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ABSTRACT: Image registration has many real life applications. Affine image registration is one of the 

commonly-used parametric models. Iterative solution methods for the underlying least squares problem 

suffer from convergence problems whenever good initial guesses are not available. Variational models are 

non-parametric deformable models that have been proposed based on least squares fitting and regularization. 

The fast iterative solution methods often require a reliable parametric (affine) method in a pre-registration 

step. In this paper, we first survey and study a class of methods suitable for providing the good initial guesses 

for the affine model and diffusion based variational model. It appears that these initialization methods, while 

useful for many cases, are not always reliable. Then we propose a regularized affine least squares approach 

that can overcome the convergence problems associated with existing methods. Combined with a cooling idea 

in a multiresolution setting, it can ensure robustness and selection of the optimal coupling parameter 
efficiently. 
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I. INTRODUCTION 

Many computer techniques have been developed in past 

which help to diagnose and predict the illness of the 

patient and help the doctor to cure the disease. In 1970s 

computerized topography (CT) was introduced in the 

field of clinical application. Other imaging modalities 

such as magnetic resonance imaging (MRI), positron 

emission topography (PET), and single photon emission 

computed topography (SPECT), functional magnetic 

resonance imaging (fMRI), came in to focus followed 
by CT scan into the surgical and radiotherapy 

applications. This type of diagnostic techniques helps 

physicians to obtain accurate and complementary 

information about a tumor or situation, which help to 

diagnose many of the diseases and cause of unhealthy 

conditions. 

In Medical treatment and surgical procedures, patients 

have to perform many series of medical imaging studies 

CT, MRI, PET before the treatment. Each imaging 

strategy alters the orientation and positioning of the 

patient, the physician check the issue of how to 
compare and analyze the images from all the 

modalities. The best strategy is image fusion that 

integrates the useful information from all the images 

into one image. All the images need to be co-registered 

into the same spatial location before they can be 

integrated and visualized. 

Function MRI analysis is a new way to learn and study 

various psychological behaviors associated with various 

physical and/or psychological stimulations like fear,  

hunger or other chemical stimuli. During the 

experiment, images are taken from a group of subjects 

to understand and explore the brain functional 

activities. All subjects are taken in Registration of 

images and it is a critical step to obtain an accurate 

composite activation map. 

Medical image registration is very important in   

clinical and medical applications. Different images 

from the different scanners are analyzed first then all 
the images need to be aligned into the same position 

where the structure of tissues can be compared. Various 

registration strategies based on manual registration, 

landmark, voxel similarity were developed to satisfy the 

increasing needs of medical applications. 

II. IMAGE REGISTRATION 

Image registration is a key enabling technology in 

medical image analysis that has benefited from 20 years 

of development. It is a process for determining the 

correspondence of features between images collected at 

different times or using different imaging modalities. 
The correspondences can be used to change the 

appearance –by rotating, translating, stretching etc. – of 

one image so it more closely resembles another so the 

pair can be directly compared, combined or analyzed. 

The most intuitive use of registration is to correct for 

different patient positions between scans. Image 

registration is not an end in itself but adds value to 

images, e.g. by allowing structural (CT, MR, 

et
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ultrasound) and functional (PET, SPECT, functional 

MRI (fMRI)) images to be viewed and analyzed in the 

same coordinate system, and facilitates new uses of 

images, e.g. to monitor and quantify disease 

progression over time in the individual or to build 

statistical models of structural variation in a population. 
In some application areas image registration is now a 

core tool; for example (i) reliable analysis of fMRIs of 

the brain requires image registration to correct for small 

amounts of subject motion during imaging; (ii) the 

widely used technique of voxel based morphometry 

makes use of image registration to bring brain images 

from tens or hundreds of subjects into a common 

coordinate system for analysis (so-called ‘‘spatial 

normalization’’); (iii) the analysis of perfusion images 

of the heart would not be possible without image 

registration to compensate for  patient respiration; and 

(iv) some of the latest MR image acquisition techniques 
incorporate image registration to correct for motion. 

