
Saini and Sharma 377

International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 377-381(2017)
(Published by Research Trend, Website: www.researchtrend.net)

ISSN No. (Print) : 0975-8364
ISSN No. (Online) : 2249-3255

An Analysis of Compiler Design in Context of Lexical Analyzer
Praveen Saini and Renu Sharma

Department of Computer Science & Engineering,
Amrapali Institute of Technology& Sciences, Haldwani (U.K.)

ABSTRACT: In order to reduce the complexity of designing and building computers, nearly all of these are
made to execute relatively simple commands. A program for a computer must be built by combining these
very simple commands into a program what is called machine language. Since this is a tedious and error
prone process most programming is, instead, done using a high-level programming language. This language
can be very different from the machine language that the computer can execute, so some means of bridging
the gap is required. This is where the compiler comes in. A compiler translates a program written in a high-
level programming language into the low-level machine language that is required by computers. On the other
hand, programs that are written in a high-level language and automatically translated to machine language
may run somewhat slower than programs that are hand-coded in machine language. Hence, some time-
critical programs are still written partly in machine language. A good compiler will, however, be able to get
very close to the speed of hand-written machine code when translating well structured programs. During this
process, the compiler will also attempt to spot and report obvious programmer mistakes. A typical way of
doing this is to split the compilation into several phases with well-defined interfaces. Conceptually, these
phases operate in sequence. It is common to let each phase be handled by a separate module. We are
presenting a review; of working of the very first and important phase of the compiler known as lexical
analyzer. The lexical analysis programs written with Lex. Lex source is a table of regular expressions and
corresponding program fragments. The table is translated to a program which reads an input stream,
copying it to an output stream and partitioning the input into strings which match the given expressions. As
each such string is recognized the corresponding program fragment is executed. The recognition of the
expressions is performed by a deterministic finite automaton generated by Lex. The program fragments
written by the user are executed in the order in which the corresponding regular expressions occur in the
input stream. The final outcome of this paper is to present working of lexical analyzer in a simplest way to
provide depth knowledge about lexical analyzer phase which is very crucial phase of the compiler design.

Index Terms- Lex, Yacc Parser, Parser-Lexer,

I. INTRODUCTION

A compiler is system software that converts a high-
level programming language program into a target
language equivalent to low-level (machine) language
program. It validates the input program and shows the
error message or warnings if there is any. Obviously it
attempts to mark and detail the mistakes done by the
programmer [1]. Many of the techniques used to
construct a compiler are useful in a wide variety of
applications involving symbolic data. In particular,
every man-machine interface is a form of programming
language and the handling of input involves these
techniques.

Fig. 1. Basic diagram of compiler.

et

www.researchtrend.net

Saini and Sharma 378

The term compilation denotes the conversion of an
algorithm expressed in a human-oriented source
language to an equivalent algorithm expressed in a
hardware-oriented target language. The very basic
diagram for compiler is shown in figure 1.

II. PHASES OF GENERAL COMPILER

The compiler is made up of different modules or
phases. Starting with token recognition, it runs through
generation of context free grammar, parsing sequence,
checking acceptability, machine independence
intermediate code generation to finally target code
generation state. These act as a basis for
communication interface between user and processor
[1, 3]. The first phase of the compiler is lexical
analysis. The word “lexical” in the traditional sense
means “pertaining to words”. In terms of programming
languages, words are objects like variable names,
numbers, keywords etc. Such words are traditionally
called tokens. The main phases of a compiler include
and undergo through Lexical Analysis, Syntax
Analysis, Semantic Analysis, Intermediate Code
Generation, Code Optimization, and Target Code
Generation.
The various phases of the compiler is shown in figure
2.

Fig. 2. Phases of compiler.

III. WORKING PRINCIPLE OF LEXICAL
ANALYZER

A lexical analyzer or lexer for short, will as its input
take a string of individual letters and divide this string
into tokens. Additionally, it will filter out whatever
separates the tokens (the so-called white-space), i.e.,
lay-out characters (spaces, newlines etc.) and
comments. The main purpose of lexical analysis is to
make life easier for the subsequent syntax analysis
phase. Lex and yacc were both developed at Bell.T.
Laboratories in the 1970s. Yaccwas the first of the two,
developed by Stephen C. Johnson. Lex was designed
by Mike Lesk and Eric Schmidt to work with yacc.
Both lex andyacc have been standard UNIX utilities
since 7th Edition UNIX.
Lex takes raw input, which is a stream of characters
and converts it into a stream of tokens, which are
logical units, each representing one or more characters
that belong together."
Typically,
1. Each keyword is a token, e.g, then, begin, integer.
2. Each identifier is a token, e.g., a, zap.
3. Each constant is a token, e.g., 123, 123.45, 1.2E3.
4. Each sign is a token, e.g., (, <, <=, +.

