
Goswami, Rajput and Arya 406

International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 406-415(2017)
 (Published by Research Trend, Website: www.researchtrend.net)

 ISSN No. (Print) : 0975-8364

 ISSN No. (Online) : 2249-3255

Parallel Programming in the .NET Framework by using wrapper
classes for a COM object

Mohit Giri Goswami, Prashant Rajput and Upasana Arya
Assistant Professor, Amrapali Institute of Technology and Sciences Haldwani (U.K.), INDIA

ABSTRACT: I have to admit that I’m not an expert in multithreading or parallel computing. However,

people often ask me about easy introductions and beginner’s samples for new features. And I have an

enormous advantage over most newbie’s in this area. I have a simple goal this time. I want to parallelize a

long-running console application and add a responsive WPF UI. By the way, I’m not going to concentrate too

much on measuring performance. I’ll try to show the most common caveats, but in most cases just seeing that

the application runs faster is good enough for me. Many personal computers and workstations have two or

four cores (that is, CPUs) that enable multiple threads to be executed simultaneously. Computers in the near

future are expected to have significantly more cores. To take advantage of the hardware of today and

tomorrow, you can parallelize your code to distribute work across multiple processors. In the past,

parallelization required low-level manipulation of threads and locks. Visual Studio 2010 and the .NET

Framework 4 enhance support for parallel programming by providing a new runtime, new class library
types, and new diagnostic tools. These features simplify parallel development so that you can write efficient,

fine-grained, and scalable parallel code in a natural idiom without having to work directly with threads or the

thread pool. The following illustration provides a high-level overview of the parallel programming

architecture in the .NET Framework 4.

I. INTRODUCTION

"With great power comes great responsibility"... As the

hardware world is booming and it’s processing power

increases, the responsibility lies with developers to

utilize such power. OK, so the comparison is lame, but

I am a fan of the Spider Man movie and was always

looking for a way to use its slogan... guess I should
keep looking :)

Seriously though, multi-core (and multi-processer)

machines are dominant these days. Soon enough, as

reported by some lead vendors, you will not be able to

find machines with less than 8 cores. As such, the

traditional way of writing serial programs will not be

able to make use of such power, by default. These

programs should be written in a way which utilizes the

power of multi-cores. Multi-threaded programming is

the way which allows developers to take advantage of

multiple threads concurrently. And while it has been

available for many years, multi-threaded programming
has often been avoided due to its complexity.

Developers had to put most of their effort in writing

clean multi-threaded code rather than focusing on the

business problem. What does multithreading have to do

with multi-cores? Can't we write multi-threaded code if

we have a single core? Yes, we can. But again, as long

as we have a single core, only one thread at a time will

work since all threads belong to that same single core...

logical enough. When your multi-threaded program
runs on a multi-core machine, threads belonging to

different cores will be able to run together and hence

your program will take advantage of the hardware

power. One final note before going on: multithreaded

programming does not differ if you have a multi-core

machine or multi-processer machine. This is a hardware

separation; underneath, your code will be working with

threads all the same.

What's Useful in the FCL:
Version 1.0 of the .NET Framework Class Library

provides extensive functionality for the following areas:

• New data types, such as GUID for working
with Global Unique Identifiers, and TimeSpan,

for working with a relative times (5 minutes

instead of 12:05 AM 1/1/2005).

et

Goswami, Rajput and Arya 407

• Environment information—OS version, environment variables, command line arguments, machine

name, user name, user domain, special folder paths, logical drives.

• Functionality for creating console (command line) applications.

• Functionality for writing Windows services.

• Registry access.

• Power events.

• Database access.

• Numerous types of collections, including sorted lists, dictionaries, and queues.

• Configuration file management.

• Operating system interaction—Processes, event logs, performance counters, services, tracing, and

debugging.

• Active Directory access.

• Advanced graphics capabilities—Drawing, gradients, images, printing.

• Access to COM+ services such as distributed transactions.

• File system interaction and IO.

• Windows Management Interface access.

• Access to message queuing.

• Low level network access—DNS lookups, IP Addresses, sockets, HTTP communication.