Historically, image-registration has been classified as 

being ‘‘rigid’’ (where images are assumed to be of 

objects that simply need to be rotated and translated 

with respect to one another to achieve correspondence) 

or ‘‘non-rigid’’ (where either through biological 

differences or image acquisition or both, 

correspondence between structures in two images 

cannot be achieved without some localized stretching of 

the images). Much of the early work in medical image 

registration was in registering brain images of the same 
subject acquired with different modalities (e.g. MRI 

and CT or PET). For these applications a rigid body 

approximation was sufficient as there is relatively little 

change in brain shape or position within the skull over 

the relatively short periods between scans. Today rigid 

registration is often extended to include affine 

registration, which includes scale factors and shears, 

and can partially correct for calibration differences 

across scanners or gross differences in scale between 

subjects. 

 

 
Fig.1.  Schematic showing rigid and non-rigid 

registration. 

The source image is rotated, of a different size and 

contains different internal structure to the target. These 

differences are corrected by a series of steps with the 

global changes generally being determined before the 

local changes areas in more detail. Clearly most of the 

human body does not conform to a rigid or even an 
affine approximation and much of the most interesting 

and challenging work in registration today involves the 

development of non-rigid registration techniques for 

applications ranging from correcting for soft-tissue 

deformation during imaging or surgery through to 

modeling changes in neuroanatomy in the very old and 

the very young. In this paper we focus on these non-

rigid registration algorithms and their applications. 

III REGISTRATION & CORRESPONDENCE 

Image registration is about determining a spatial 

transformation – or mapping – that relates positions in 

one image, to corresponding positions in one or more 
other images. The meaning of correspondence is 

crucial; depending on the application, the user may be 

interested in structural correspondence (e.g. lining up 

the same anatomical structures before and after 

treatment to detect response), functional 

correspondence (e.g. lining up functionally equivalent 

regions of the brains of a group of subjects) or 

structural–functional correspondence (e.g. correctly 

positioning functional information on a structural 

image). A particular registration algorithm will 

determine correspondence at a particular scale, and 
even if this transformation is error-free, there will be 

errors of correspondence at finer scales. Sometimes the 

scale is set explicitly; in registration using free-form 

deformations the displacements of a regular grid of 

control-points are the parameters to be deduced and the 

initial millimeter spacing between these points defines a 

scale for the registration. In some other registration 

types the scale selection is more implicit; in the 

registration used in the statistical parametric mapping 

(SPM) package (http:// www.fil.ion.ucl.ac.uk/spm/) for 

example the number of discrete-cosine basis functions 

must be specified by the user with higher numbers 
introducing more flexibility into the registration and 

hence the ability to determine correspondences at a 

finer scale. It is worth emphasizing that increased 

flexibility comes at some cost. The most obvious 

penalty is that more parameter determination tends to 

mean more computer time is required. Rigid and affine 

registrations can typically be determined in seconds or 

minutes but most non-rigid registration algorithms 

require minutes or hours with that time being spent 

either identifying a geometric set of corresponding 

features to match directly (see below) or automatically 
determining a large number of parameters by matching  

voxel intensities directly. Another issue is that typically 
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the transformation is asymmetric: although there will be 

a vector that, at the scale of the transformation, 

describes how to displace each point in the source 

image to find the corresponding location in the target 

image, there is no guarantee that, at the same scale, 

each point in the target image can be related to a 
corresponding position in the source image (see 

Appendix 1 for a description of common terminology 

such as source and target). There may be gaps in the 

target image where correspondence is not defined at the 

selected scale. Some work has been done on symmetric 

schemes which guarantee the same result whether 

image A is matched to image B or vice versa. This may 

be more appropriate for some applications (matching 

one normal brain to another) than others (monitoring 

the growth of a lesion). Finally, there is the question of 

redundancy. If geometrical features are used to match 

images then there will be many different possible 
deformation fields which can align those features but 

which behave differently away from those features or 

may be constrained in some way (e.g. to disallow 

situations where features can be ‘‘folded’’ to improve 

the image match but in a nonphysical way). Similarly 

there will also be many possible deformation fields that 

can result in voxel intensities appearing to be well 

matched between images. With all these possibilities 

how do we distinguish between equivalent fields and 

how do we know what is ‘‘right’’ for a particular 

application? These are issues of current importance and 
are discussed in the context of validation below. 