A. Approaches to Building Lexical Analyzers
The lexical analyzer is the only phase that processes
input character by character, so speed is critical. Either
write it yourself; control your own input buffering, or
use a tool that takes speculations of tokens, often in the
regular expression notation, and produces for you a
table-driven LA.
Lexical Analysis group the stream of refined input
characters into tokens. Figure 3 describes this fact.

Fig. 3. Phases in Lexical Analysis.

A lexer (Lexical Analysis) has to distinguish between
several different types of tokens, e.g.
numbers, variables and keywords. A lexer does not
check if its entire input is included in the languages
defined by the regular expressions. Instead, it has to cut
the input into pieces (tokens), each of which is

Saini and Sharma 379

included in one of the languages. If there are several
ways to split the input into legal tokens, the lexer has to
decide which of these it should use.
The simplest approach would be to generate a DFA for
each token definition and apply the DFAs one at a time
to the input. This can, however, be quite slow, so we
will instead from the set of token definitions generate a
single DFA that tests for
all the tokens simultaneously. This is not difficult to
do: If the tokens are defined by regular expressions r1,
r2. . . rn, then the regular expression r1| r2| . . .| rn
describes the union of the languages r1; r2; : : : ; rn and
the DFA constructed from this combined regular
expression will scan for all token types at the same
time. However, we also wish to distinguish between
different token types, so we must be able to know
which of the many tokens was recognized by the DFA
[4].

B. Splitting the input stream
As mentioned, the lexer must cut the input into tokens.
This may be done in several ways. For example, the
string if17 can be split in many different ways:
- As one token, which is the variable name if17?
-As the variable name if1 followed by the number 7.
-As the keyword if followed by the number 17.
-As the keyword if followed by the numbers 1 & 7.
-As the variable name i followed by the variable

name f17.
-And several more

Fig. 4. Combined NFA for several tokens.

A common convention is that it is the longest prefix of
the input that matches any token which will be chosen.
Hence, the first of the above possible splitting of if17
will be chosen. Note that the principle of the longest
match takes precedence over
the order of definition of tokens, so even though the
string starts with the keyword if, which has higher
priority than variable names, the variable name is
chosen because it is longer.

Fig. 5. Combine DFA for several tokens.

To illustrate the precedence rule, figure 4 shows an
NFA made by combining NFAs for variable names, the
keyword if, integers and floats. When a transition
is labeled by a set of characters, it is a shorthand for a
set of transitions each labeled by a single character.
The accepting states are labeled with token names
as described above. The corresponding minimized
DFA is shown in figure 5. Note that state G is a
combination of states 9 and 12 from the NFA, so it can
accept both NUM and FLOAT, but since integers take
priority over floats, we have marked G
with NUM only.
Let us discuss this with the help of an example,
suppose the pseudo code:
if (x*y<10)
{

Z = x;
}
Let’s consider the first statement of the above code.
The corresponding token stream of pairs <type, value>

Saini and Sharma 380

is shown in Figure 6. Lex and input systems together
constitute layers of Lexical Analyzer [5].

Fig. 6. Output Stage of Lexical Analyzer.

Sample program for lex
%%

int k;
-?[0-9]+ {

k = atoi(yytext);
printf("%d",

k%7 == 0 ? k+3 : k);
}

?[0-9.]+ ECHO;
A-Za-z][A-Za-z0-9]+ ECHO;

The rule [0-9]+ recognizes strings of digits; atoi
converts the digits to binary and stores the result in k.
The operator % (remainder) is used to check whether k
is divisible by 7; if it is, it is incremented by 3 as it is
written out. It may be objected that this program will
alter such input items as 49.63 or X7. Furthermore, it
increments the absolute value of all negative numbers
divisible by 7.

C. Parser-Lexer Communication
When you use a lex scanner and a yacc parser together,
the parser is the higher level routine. It calls the lexer
yylex() whenever it needs a token from the input. The
lexer then scans through the input recognizing tokens.

As soon as it finds a token of interest to the parser, it
returns to the parser, returning the token's code as the
value of yyfex(). Not all tokens are of interest to the
parser-in most programming languages the parser
doesn't want to hear about comments and white space.
The lexer and the parser have to agree what the token
codes are.

D. Left Context Sensitivity
Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For
example, a compiler preprocessor might distinguish
preprocessor statements and analyze them differently
from ordinary statements. This requires sensitivity to
prior context, and there are several ways of handling
such problems. The ^ operator, for example, is a prior
context operator, recognizing immediately preceding
left context just as $ recognizes immediately following
right context. Adjacent left context could be extended,
to produce a facility similar to that for adjacent right
context, but it is unlikely to be as useful, since often
the relevant left context appeared some time earlier,
such as at the beginning of a line. Consider the
following problem: copy the input to the output,
changing the word magic to first on every line which
began with the letter a, changing magic to second on
every line which began with the letter b, and changing
magic to third on every line which began with the letter
c. All other words and all other lines are left
unchanged.
These rules are so simple that the easiest way to do this
job is with a flag:
int flag;

