section. 
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Fig. 7. Linear Scatter Plots for Average Basin Precipitations (a) Involving Gauge and GSMaP Products and (b) 
Involving Gauge and Corrected GSMaP Products. 

 

 

Fig. 8. Graphical representation of statistical parameters (a) Correlation Values for Various Scenarios Before and 
After the Bias Removal (b) RMSE Values for Various Scenarios Before and After the Bias Removal (c) Bias (B) 

Values for Various Scenarios Before and After the Bias Removal (d) Relative Bias (RB) Values for Various Scenarios 
Before and After the Bias Removal (e) POD Values for Various Scenarios Before the Bias Removal (f) FAR Values 

for Various Scenarios Before the Bias Removal (g) CSI Values for Various Scenarios Before the Bias Removal. 
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C. Modeling of Flash Floods over Ravi River Basin 
Fig. 9 (a) is showing the flash floods graph, when the 
average basin rainfall by gauge dataset was used. The 
results from the model showed a peak discharge of 
25695.6 m

3
/s generated on September 06, 2014. 

Similarly, the Fig. 9b is representing the flash floods 
graph for GSMaP based average basin precipitation, in 
which the satellite-based precipitation was used for 
hydrological modeling. The results from HEC-HMS 
delivered the peak discharge of 24110 m

3
/s on March 

30, 2015. The model results for the two datasets are 
evidently showing a huge difference between the two 
products. 

 

Fig. 9 (a) Flash Floods Graph for Gauge Dataset 
Generated by HEC-HMS. 

 

Fig. 9 (b) Flash Floods Graph for GSMaP Dataset 
Generated by HEC-HMS. 

When the corrected average basin rainfall was used in 
the model the results showed a major improvement, Fig. 
9c is clearly demonstrating the improvement. The Fig. 
9c is depicting the flash floods modeling results in the 
form of a graph, in which the peak discharge was 
yielded as 26765.7 m

3
/s on September 05, 2014. Still, 

there is a bit difference between the values of peak 
discharge and date of occurrence, however, this 
difference can be neglected based on the improvement 
exhibited by bias correction model in GSMaP product. 
The GSMaP dataset was giving the peak discharge on 
March 30, 2015, which totally non-realistic. The gauge 
and corrected GSMaP are much closer in this scenario. 
When scatter plots were extracted (Fig. 9d and 9e), it 
became clear that firstly there were many differences 
between the flood’s values of two products. Moreover, 
the corrected GSMaP product showed a significant 
improvement in the results. The statistical analysis 
showed that small difference in rainfall values of Gauge 
and GSMaP datasets delivered a bigger difference in 

flood’s values. The B value was seen as 100.21, RB 
value as 9.83%, RMSE as 2320.10 and CC was 0.42 in 
flood values. The results are depicting major 
inaccuracies. The bias corrected GSMaP product 
improved these parameters meaningfully (Fig. 9e).

 

Fig. 9 (c) Flash Floods Graph for Corrected GSMaP 
Dataset Generated by HEC-HMS. 

There are possibilities for uncertainties in model results 
because of bias correction technique and also because 
rain gauges sometimes show underestimation and 
overestimation as compared to satellite. There can be 
many reasons for error in rain gauges data like wind 
influences, losses due to wetting, effect of evaporation 
and splash [25]. 

 

Fig. 9 (d) Flash Floods Comparison between Gauge 
and GSMaP (e) Flash Floods Comparison between 

Gauge and Corrected GSMaP. 

IV. CONCLUSION 

The basin of Ravi has a very weak network of rain 
gauges. This issue excels the importance of satellite-
built rainfall products, to be used extensively instead of 
gauge products for different hydrological investigations 
like flash flood modeling etc. The primary purpose of 
this research was to assess the SPEs and make them 
useful for flash flood studies by applying bias correction 
procedure on it. A multiplicative bias correction 
approach was devised to adjust the GSMaP product to 
make them beneficial. 
The investigations directed us to the conclusion that the 
GSMaP, in our case, mostly overestimates the rainfall in 
comparison with rain gauge, as a function of rainfall 
intensity and season of the year. It also became evident 
that in case of Lahore station, the GSMaP 
underestimated the mean annual rainfall, which may be 
due to presence of high rainfall intensities and variability 
of climate as compared to other stations. It was also 
found that bigger bias is observed because of the heavy 
intensity rainfall. This can be said as the effect of 
topography. 
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Results of bias correction of rainfalls using multiplicative 
bias correction factor showed better match with ground 
based observed rainfalls. This was proved with the 
improved values of statistical indices.   
However, if there is an error in rainfall, the error it also 
yields in flash floods. Therefore, the results from HEC-
HMS are clearly demonstrating that the peak discharges 
of Gauge and GSMaP were very much different and the 
month of peak was also different, which were corrected 
by the help of bias correction procedure. If the errors are 
taken into account, the GSMaP product are very much 
serviceable than gauge stations which are very less in 
number. 
The results can be more refined, if hourly or three hourly 
rainfall estimates are used for bias correction of SPEs 
over Ravi Basin, as the removal of error at smaller scale 
will enhance the quality of larger scale SPEs. Moreover, 
the gauge products are not always reliable, as they may 
also contain error due to many reasons discussed 
earlier. It would be better if some third source, like radar 
product, is also considered for intercomparison. 
In this study only SPEs from GSMaP were analyzed, 
bias corrected and discussed in comparison with gauge 
products. So, to achieve more accurate and beneficial 
SPEs, other satellite-built products should also be 
studied likewise for Ravi Basin. 

V. FUTURE SCOPE 

This study will enable the researchers to get familiar 
with the possible bias in GSMaP and the reasons 
related it. It will help in getting correct estimates of SPEs 
for their use in hydrological purposes. This will also give 
them idea about the presence of error in gauge-based 
products also. 
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