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ABSTRACT: Solving differential equations and finding solution of homogeneous and non-homogeneous 
differential equations are not very easy one in some critical situations. To use certain method to find every 
different equations. Most of the engineering problems were converted to be in differential equations and 
solve by using Z-transform, Laplace transform, Fourier transform etc., particularly in continuous case 
Laplace transform are using but some complex differential equations solved by Laplace transform is difficult. 
In this paper a new modified Sumudu transform introduced called Raj transform to solve differential 
equations and fuzzy differential in engineering problems. This transform can solve differential equations and 
fuzzy differential equations especially boundary and initial conditions problems. Important properties with 
proof of the new transform also derived. Dualities between new integral transform and other integral 
transform also provided. Finally to understand this new integral transform, two numerical examples also 
given with graphical explanation in the end of the paper. Using Raj transform is easy to solve complex 
differential equations in both homogeneous and non-homogeneous higher order differential equations. This 
method is very interesting to solve different type of difficult problems in both engineering and real life. 

Keywords: Differential equation, Modified Sumudu, New Integral Transform, Raj Transform, Sumudu Transform.

I. INTRODUCTION 

Many of the real life problems, science problems and 
engineering problems were solved by integral transform. 
Integral transform plays very important usage to solve 
differential and partial differential equation. Most of the 
integral transform is mapped into t domain into s domain 
by integral transform. Very famous known transform 
Fourier, z-transform and Laplace transform. Mostly z 
transform is used to solve discrete case of problems 
and Laplace is used to solve continuous case problems. 
in these transform the changeable variable in s domain 
treated as dummies and also physical significance is 
also not questioned. Jena and Mohanty (2019) worked 
on ODE using numerical technique [1]. Watugala (1993) 
introduce integral transform named Sumudu in 1993 to 
solve control engineering problems [2]. Many researcher 
are discussed with different transform like Mohgoub 
transform, Aboodh transform, Kamal transform, Elzaki 
transform, Mohand transform and Sawi transform to 
solved an engineering mathematical problems [3-7]. 
Aggarwal and Chaudhary (2019) worked on 
comparative study on Mohand transform with Laplace to 
solve differential equation [8]. Recently many research 
scholars used different type of integral transform to 
solve different type of problems in both engineering and 
real life [9-22]. Here the new modified Sumudu 
transform of t domain is used for dividing u domain. It 
owns so many interesting properties; new integral 
transform is related with other transform like Laplace, 
Sumudu, etc. differential equation are converted into 
fuzzy differential equation and used new integral 

transform to solved the equation by using initial 
condition as a fuzzy parameter (numbers). Allahviranloo 
et al., worked on differential equations in fuzzy 
environment [23-26]. Melliani et al., (2015) also solved 
differential equation in fuzzy environment [27]. Rajkumar 
and Jesuraj modeled a real life problem into differential 
equation and its solved by using fuzzy numbers like 
triangle, nonagonal [28-30]. Recently up to 2019 many 
others used to solve differential and partial differential 
equation by the known transform but few problems are 
not able to solve in same transform, this transform used 
to solve many problems in complex domain. 
Final section of the paper given few numerical examples 
to understand the new method. Application of this new 
transform can used to solve mathematical problems, 
stress analysis, signal processing, civil engineering, 
control system mechanics, heat conduction, electricity, 
deflection of beams, etc. 

II. MATERIALS AND METHODS 

A. Laplace transform 
The laplace transform Z of a function f( ς ) for ς  is 

greater than zero given by  

s

0

 Z(f f( )) ( )e d

∞
− ςς = ς ς∫  

B. Sumudu transform 
The Sunudu transform Z of a function f( ς ) for ς  is 

greater than or equal to  zero given by  

e
t
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0

( )) (s )e Z( f df

∞
−ςς = ς ς∫ .(0<k1≤ξ ≤k2) 