Components of registration algorithms 
A registration algorithm can be decomposed into three 

components: 

• The similarity measure of how well two 

images match; 

• The transformation model, which specifies the 

way in which the source image can be 

changed to match the target. A number of 

numerical parameters specify a particular 

instance of the transformation; 

• The optimization process that varies the 

parameters of the transformation model to 

maximize the matching criterion. 

Similarity measures 
Registration based on patient image content can be 

divided into geometric approaches and intensity 

approaches. Geometric approaches build explicit 

models of identifiable anatomical elements in each 

image. These elements typically include functionally 

important surfaces, curves and point landmarks that can 

be matched with their counterparts in the second image. 

These correspondences define the transformation from 
one image to the other. The use of such structural 

information ensures that the mapping has biological 

validity and allows the transformation to be interpreted 

in terms of the underlying anatomy or physiology. 

Corresponding point landmarks can be used for 

registration provided landmarks can be reliably 

identified in both images. Landmarks can either be 

defined anatomically (e.g. prominences of the 
ventricular system), or geometrically by analyzing how 

voxel intensity varies across an image. When landmarks 

are identified manually, it is important to incorporate 

measures of location accuracy into the registration. 

After establishing explicit correspondences between the 

pairs of point landmarks, interpolation is used to infer 

correspondence throughout the rest of the image 

volume in a way consistent with the matched 

landmarks. Recent work has incorporated information 

about the local orientation of contours at landmark 

points to further constrain the registration. In other 

studies, linear features called ridges or crest lines are 
extracted directly from three dimensional (3D) images, 

and non-rigidly matched. Then, as above, interpolation 

extends the correspondences between lines to the rest of 

the volume. For some anatomy linear features are a 

natural way of summarizing important structure. For 

instance in the brain, a large subset of the crest lines 

correspond to gyri and sulci and in Subsol et al these 

features were extracted from different brains and 

registered to a reference to construct a crest-line atlas. 

Such atlases succinctly summarize population 

anatomical variation. As point and line matching is 
relatively fast to compute, a large number of solutions 

and potential correspondences can be explored. Other 

related applications include the registration of vascular 

images where the structures of interest are ‘‘tubes’’. 

Many non-rigid registration methods based on 3D 

geometric features use anatomical surfaces, for example 

the shape of the left ventricle. Typically, surface-based 

registration algorithms can be decomposed into three 

components: extracting boundary points of interesting 

structures in the image, matching the source and 

reference surface, and then extending the surface-based 

transformation to the full volume. There are many 
different ways to implement each of these steps. For 

example, Thompson et al extract the surfaces of the 

lateral ventricle and the cerebral cortex in a subject’s 

brain scan and in a corresponding brain atlas 

automatically. In Audette et al brain and skin surfaces 

in pre-operative MR and CT images and intra operative 

range images are extracted using the powerful level-set 

framework and registered to track intra operative brain 

deformation. Other authors have used elastic and 

boundary mapping techniques. The related task of 

tracking MR brain deformation in intra operative 
images is achieved in Ferrant et al by registering 

cortical and ventricle surfaces and using a 

biomechanical model of brain tissue to infer volumetric 
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brain deformation. A detailed survey of surface-based 

medical image registration can be found in Audette et 

al.  

