
  

 

International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 441-445(2017)     
             (Published by Research Trend, Website: www.researchtrend.net) 

                                                                                                                                  ISSN No. (Print) : 0975-8364 

                                                                                        ISSN No. (Online) : 2249-3255 

Comparative Study of Different Models in Component Based Software 
Engineering 

Mr. Sandeep Chopra
1
, Dr. M.K. Sharma

2
 and Dr. Lata Nautiyal

3
 

1
Research Scholar, Uttarakhand Technical University, Dehradun, (U.K.), INDIA 

2
Associate Professor, Amrapali Institute  Haldwani, (U.K.), INDIA 

3
Assistant Professor, Graphic Era University, Dehradun, (U.K.), INDIA 

ABSTRACT: “Software Engineering is the application of a systematic, disciplined, quantifiable approach to 

the development, operation, and maintenance of software; that is, the application of engineering to software”. 

Component-based software development advocates developing software systems by selecting reliable, 

reusable and robust software components and assembling them within appropriate software architecture. It 
is assumed that common components in a various software package application solely got to be written once 

and re-used instead of being re-written when a replacement application is developed. This paper tells the 

efficiency of various CBSE models which are useful for the software project. 

Keyword: Component, CBSD, Risk analysis, Testing, Reliability, Certification 

I. INTRODUCTION 

A component is a software element that conforms to a 

component model and can be independently deployed 

and composed without modification according to a 

composition standard [1]. 

By promoting the use of software components that 

commercial vendors or in-house developers build, the 
component-based software development approach 

promises large-scale software reuse. Component-based 

software engineering offers an attractive alternative for 

building Web-based enterprise application systems. 

A software component can be deployed independently 

and is subject to composition by third parties [2]. 

A component [3] is a coherent package of software 

implementation that:  
(a) It can be independently developed and delivered. 
(b) It has explicit and well-specified  interfaces for the 
services it provides. 
(c) It has explicit and well-specified interfaces for services it 
expects from others. 
(d) It can be composed with other components, perhaps 
customizing some of their properties, without modifying the  

components themselves. 

So the following details of a component characterize a 

component [4]:  
(ii)A component can be implemented in  any  language. 
(iii) The component interface is described  either textually by 
means of an interface description language (IDL) or  visually / 
interactively by appropriate tools.  

Component is defined by Meyer [5] as:  

 

“A component is a software element (modular unit) 

satisfying the following conditions:  

 
1. It can be used by other software elements,   its ‘clients’. 
2. It possesses an official usage description, which is 
sufficient for a client author to use it. 
3. It is not tied to any fixed set of clients.” 
In software engineering, this would allow a software system 
to have as “components” assembly language instructions, sub-

routines, procedures, tasks, modules, objects, classes, 
software packages, processes, sub-systems, etc. 

The widely accepted goal of component-based 

development is to build and maintain software systems 

by using existing software components. It is understood 

that the components are required to be reusable 
components. They must interact with each other in 

system architecture. This goal of CBSE implies four 

orthogonal properties for a truly reusable component: 
1. Contractually specified interfaces, 
2. Fully explicit context dependencies, 
3. Independent deployment, 

4. Third party composition. 

A Component Based Software Development (CBSD) 

CBSD approach is based on the idea to develop 
software systems by selecting appropriate off-the-shelf 

components and then to assemble them with a well-

defined software architecture. The purpose of CBSD is 

to develop large systems, incorporating previously 

developed or existing components, thus cutting down 

on development time and costs.  

Chopra, Sharma and Nautiyal  441 

et



  

 

 

CBSE can also be used to reduce maintenance associated 

with the upgrading of large systems.  It is assumed that 

common parts in a software application only need to be 

written once and reused rather than being rewritten every 

time a new application is developed.Component 

primarily based software package development approach 

relies on the thought to develop software package 

systems by choosing acceptable ready to wear 
components and so to assemble them with a well-defined 

package design. 

 
Fig. 1.   Architecture of CBSE. 

CBSE encompasses two parallel engineering activities, 

domain engineering and component-based development 

(CBD). Domain engineering explores the application 

domain with the specific intent of finding functional, 

behavioral, and data components that are candidates for 

reuse and places them in reuse libraries. CBD elicits 

requirements from the customer and selects an 

appropriate architectural style to meet the objectives of 

the system to be built. 

This new software development approach is very 

different from the traditional approach in which software 
systems can only be implemented from scratch. These 

commercial off-the shelf (COTS) components can be 

developed by different developers using different 

languages and different platforms.  

This can be shown in Figure 1, where COTS components 

can bechecked out from a component repository, and 

assembled into a target software system. 

Component-based software development (CBSD) can 

significantly reduce development cost and time-to-

market, and improve maintainability, reliability and 

overall quality of software systems [6] [7]. 

The CBSE generally embodies the following 
fundamental software development principles [8]: 

B. Software Development Independently 

Large software systems are necessarily assembled from 

components developed by different people.  

To facilitate independent development, it is essential to 

decouple developers and users of components through 

abstract and implementation-neutral interface 

specifications of behaviour for components. 