C. Mahgoub transform 
The Mahgoub transform Z of function f( ς ) for ς  is 

greater than or equal to  zero given by  

s

0

( )) s ( dZ(f f )e

∞
− ςς = ς ς∫ .(0<k1≤ξ ≤k2) 

D. Elzaki transform  
The Mahgoub transform Z of a function f( ς ) for ς  is 

greater than or equal to  zero given by  

s

0

( )) s (Z d (f f )e

∞ ς
−

ς = ς ς∫ .(0<k1≤ξ ≤k2) 

E. Aboodh transform  
The Aboodh transform Z of a function f( ς ) for ς  is 

greater than or equal to  zero given by  

s

0

1
( )) ( )e(

s
 f dZ f

∞
− ςς = ς ς∫ .(0<k1≤ξ ≤k2) 

F. New Integral Transform Modified Sumudu Called Raj 
Transform 
The modified Sunudu transform Z of a function f( ς ) for 

ς  is greater than or equal to  zero given by  

0

( )) Z(f f ( )e d
s

∞
−ςς

ς = ς∫ where ξ  is in between zero 

and infinity (0<k1≤ξ ≤k2) ,here k1 and k2 are either finite 

or infinite  

III. RESULTS AND DISCUSSION 

A New Modified Sumudu Transform (Raj Transform) for 
Basic Function 

A. Let  f ( ) 1,ς =  by using transform 

0 0 0

Z(f f Z(1 f
1 1 1

( )) ( )e d , ) ( )e d e d
s s s s

∞ ∞ ∞
−ς −ς −ςς

ς = ς = ς= ς=∫ ∫ ∫
 

B. Let 
a( )f , e ςς =  by using transform 

0

a

a s

0

a

s

0

( )) ( )e d
s

e )

Z(f f

e e dZ(

e d

∞
−ς

∞ ς
ς −ς

∞ ς
−ς+

ς
ς = ς

= ς

= ς

∫

∫

∫

 

a

1

a
1

s

s
e

s a
Z( )ς

=

−

=
−

 

C. Let  f ( ) ,ς = ς  by using transform 

0

Z(f f( )) ( )e d
s

∞
−ςς

ς = ς∫  

0

) ( )( f e d
s

Z

∞
−ς=

ς
ςς ∫

 0

1
e d

s

1

s

∞
−ς= ς ς

=

∫
 

D. Let 
n( ) , f ς = ς  by using transform 

0

Z(f f( )) ( )e d
s

∞
−ςς

ς = ς∫
 

n
n

0

) ( )e d
s

Z( f

∞
−ςς

ς = ς∫
 

0

n

n

n

1
e d

s

n!
( )

s
Z

∞
−ςς

ς

= ς

=

∫
 

E. Let ( ) sin( f a ),ς = ς  by using transform 

0

Z(f f( )) ( )e d
s

∞
−ςς

ς = ς∫
 

0

a
sin(a )) sin( )e( d

s
Z

∞
−ςς

ς = ς∫
 

2 2

2 2

as

a s

as
sin(Z( a ))

a s

=
+

ς =
+

 

F. Let ( ) cos( f a ),ς = ς  by using transform 

0

Z(f f( )) ( )e d
s

∞
−ςς

ς = ς∫
 

0

a
cos(a )) cos( )e( d

s
Z

∞
−ςς

ς = ς∫
 

2

2 2

2

2 2

s

a s

s
sin(Z( a ))

a s

=
+

ς =
+

 

G. Let ( ) sinh( ),f aς = ς  by using transform 

0

Z(f f( )) ( )e d
s

∞
−ςς

ς = ς∫
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0

a
(a )) sinh( )e d

s
Z(sinh

∞
−ςς

ς = ς∫
 

2 2

2 2

as

s a

as
sin(Z( a ))

s a

=
−

ς =
−

 

H. Let ( ) cosh( ),f aς = ς by using transform 

0

Z(f f( )) ( )e d
s

∞
−ςς

ς = ς∫
 

0

a
cosh(a )) cosh( )e( d

s
Z

∞
−ςς

ς = ς∫
 

2

2 2

2

2 2

s

s a

s
sin(Z( a ))

s a

=
−

ς =
−

 