Intensity-based registrations match intensity patterns 

over the whole image but do not use anatomical 

knowledge. Geometric registration uses anatomical 
information but usually sparsely distributed throughout 

the images. Combining geometric features and intensity 

features in registration should result in more robust 

methods. Hybrid algorithms are therefore of particular 

current interest, combining intensity-based and model-

based criteria to establish more accurate 

correspondences in difficult registration problems, e.g. 

using sulcal information to constrain intensity-based 

brain registration or to combine the cortical surface 

with a volumetric approach. Surfaces are also used to 

drive volumetric registration in Thompson et al to 

analyze normal and Alzheimer brains with respect to an 
anatomical image database. In Christensen et al the 

registration task is to correct for large displacement and 

deformation of pelvic organs induced when intracavity 

CT applicators are used to treat advanced cancer of the 

cervix. Anatomical landmarks are used to initialize an 

intensity driven fluid registration with both stages using 

the same model for tissue deformation. In this 

application the more robust but less flexible landmark 

registration produces a robust starting position for the 

less robust but more flexible fluid registration and the 

two steps run serially (there is further discussion of 
fluid registration in the next section). Other researchers 

have attempted true hybrid solutions where intensity 

and feature information are incorporated into a single 

similarity measure, e.g. in Russakoff et al a rigid 

registration is computed between a pre-operative spinal 

CT and an intra operative X-ray by maximizing the 

difference of mutual information based intensity 

measure and a distance between corresponding 

landmarks. As is often the case, an additional parameter 

has to be chosen empirically to appropriately weight the 

intensity and landmark parts of the similarity measure. 

A more sophisticated approach built on the same 
principles is used in PASHA (Pair And Smooth Hybrid 

Algorithm) where the similarity measure is the 

weighted sum of an intensity similarity, a term 

expressing the difference between the landmark 

correspondence and the volumetric deformation field, 

and a smoothing term. In Hellier and Barillot a 

framework for incorporating landmark constraints with 

image-based non-rigid registration is described for the 

application of inter subject brain registration where the 

constraints ensure that homologous sulci are well 

matched. 
 

 

IV TRANSFORMATION MODELS 

The transformation model defines how one image can 

be deformed to match another; it characterizes the type 

and number of possible deformations. The most well 

known example is the rigid or affine transformation that 

can be described very compactly by between 6 (3 
translations and 3 rotations) and 12 (6 + 3 scaling + 3 

shears) parameters for a whole image. These parameters 

are applied to a vector locating a point in an image to 

find its location in another image. The transformation 

model serves two purposes; first it controls how image 

features can be moved relative to one another to 

improve the image similarity and second it interpolates 

between those features where there is no useable 

information. Transformations used in non-rigid 

registration range from smooth regional variation 

described by a small number of parameters to dense 

displacement fields defined at each voxel. One of the 
most important transformations is the family of splines 

that have been used in various forms for around 15 

years. Spline-based registration algorithms use 

corresponding (‘‘control’’) points, in the source and 

target image and a spline function to define 

correspondences away from these points. The ‘‘thin-

plate’’ spline has been used extensively to investigate 

subtle morphometric variation in schizophrenia. Each 

control point belonging to a thin-plate spline has a 

global influence on the transformation in that, if its 

position is perturbed, all other points in the transformed 
image change. This can be a disadvantage because it 

limits the ability to model complex and localized 

deformations and because, as the number of control 

points increases, the computational cost associated with 

moving a single point rises steeply. By contrast, B-

splines are only defined in the vicinity of each control 

point; perturbing the position of one control point only 

affects the transformation in the neighborhood of the 

point. Because of this property, B-splines are often 

referred to as having ‘‘local support’’. B-spline based 

non-rigid registration techniques are popular due to 

their general applicability, transparency and 
computational efficiency. Their main disadvantage is 

that special measures are sometimes required to prevent 

folding of the deformation field and these measures 

become more difficult to enforce at finer resolutions. 