C.  Reusability of Components 

While some parts of a large system will necessarily be 
special-purpose software, it is essential to design and 

assemble pre-existing components (within or across 

domains) in developing new components. 

D. Software Quality 

A component or system needs to be shown to have 

desired behaviour, either through logical reasoning, 

tracing, and/or testing. The quality assurance approach 

must be modular to be scalable. 

E. Maintainability 

A software system should be understandable, and easy to 

evolve [9]. 

II. SURVEY OF CBSE MODELS  

Various process models have been designed by a number 

of researchers so far for component based software 

development. Most common among them are studied and 

described briefly. 

There are different CBSD models appear in industry as 

well as in academia. We referred to some of them; some 

of the popular state of art has been discussed in the 

following section: 

A. The Y Model 

Capretz [10] proposed a new life cycle model known as 

Y model for component-based development.  

 
                        Y- Model 
 

This model described software creation by change and 

instability therefore the “Y” CBSD life cycle model 

facilitates over lapping and iteration where appropriate.

 

 

Chopra, Sharma and Nautiyal  442 



  

 

 

 

This model consists of following planned phases; 

domain engineering, frame working, assembly, 

archiving, system analysis, design, implementation, 

testing, deployment and maintenance. In this model, the 

new phases were basically proposed for example 

domain engineering frame working, assembly and 

archiving with the other traditional life cycle phases 
stated for the previous models.  

This model focuses on software reusability explicitly 

during CBSD and put more emphasis on reusability 

during software development, evolution and building of 

significantly reusable software components that will be 

built on the assumption to use them in future projects. 

B. The V Model 

The V-Shaped [11] life cycle is a sequential path of 

execution of processes. Each phase must be completed 

before the next phase begins. Testing is emphasized in 

this model more than the waterfall model. The testing 

procedures are developed early in the life cycle before 
any coding is done, during each of the phases preceding 

implementation. Requirements begin the life cycle 

model just like the waterfall model. Beforedevelopment 

is started, a system test plan is created. The test plan 

focuses on meeting the functionality specified in 

requirements gathering.Before development is started, a 

system test plan is created. The test plan focuses on 

meeting the functionality specified in requirements 

gathering. 

 

                          V- Model 

III. THE W MODEL 

Two V models have conjoined, one for component life 

cycle and one for system lifecycle in the W lifecycle 

model [12]. Component based development process 

comprises of a component life cycle and a system life 

cycle. It is the base of W lifecycle model. 

However, in component based development process 

component life cycle is slightly different from others 

because it is a more complete one, namely the idealized 

one as it fulfills all the requirements of component 

based development.  

 
 

W Model 
Component lifecycle comprises of two major phases: 

component design and component deployment, and is 

set in the context of a problem domain. In the design 

phase, software components are identified, designed 

and constructed according to the domain requirements 

or knowledge , and put into a software components 

repository.  

The components that are contained by repository are 

domain-specific but not system-specific. 

IV. THE X MODEL 

Tomar and Gill [13] proposed the X Model in which the 

processes started in the usual way by requirement 

engineering and requirement specification. This 

software life cycle model mainly focuses on the 

reusability where software is built by building reusable 

components for software development and software 

development from reusable and testable components. In 

software development, there are two major approaches, 

build generic software components or develop software 

component for reuse and software development with or 

without modification in reusable component. It 
basically considers three different cases and one 

component based software development that normally 

occurs in component based software development 

 

Chopra, Sharma and Nautiyal  443 

  

  



  

 

 
X- Model 

Development for reuse, development after 

modification, development without modification and 
component based software development.  

It also separates the component development from 

component-based software development like other 

component based software development life cycles. 

V.  THE COTS BASED MODEL 

One of the key factors in an exceedingly COTS-based 

development method is recognizing that there square 

measure many important changes to the normal system  

development life-cycle [14]. 

Some of these might  have already been created in a 

company that has adopted associate degree an 
architecture-based or Product-line approach to reuse; 

others are going to be new  most organizations. COTS 

is  associate degree adaptation of a high-level method  

model developed originally for the DARPA Domain 

Specific Software Architectures Program. 

 
COTS Model 

VI. UMBRELLA MODEL 

The life cycle of components based software consists of 

three stages: [15] 
(i)The Design phase, when components are chosen by 

repository or designed, defined and created. 

(ii) The Integration phase, when component are 

integrate with others component. 

(iii) The Run-time phase, when component binaries 

are instantiated and executed in the running system. 

A software component life cycle model should define  

(i) What sequence components composition are follows  

 (ii) Why need of these sequences  

(iii) How to compose components. 

Over the past three decades, many component based 
software development methodologies have appeared. 

Such methodologies indicates some or all phases of the 

software life cycle ranging from requirements to 

maintenance. These methodologies have often been 

developed in response to new concepts regardinga way 

to address the inherent complexity of software systems. 

Because of the increasing popularity of software reuse, 

in the last Fifteen years, research on component based 

software methodologies has become a growing field of 

interest. 