Relation between a New Integral Transform and 
Other Integral Transform 

A. Laplace and Raj transform 
Theorem: 1 

If laplace and raj transform of Z(f ( ))ς are L( ς ) and R(

ς ) 

1
L( ) R( ) and

S

R( ) sL( )

ς = ς

ς = ς

 

Proof :from the definition of laplace transform we have 

s

0

 Z(f f( )) ( )e d
∞

− ςς = ς ς∫  

Put 
dp

s p, d
s

ς = ς =  in the above equation  

p

0

 Z
1 p

( )) ( )e dp
s s

1
R( (

(f f

Z(f ))
s

 

∞
−ς =

= ς

∫
 

Similarly we have raj transform  

0

( )) Z(f f ( )e d
s

∞
−ςς

ς = ς∫  

Put p, d sdp
s

ς
= ς =  in the above equation  

sp

0

( )) s (p)e dp

sL( (

 Z(f f

 Z( ))f

∞
−ς =

= ς

∫
 

B.Sumudu and Raj transform 
 
Theorem: 2 

If Sumudu  and raj transform of Z(f ( ))ς are S( ς ) and 

R( ς ) 

1
S( ) R( ) and

S

R( ) sS( )

ς = ς

ς = ς

 

Proof : from the definition of Sumudu transform we 
have 

0

( )) (s )e Z( f df
∞

−ςς = ς ς∫  

Put 
dp

s p, d
s

ς = ς =  in the above equation  

p

0

 Z
1 p

( )) ( )e dp
s s

1
R( (

(f f

Z(f ))
s

 

∞
−ς =

= ς

∫
 

Similarly we have raj transform  

0

( )) Z(f f ( )e d
s

∞
−ςς

ς = ς∫  

Put p, d sdp
s

ς
= ς =  in the above equation  

p

0

 Z ( )) s (sp)e dp

sS( (

(f f

 Z( ))f

∞
−ς =

= ς

∫
 

C. Mahgoub and Raj transform 
Theorem: 3 

If Mahgoub and raj transform of Z(f ( ))ς are M( ς ) and 

R( ς ) 

M( ) R( ) and

R( ) M( )

ς = ς

ς = ς
 

Proof : from the definition of laplace transform we have 

s

0

( )) s ( dZ(f f )e
∞

− ςς = ς ς∫  

Put 
dp

s p, d
s

ς = ς =  in the above equation  

p

0

1 p
( )) ( )e dp

s s

R( (

 Z(f f

 Z(f ))

∞
−ς =

= ς

∫
 

Similarly we have raj transform  

0

( )) Z(f f ( )e d
s

∞
−ςς

ς = ς∫  

Put p, d sdp
s

ς
= ς =  in the above equation  
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sp

0

 Z(f f

 Z(f

( )) s (p)e dp

M( ( ))

∞
−ς =

= ς

∫
 

D. Elzaki and Raj transform  
Theorem: 4 

If Elzaki and raj transform of Z(f ( ))ς are E( ς ) and R(

ς ) 

2

1
E( ) R( ) and

S

R( ) s E( )

ς = ς

ς = ς

 

Proof : from the definition of Elzakitrans form we have 

s

0

1
( )) ( )e(

s
 f dZ f

∞
− ςς = ς ς∫  

Put 
dp

s p, d
s

ς = ς =  in the above equation  

p

0

 Z
1 p

( )) ( )e dp
s s

1
R( (

(f f

Z(f ))
s

 

∞
−ς =

= ς

∫
 

Similarly we have raj transform  

0

( )) Z(f f ( )e d
s

∞
−ςς

ς = ς∫  

Put p, d sdp
s

ς
= ς =  in the above equation  

sp

0

2

 Z( ( )) s (p)e dp

s E( ( ))

f f

 Z(f

∞
−ς =

= ς

∫
 

E. Aboodh and raj transform  
Theorem: 5 

If Aboodh and raj transform of Z(f ( ))ς are A( ς ) and 

R( ς ) 