Such problems have not prevented these techniques 

finding widespread use. Elastic models treat the source 

image as a linear, elastic solid and deform it using 

forces derived from an image similarity measure. The 

elastic model results in an internal force that opposes 

the external image matching force. The image is 

deformed until the forces reach equilibrium. Since the 
linear elasticity assumption is only valid for small 

deformations it is hard to recover large image 
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differences with these techniques. Replacing the elastic 

model by a viscous fluid model [69] allows large and 

highly localized deformations. The higher flexibility 

increases the opportunity for misregistration, generally 

involving the growth of one region instead of a shifting 

or distorting another. According to BroNielsen and 
Gramkow another non-rigid technique, the ‘‘demons’’ 

algorithm, can be thought of as an approximation to 

fluid registration. Finite element (FE) models allow 

more principled control of localized deformations and 

have been applied particularly to the head for surgical 

scenarios. These models divide the image into cells and 

assign to these cells a local physical description of the 

anatomical structure. For instance, soft tissue can be 

labeled as elastic, bone as rigid and cerebrospinal fluid 

(CSF) as fluid. External forces such as landmark 

correspondences or voxel similarity measures are 

applied to the model, which deforms according to the 
material behavior in each cell. Such approaches tend to 

be used where there are strong biomechanical 

constraints in operation, i.e. they are appropriate for 

serial registration of images of brains undergoing some 

mechanical intervention but not appropriate for inter 

subject registration. Where registration speed is 

important some researchers have applied optical flow 

techniques that were originally developed in the 

computer vision and artificial intelligence community. 

Some adaptation has been required for medical 

applications because the ‘‘constant intensity’’ 
assumption is often (usually!) broken in serial medical 

images and optical flow methods have not been widely 

adopted.  

 

Optimization 
Optimization refers to the manner in which the 

transformation is adjusted to improve the image 

similarity. A good optimizer is one that reliably and 

quickly finds the best possible transformation. 

Choosing a good optimizer requires a good 

understanding of the registration problem, the 

constraints that can be applied and knowledge of 
numerical analysis. An in depth discussion of 

optimization is far beyond the scope of this paper. In 

non-rigid registration applications choosing or 

designing an optimizer can be difficult because the 

more non-rigid (or flexible) the transformation model 

the more parameters are generally required to describe 

it. For the optimizer this means that more time is 

required to make a parameter choice and that there is 

more chance of choosing a set of parameters, which 

result in a good image match which is nevertheless not 

the best one (the ‘‘local minima’’ problem). A more 
subtle problem is that a transformation parameter 

choice that gives a good image or feature similarity 

may not be physically meaningful. The most common 

example of this is when we have a prior belief that the 

registration of one image onto another should be 

diffeomorphic; in simple terms this means that if the 

transformation were applied to a real physical object to 

deform it then no tearing of the object would occur. The 

problem is that tearing can often result in a 
transformation that makes the images more similar 

despite it being physically invalid. Therefore in many 

situations, e.g. serial MR brain registration of a subject 

undergoing diffuse atrophy, there is a prior expectation 

that folding or tearing should not be required to secure a 

good match. One of the attractions of fluid registration 

that has been successfully used in this application is 

that the transformation model implicitly forbids tearing. 

Often, tearing is a result of correspondence problems. 

For instance, intersubject brain registration where one 

subject has a large extrinsic tumor and abdominal 

registration where fluid and gas filled spaces can appear 
and disappear between scans are examples where 

correspondence is not well defined and where tearing or 

folding may be necessary to describe the underlying 

physical transformation. Other constraints can be 

implicit in the choice of the transformation model, e.g. 

that the transformation should be consistent with the 

behaviour of a deforming elastic body. Much of the 

work of optimizers is therefore to balance the 

competing demands of finding the best set of 

correspondences subject to application-specific 

constraints. 
The most common optimizer for registering point sets is 

the Iterative Closest Point algorithm of Besl and 

McKay, which does not require all the pair-wise 

correspondences of landmarks to be pre-defined and 

which iterates towards the nearest local error minimum. 