 
Umbrella- Model 

VII. THE KNOT MODEL 

Knot Model emphasis on reusability considering risk 

analysis and feedback in each and every phase. This 

model may be best suited for medium or larger complex 

system’s development.  It is based on three states of the 

component [16] 
i) When a new component is not available in the 

repository, then it develops a new component for reuse 

and places it in the pool 

 
Knot- Model 

Chopra, Sharma and Nautiyal  444 

  

 



  

 

 

ii) When a component is partially available, then 

modifies it for reuse and places it in the pool. 

iii) When a component is available in the repository 

then reuses it during the new proposed system. An 

utmost care should be taken that each component is 

created for reuse, so the component is not based on 

particular application’s specification but must carry 

general specification. 

In this model risk is resolved in early stages of each 

phase. This results in the reduction of cost and time and 

makes the software more reliable and efficient. 

Moreover feedback at the end of each phase results in 

further improvement and revised form of component. It 

also reduces the cost and time by better management as 

it resolves the conflicts, if any, during that phase. 

Table 1: Comparative  analysis CBSE models. 

 

 

a) No provision of outsourcing of components. 

b) Selecting a right component may be difficult. 

c) Managing the reservoir may be difficult. 

VIII. CONCLUSION 

This paper has  analyzed seven CBSE models. On the 
basis of key factors we have  made comparative 

analysis in tabular form . The Key factor was based on 

the reasoning of the researcher . On the basis of above 

analyzed Table 1 we can say that Knot Model is the 

best model for the software project. 

REFERENCES 

[1] G.T. Heinemanand W.T. Councill, editors. Component-Based 

Software Engineering: Putting the Pieces Together. Addison-Wesley, 

2001. 

[2] Szyperski C., (1998). ”Component Software, Beyond Object-

Oriented Programming”, ACM Press, Addison-Wesley, NJ. 

[3] D’Souza D. F. and Wills A.C., (1997).” Objects, 

Components, And Frameworks with UML – the Catalysis Approach", 

Addison-Wesley, Reading, Mass. 

[4]  Kung-KiuLau, Mario Ornaghi and Zheng Wang, “A 

Software Component Model and its Preliminary Formalisation, 

Springer-Verlag Berlin Heidelberg, 2006 

[5] B. Meyer. “The grand challenge of trusted components”. In Proc. 

ICSE 2003, pages 660–667. IEEE, 2003. 

[6]  G. Pour, “Enterprise JavaBeans, JavaBeans & XML 

Expanding the Possibilities for Web-Based Enterprise Application 

Development,” Proceedings Technology of Object-Oriented 

Languages and Systems, TOOLS 31, pp.282-291 1999. 

 

 

 

 

 

[7]  G.Pour, M. Griss, J. Favaro, “Making the Transition to 

Component-Based Enterprise Software Development: Overcoming 

the Obstacles – Patterns for Success,” Proceedings of Technology of 

Object-Oriented Languages and systems, 1999, pp.419 – 419. 

 [8] Iqbaldeep Kaur, Parvinder S. Sandhu, Hardeep Singh, and 

VandanaSaini, “World Academy of Science, Engineering and 

Technology 50”, 2009. 

[9] M. Sitaraman and B. W. Weide , “Special Feature 

Component-Based Software Using RESOLVE”, ACM SIGSOFT 

Software Engineering Notes 19, No. 4, 21-67, October 1994. 

[10] Luiz Fernando Capretz, “Y: A New  Component-based software 

life cycle model”, Journal of Computer Science 1 (1): 76-82, 2005, 

ISSN 1549-3636 © Science Publications, 2005. 

 [11] International Journal of Scientific & Engineering Research, 

Volume 3, Issue 2, Februaryy-2012 1 ISSN 2229-5518. 

[12] The W Model for Component-based Software Development 

[online]. OnlineAvailable:http://www.cs.man.ac.uk/~kung-

kiu/pub/seaa11b.pdf. 

[13]   Tomar, P. Gill, N.S., “Verification &         

Validation of Components with New X Coponent-Based Model”, in 

Proceedings of 2010, Software Technology and Engineering 

(ICSTE), 2nd International Conference, San Juan, PR, 3-5 Oct. 

[14]  Christine L. Braun, “A lifecycle process for the effective 

reuse of commercial off-the-shelf (COTS) software” in Proceedings 

of SSR '99 Proceedings of the 1999 symposium on Software 

reusability ACM New York, NY, USA, Pp. 29-36. 

[15] Anurag Dixit and P.C. Saxena, “Umbrella: A New Component-

Based Software Development Model” International Conference on 

Computer Engineering and Applications 2009IPCSIT vol.2 (2011) 

(2011) IACSIT Press, Singapore. 

[16] Rajender Singh Chhillar, ParveenKajla, “A New Knot 

Model for Component Based Software Development”, International 

Journal of Computer Science Vol: 8 Issue: 3 Pp: 480-484, 2011. 

 

Chopra, Sharma and Nautiyal  445 

 