2

2

1
L( ) R( ) and

S

R( ) s A( )

ς = ς

ς = ς

 

Proof : from the definition of Aboodh transform we have 

s

0

1
( )) ( )e(

s
 f dZ f

∞
− ςς = ς ς∫ .(0<k1≤ξ ≤k2) 

Put 
dp

s p, d
s

ς = ς =  in the above equation  

p

0

2

1 p dp
( )) ( )e

s s s

1
R( (

 Z(f f

Z( ))
s

 f

∞
−ς =

= ς

∫
 

Similarly we have raj transform  

0

( )) Z(f f ( )e d
s

∞
−ςς

ς = ς∫  

Put p, d sdp
s

ς
= ς =  in the above equation  

sp

0

( )) s (p)e pZ f d(f
∞

−ς = ∫

 2 sp

0

1
s (p)e dp sA( ( f ))

s
f Z(

∞
−

  
= = ς    

∫

 
Relation for Finding This New Integral Transform 
with Other Transforms. 
Tabular representation of Raj transform with other 
integral transform. 

Table 1: Laplace and Raj transform. 

S.No. 
Function

f ( )ς  

Laplace 
transform

L(f ( ))ς  

Raj 
transform

R(f ( ))ς  

1. 1 
1

s
 

1

s
 

2. ς  
2

1

s
 

1

s
 

3. 2ς  

3

2!

s
 

2

2

s
 

4. nς  
n 1

n!

s +
 

n

n!

s
 

5. a
e

ς
 

1

s a−
 

s

s a−
 

6. sin aς  
2 2

a

a s+
 

2 2

as

a s+
 

7. cos aς  
2 2

s

a s+
 

2

2 2

s

a s+
 

8. sinh aς  
2 2

a

s a−
 

2 2

as

s a−
 

9. cosh aς  
2 2

s

s a−
 

2

2 2

s

s a−
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Table 2:  Sumudu and Raj transform. 

S.No. 
Function

f ( )ς  

Sumudu 
transform

S(f ( ))ς  

Raj 
transform

R(f ( ))ς  

1. 1 1 
1

s
 

2. ς  s  
1

s
 

3. 2ς  2
2!s  2

2

s
 

4. nς  n
n!s  n

n!

s
 

5. a
e

ς
 

1

1 as−
 

s

s a−
 

6. sin aς  
2

as

1 (as)+
 

2 2

as

a s+
 

7. cos aς  
2

1

1 (as)+
 

2

2 2

s

a s+
 

8. sinh aς  
2

as

1 (as)−
 

2 2

as

s a−
 

9. cosh aς  
2

1

1 (as)−
 

2

2 2

s

s a−
 

Table 3:  Mahgoub and Raj transform 

S.No. 
Function

f ( )ς  

Mahgoub 
transform

M(f ( ))ς  

Raj 
transform

R(f ( ))ς  

1. 1 1 
1

s
 

2. ς  
1

s
 

1

s
 

3. 2ς  

2

2!

s
 

2

2

s
 

4. nς  
n

n!

s
 

n

n!

s
 

5. a
e

ς
 

s

s a−
 

s

s a−
 

6. sin aς  
2 2

as

a s+
 

2 2

as

a s+
 

7. cos aς  
2

2 2

s

a s+
 

2

2 2

s

a s+
 

8. sinh aς  
2 2

as

s a−
 

2 2

as

s a−
 

9. cosh aς  

2

2 2

s

s a−
 

2

2 2

s

s a−
 

 

Table 4:  Elzaki and Raj transform. 