Some more recent algorithms solve a similar problem 

with similar performance and some claimed advantages 

in robustness to local minima and convergence 

properties. Many registration algorithms are amenable 

to existing optimization schemes in that they seek to 

choose a set of parameters to maximize (or minimize) a 

function. This is a standard problem and there are 
standard ways to solve it. Fluid and elastic 

transformations that can be described in terms of a 

partial differential equation (PDE) can be obtained 

using existing numerical solvers. Which optimization 

scheme is suitable for a particular registration 

application depends on the cost function, the 

transformation, potential time-constraints, and the 

required accuracy of the registration. 

Validation 
Validation usually means showing that a registration 

algorithm applied to typical data in a given application 
consistently succeeds with a maximum (or average) 

error acceptable for the application. For geometric 

approaches a real-world error can be computed, which 
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for landmark methods expresses the distance between 

corresponding landmarks post-registration. For rigid-

registration this form of error analysis has been studied 

intensively and it has been found that an average target 

registration error for the whole volume can be estimated 

from knowledge of the landmark positions. Such an 
analysis is not generally possible for non-rigid 

techniques so although the error at landmarks can be 

established, the error in other parts of the volume is 

dependent on the transformation model and must be 

estimated using other means. In intensity-based 

approaches the registration itself, usually cannot inform 

the user of success or failure, as the image similarity 

measure is not related to real-world error in a simple 

way. For these problems, validation is usually 

performed by making additional measurements post 

registration or showing that an algorithm performs as 

desired on pairs of test images for which the 
transformation is known. One common approach is to 

identify corresponding landmarks or regions 

independently of the registration process and establish 

how well the registration brings them into alignment. In 

Schnabel et al a biomechanical model of the human 

breast is used to simulate MR images of a breast subject 

to mechanical forces as might be experienced during 

biopsy or movement during dynamic contrast-enhanced 

imaging. Pre- and post contrast images subject to 

known deformation were generated and used to validate 

a B-spline based nonrigid registration. Of course in 
many applications the true point-to-point 

correspondence can never be known and may not even 

exist (e.g. intersubject brain registration). Various kinds 

of consistency test are also used in validation; the most 

common are establishing that registration of source to 

target produces the same alignment as from target to 

source (this is commonly not the case for non-rigid 

registration) or that for three images, A, B, C, 

registration of CRA gives the same result as CRB 

compounded with BRA. It is important to carefully 

pose the registration task in application specific terms 

that make use of available information in the image and 
prior knowledge. These issues are discussed in some 

depth for brain registration problems in Crum et al. In 

most applications, careful visual inspection remains the 

first and most important validation check available for 

previously unseen data. 

Steps involved in Image Registration 
Image registration essentially consists of following 

steps as per Zitova and Flusser illustrates the process. 

• Feature detection: Salient and distinctive 

objects (closed-boundary regions, edges, 

contours, line intersections, corners, etc) in 
both reference and sensed images are detected. 

• Feature matching: The correspondence 

between the features in the reference and 

sensed image established. 

• Transform model estimation: The type and 

parameters of the so-called mapping functions, 

aligning the sensed image with the reference 
image, are estimated. 

• Image re-sampling and transformation: The 

sensed image is transformed by means of the 

mapping functions 

 

 
Fig. 2. Steps involved in Image Registration. 

V. CONCLUSION 

Rigid registration techniques have become widely 

accepted in a variety of clinical applications. In 

contrast, non-rigid registration is very much an area of 

ongoing research, and most algorithms are still in the 

stage of development and evaluation. One of the main 

reasons for the successful impact of rigid registration 
techniques is the fact that these techniques can be 

assessed and validated against a gold standard. The lack 

of a gold standard for assessing and evaluating the 

success of nonrigid registration algorithms is one of 

their most significant drawbacks. Currently, the only 

accepted method for assessing nonrigid registration is 

based on manually. 
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