• Interoperability with non .NET code (known as unmanaged code).

• Reflection—Allows late binding, and inspection of types at runtime.

• Remote object access—Creating instances of remote classes and calling their methods.

• Serialization—The ability to easily import/export the data of a class as XML.

• Cryptography—Hashing, symmetric and asymmetric encryption, X509 certificates.

• Text formats—Conversions for ASCII, UTF-7, UTF-8, Unicode.

• Regular Expressions—The ability to insure that a string conforms to a certain pattern (the string looks like

a phone number, IP address, e-mail address, and so on) The ability to extract sub-strings from a string (for

example, extract all the HTML <A> tags).

• Threading—The ability to have an application do work in the background.

• Web Services.

• XML support—Superior functionality compared to MSXML.

Goswami, Rajput and Arya 408

Version 2.0 adds the following new functionality:

• Programmatic access to access control lists (ACLs).

• Data Protection API (DPAPI).

• New networking classes (Ping, network connectivity changed notification).

• Better programmatic support for certificates.

• FTP classes.

• Compression and decompression classes.

• Access to more local computer information.

• Serial port classes.

• SMTP classes.

• New windows forms controls—SoundPlayer, BackgroundWorker.

• Enhancements to many existing windows forms controls.

This list isn't exhaustive, but it should give you an idea that the FCL is extensive, and contains functionality that

wasn't available in Visual Basic 6. Some of this functionality is available directly, and some is accessible through

the creation of simple wrappers (literally, only a couple lines of code). In this article, you'll see the functionality that
can be used directly. In following articles, you'll learn how to create wrappers to access additional FCL

functionality.

Parallel vs. Concurrent:

Well, both concepts are related but not the same: in its simplest definition, Concurrency is about executing multiple

un-related tasks in a concurrent mode. What these un-related tasks share are system resources, but they do not share

a common problem to solve; meaning, they are logically independent. Now, think of these tasks as threads. And,

since these threads share system resources, you face the globally common problems of concurrent programming

such as deadlocks and data races. This makes concurrent programming extremely difficult and debugging

complicated.

What is Parallelism? Parallelism is taking a certain task and dividing it into a set of related tasks to be executed

concurrently. Sweet! So again, thinking of these tasks as threads, Parallel Programming still has the same problems

of concurrent programming (deadlocks, data races, etc...), and introduces new challenges, most notably, sharing and
partitioning data across these related threads. This makes Parallel Programming even more difficult and debugging

even more complicated :(

However, it is not all bad news. .NET 4.0 parallel programming is a great step onwards. The new API solves a lot of

problems (but not all) of Parallel Programming, and greatly eases up parallel debugging..

.NET 4.0 Parallel Programming

The Parallel Programming model of .NET 4.0 is composed of the following:

• The Task Parallel Library (TPL): this is the base of the Task-based programming discussed in the previous section.

It consists of:

o Task class: the unit of work you will code against instead of the previous thread model.

o Parallel class: a static class that exposes a task-based version of some parallel-nature problems. More specifically, it

contains the following methods:
� For

� Foreach

� Invoke

• Parallel LINQ (PLINQ): built on top of the TPL and exposes the familiar LINQ as Parallel extensions.

Parallel programming for specific Tasks

The first example shows the new Tasks programming model. As explained previously, Tasks - as opposed to the

Thread Pool - grants more control over thread programming. In fact, you now deal with Tasks and not threads.

Goswami, Rajput and Arya 409

static void Main(string[] args)

{

 Task t = Task.Factory.StartNew(() =>
 {

 Console.WriteLine("I am the first task");

 });

 var t2 = t.ContinueWith(delegate

 {

 //simulate compute intensive

 Thread.Sleep(5000);

 return "Tasks Example";

 });

 //block1

 //string result = t2.Result;

 //Console.WriteLine("result of second task is: " + result);

 //end block1

 //block2

 //t2.ContinueWith(delegate

 // {

 // Console.WriteLine("Here i am");

 // });

 //Console.WriteLine("Waiting my task");