%%
^a {flag = 'a'; ECHO;}
^b {flag = 'b'; ECHO;}
^c {flag = 'c'; ECHO;}
\n {flag = 0 ; ECHO;}
magic {
switch (flag)
{

case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;

}
}

E. Error Handling
The error handling in the Lexer is basically concerned
with the errors in the compiler or its environment,
design errors in the program being compiled, an
incomplete understanding of the source language,
transcription errors, incorrect data, etc. The tasks of the
error handling process are to detect each error, report it
to the user, and possibly make some repair to allow

Saini and Sharma 381

processing to continue. It cannot generally determine
the cause of the error, but can only diagnose the visible
symptoms. Similarly, any repair cannot be considered a
correction (in the sense that it carries out the user's
intent); it merely neutralizes the symptom so that
processing may continue. The purpose of error
handling is to aid the programmer by highlighting
inconsistencies. It has a low frequency in comparison
with other compiler tasks, and hence the time required
to complete it is largely irrelevant, but it cannot be
regarded as an 'add-on' feature of a compiler. We
distinguish between the actual error and its symptoms.
The diagnosis always involves some uncertainty, so we
may choose simply to report the symptoms with no
further attempt at diagnosis. Thus the word 'error' is
often used when 'symptom' would be more appropriate.
A simple example of the symptom/error distinction is
the use of an undeclared identified LAX. The use is
only a symptom, and could have arisen in several
ways:
 The identifier was misspelled on this use.
 The declaration was misspelled or omitted.
 The syntactic structure has been corrupted,

causing this use to fall outside of the scope of
the declaration.

Most compilers simply report the symptom and let the
user perform the diagnosis. An error is detectable if
and only if it results in a symptom that violates the
definition of the language. This means that the error
handling procedure is dependent upon the language
definition, but independent of the particular source
program being analyzed. For example, the spelling
errors in an identifier will be detectable in LAX
(provided that they do not result in another declared
identifier) but not in FORTRAN, which will simply
treat the misspelling as a new implicit declaration.
We shall use the term anomaly to denote something
that appears suspicious, but that we cannot be certain is
an error. Anomalies cannot be derived mechanically
from the language definition, but require some exercise
of judgment on the part of the implementers. As
experience is gained with users of a particular
language, one can spot frequently-occurring errors and
report them as anomalies before their symptoms arise.

IV. CONCLUSION

This paper outlines a novel approach to lexical phase in
compiler construction. Furthermore, expressiveness is
barely sacrificed; the compiler can be boot strapped
provided there is enough run-time support. In spite of
the scope of data storage is limited and symbols used
are a few, the main aim has been just cleared
conception and application of efficient look up table
approach in finite states generation for lexical analysis.
The next phase of compilation is just introduced to
represent its utility, for the sake of completion and
better understanding. Further study on extending this
model with parser generation to generate language
constructs as well as error recovery in lexical analysis
is in progress.
The compiler has been used, for example, to study
advanced topics such as the implementation of first-
class continuations and register allocation.

REFERENCES

[1]. Alfred V.Aho, Ravi Sethi, Jeffery D. Ullman, Addison-
Wesley, 2007. Compilers- Principles, Techniques, and Tools.
[2]. Torben Ægidius Mogensen, May 28, 2009. Basics of
Compiler Design”, lulu, Extended Edition.
[3]. David Galles, 2005. Modern Compiler Design, Addison-
Wesley.
[4]. Torben Ægidius Mogensen, May 28, 2009. Basics of
Compiler Design”, lulu, Extended Edition
[5]. International Journal of Computer Applications (0975 –
8887) Volume 6– No.11, September 2010
[6]. William M. Waite Department of Electrical Engineering
University of Colorado Boulder, Colorado 80309USAemail:
William.Waite@colorado.edu.
[7] Aho, Alfred V. and Ullman, Jeffrey D. [1972]. The
Theory of Parsing, Translation, and Compiling. Prentice-
Hall, Englewood Cliffs.
[8] Aho, Alfred V. and Ullman, Jeffrey D. [1977]. Principles
of Compiler Design. Addision.
[9] Ross, D. T. [1967]. The AED free storage package.
Communications of the ACM, 10(8):481492.
[10] Rutishauser, H. [1952]. Automatische
Rechenplanfertigung bei Programm-gesteuerten
[11] Rechenmaschinen. Mitteilungen aus dem Institut f•ur
Angewandte Mathematik der ETHZurich, 3.
[12] Sale, Arthur H. J. [1971]. The classification of
FORTRAN statements. Computer Journal,14:1012.
[13] Sale, Arthur H. J. [1977]. Comments on 'report on the
programming language Euclid'. ACM SIGPLAN Notices,
12(4):10.
[14] Sale, Arthur H. J. [1979]. A note on scope, one-pass
compilers, and Pascal. Pascal News, 15: 6263.

mailto:Waite@colorado.edu