 Console.ReadLine();

In the above code, we first create a new Task using the Task class, and we pass to the lambda expression the code to

run inside

Parallel

static void Main(string[] args)

{

 Stopwatch watch;

 watch = new Stopwatch();

 watch.Start();

 //serial implementation
 for (int i = 0; i < 10; i++)

 {

 Thread.Sleep(1000);

 //Do stuff

 }

 watch.Stop();

 Console.WriteLine("Serial Time: " + watch.Elapsed.Seconds.ToString());

 //parallel implementation

 watch = new Stopwatch();

 watch.Start();

Goswami, Rajput and Arya 410

 System.Threading.Tasks.Parallel.For(0, 10, i =>

 {

 Thread.Sleep(1000);

 //Do stuff with i

 }

);

 watch.Stop();

 Console.WriteLine("Parallel Time: " + watch.Elapsed.Seconds.ToString());

 Console.ReadLine();

}

Parallel.For(0,1000,(int i, ParallelLoopState loopState) =>

{

 If(i==500)

 loopState.Break();

 //or loopState.Stop();

 return; // to ensure that this iteration also returns

 //do stuff

});

The difference between the Break and Stop methods is that Break ensures that all earlier iterations that started in the
loop are executed before exiting the loop.The Stop method makes no such guarantees; it basically says that this loop

is done and should exit as soon as possible.Both methods will stop future iterations from running.

Parallel programming for PLINQ

PLINQ is a LINQ Provider, so you still use the familiar LINQ model. In the underlying model, however, PLINQ

uses multiple threads to evaluate queries.

static void Main(string[] args)

{

 Stopwatch watch;

 //for loop
 watch = new Stopwatch();

 watch.Start();

 bool[] results = new bool[arr.Length];

 for (int i = 0; i < arr.Length; i++)

 {

 results[i] = IsPrime(arr[i]);

 }

 watch.Stop();

 Console.WriteLine("For Loop took: " + watch.Elapsed.Seconds);

 //LINQ to Objects
 watch = new Stopwatch();

 watch.Start();

 bool[] results1 = arr.Select(x => IsPrime(x))

 .ToArray();

 watch.Stop();

 Console.WriteLine("LINQ took: " + watch.Elapsed.Seconds);

Goswami, Rajput and Arya 411

 //PLINQ

 watch = new Stopwatch();

 watch.Start();

 bool[] results2 = arr.AsParallel().Select(x => IsPrime(x))

 .ToArray();

 watch.Stop();

 Console.WriteLine("PLINQ took: " + watch.Elapsed.Seconds);

 Console.ReadLine();

}

Now, edit the code and use the AsOrdered extension as follows:

var query = src.AsParallel().AsOrdered()

 .Select(x => ExpensiveFunc(x));

Goswami, Rajput and Arya 412

What number do you expect to see if you run the program on a multi-core machine? 100000 is the logical result.

Now, run the program and you will notice that the number is less than that (if you do get 100000, you are just being
lucky, so try again). So what happened here? Why did we get this wrong when it seemed to be so obvious? The

answer is data race occurred.

Let's explain this. The trick here is in understanding how the statement counter++ gets executed. When at

Intermediate Language (IL) level, counter++ is not a single statement anymore. Actually, it gets executed in 4 IL

steps by the JIT (Just In-time Compiler):

1. Get the current value of the counter

2. Get the value of 1

3. Add the two numbers together

4. Save the result back to the counter

Goswami, Rajput and Arya 413

As a result, one step increment was overlooked due to the fact that two threads were granted access to the variable

counter at the same time. The above scenario occurs many times, and you will get the final value wrong, as we did

when we ran the program. This is a classical case of Data Race.

Parallel programming for Debugging

static void Main(string[] args)

{

 var primes =

 from n in Enumerable.Range(1, 10000000)

 .AsParallel()
 .AsOrdered()

 .WithMergeOptions(ParallelMergeOptions.NotBuffered)

 where IsPrime(n)

 select n;

 foreach (var prime in primes)

 Console.Write(prime + ", ");

}

public static bool IsPrime(int numberToTest)

{
 if (numberToTest == 2) return true;

 if (numberToTest < 2 || (numberToTest & 1) == 0) return false;

 int upperBound = (int)Math.Sqrt(numberToTest);

 for (int i = 3; i < upperBound; i += 2)

 {

 if ((numberToTest % i) == 0) return false;

 }

 // It's prime!

 return true;

}

The above code uses PLINQ to print all prime numbers of a given range.

Through this window, you can see all the running threads in Debug mode. You can select to freeze all threads except

the one that you want to actually debug, and once done, you can run the other threads.

Another useful window is the Parallel Stacks window (Debug menu -> Windows -> Parallel Stacks):

Goswami, Rajput and Arya 414

Through this window, you can see a graphical representation of the running threads of your program and how they

originated.

Parallel programming for Deadlocks
Example 5 explained Data Races and how to deal with them through locks. However, you should take care that

locking can bite you in the ugly form of Deadlocks. Simply put, a deadlock is a case where a thread TA is locking

resource R1 and a thread TB is locking resource R2, and now, TA needs R2 to continue while TB needs R1 to

continue. Both threads are stuck and cannot continue, thus causing a deadlock.

static void Main(string[] args)

{

 int transfersCompleted = 0;

 WatchDeadlock.BreakIfRepeats(() => transfersCompleted, 500);

 BankAccount a = new BankAccount { Balance = 1000 };

 BankAccount b = new BankAccount { Balance = 1000 };

 while (true)
 {

 Parallel.Invoke(

 () => Transfer(a, b, 100),

 () => Transfer(b, a, 100));

 transfersCompleted += 2;

 }

}

class BankAccount { public int Balance; }

static void Transfer(BankAccount one, BankAccount two, int amount)

{
 lock (one)

 {

 lock (two)

 {

 one.Balance -= amount;

 two.Balance += amount;

 }

 }

}

Goswami, Rajput and Arya 415

The above code uses Parallel.Invoke to concurrently perform money transfer between bank accounts "a" to "b" and

vice

So how do you avoid deadlocks? The answer is: simply do not do them. When doing parallel programming and

locks, always program in a way that deadlocks will not occur!

Result:

A Wrapper class is one that "encapsulates" a resource, or another class in order to simplify or restrict the interface

between the outside world and the encapsulated object. For example, a wrapper class might encapsulate a COM

object, providing .NET access methods and properties and translating them internally to the function calls to the

actual COM interface. Or it might "hide" a full Dictionary object, allowing you to just add, query and remove items

from it, without knowing what the underlying storage is.

If you want to compare it to the real world, the "drive a car" class wraps the complexity of the engine by providing
an Accelerator object with "press" and "release" methods that hide the complexity of the fuel injection mapping

from the user.

REFERENCES

[1]. http://www.codeguru.com/csharp/article.php/c18689/NET-Framework-Parallel-Programming-Design-

Patterns.htm

[2]. https://blogs.msdn.microsoft.com/csharpfaq/2010/06/01/parallel-programming-in-net-framework-4-getting-

started/

[3]. http://www.codeguru.com/columns/experts/article.php/c17197/Understanding-Tasks-in-NET-Framework-40-

Task-Parallel-Library.htm

[4]. http://www.diva-portal.org/smash/get/diva2:652176/FULLTEXT01.pdf

[5]. http://www.codeguru.com/columns/experts/article.php/c17197/Understanding-Tasks-in-NET-Framework-40-
Task-Parallel-Library.htm

[6].

https://books.google.co.in/books?id=IgBx6RRO0WcC&pg=PA36&lpg=PA36&dq=advantage+of+wrapper+class+i

n+.net+framework&source=bl&ots=XhR4SnlbCa&sig=Tzu_nZxdkiMiSWG7GRsOJVo3vu8&hl=en&sa=X&ved=0

ahUKEwjuobeN6pvTAhVLwI8KHdGFBN8Q6AEITzAH#v=onepage&q=advantage%20of%20wrapper%20class%

20in%20.net%20framework&f=false