S.No. 
Function

f ( )ς  

Elzaki 
transform

E(f ( ))ς  

Raj 
transform

R(f ( ))ς  

1. 1 2
s  

1

s
 

2. ς  3
s  

1

s
 

3. 2ς  4
2!s  2

2

s
 

4. nς  n 2
n!s

+
 n

n!

s
 

5. a
e

ς
 

2
s

1 as−
 

s

s a−
 

6. sin aς  

3

2

as

1 (as)+
 

2 2

as

a s+
 

7. cos aς  
2

2

s

1 (as)+
 

2

2 2

s

a s+
 

8. sinh aς  

3

2

as

1 (as)−
 

2 2

as

s a−
 

9. cosh aς  

2

2

s

1 (as)−
 

2

2 2

s

s a−
 

Table 5: Aboodh and Raj transform. 

S.No. 
Function

f ( )ς  

Aboodh 
transform

A(f ( ))ς  

Raj 
transform

R(f ( ))ς  

1. 1 
2

1

s
 

1

s
 

2. ς  
3

1

s
 

1

s
 

3. 2ς  

4

2!

s
 

2

2

s
 

4. nς  
n 2

n!

s +
 

n

n!

s
 

5. a
e

ς
 

1

s(s a)−
 

s

s a−
 

6. sin aς  
2 2

a

s(a s )+
 

2 2

as

a s+
 

7. cos aς  
2 2

1

a s+
 

2

2 2

s

a s+
 

8. sinh aς  
2 2

a

s(s a )−
 

2 2

as

s a−
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9. cosh aς  
2 2

1

s a−
 

2

2 2

s

s a−
 

Raj Transform of Derivatives  
A. Theorem:  

If ( )) Z( s)f R(ς =  then 
/ ( )) sR(s) R (0f )( sfς = −

 Proof:  
By the definition of raj transform 

0

( )) Z(f f ( )e d
s

∞
−ςς

ς = ς∫
 

0

( )) ( )e d
s

 Z(f ' f '
∞

−ςς
ς = ς∫

 

Method of integration by parts 

0

( )) ( )e d
s

u e ,du e d

dv ( )d

 Z(f ' f

s

'

f '

∞
−ς

−ς −ς

ς
ς = ς

= = − ς

ς
= ς

∫

 

0 0

v s ( )
s

uv vdu

(se ( )) s ( )( e d )
s s

sR(s) sf (0

f

f f

)

∞ ∞
−ς −ς

ς
=

= −

ς ς 
= − − ς  

= −

∫

∫

 

Hence 
/ ( )) sR(s) R (0f )( sfς = −

  
B. Theorem: 

If ( )) Z( s)f R(ς =  then 

/ / 2 2 /( )) s R(s) s f (0) R(f sf (0)ς = − −  

Proof: let 
/ / /( )) s[sR(s) sf (0)] R( s 0f f ( )ς = − −  

By using theorem 6.1 we get, 
/ / 2 2 /( )) s R(s) s f (0) R(f sf (0)ς = − − hence 

proved. 
Numerical Application  
Example 1: Solve the following first order differential 

equation by raj transform method 
/ t y (t) 4y e− =

where y(0)=0. 

Solution: Given ,
/ t y (t) 4y e− = ,y(0)=0 

Taking raj transform on both sides we get 

s
sR(s) sf (0)] 4R(s)

s 1

s
R(s)

(s 1)(s 4

[ 

)

− − =
−

=
− −

 

Using partial fraction and inverse raj transform we get  

4t t1
 y(t) 4e e

3
 = −   

 

Fig. 1.  (when t=0, 0.1, 0.2…1) will get the following 
graphical representation). 

Example 2: Solve the following second order differential 

equation by raj transform method 
/ / y (t) y 1− = where 

y1(0)=0, y(0)=0. 

Solution: Given 
/ / y (t) y 1− =

 
where y1(0)=0, y(0)=0. 
Using raj transform on both sides  
We get  

2 2 /

2

2

1
s R(s) s f (0) sf (0) R(s)

s

1
R(s)[s 1]

s

1
R(s)

s(s 1)

1

s(s 1)(s 1)

 − − − =

− =

=
−

=
+ −

 

Using partial fraction and inverse raj transform we get , 

t t1
 y(t) [e e 2]

2

−= + −  

 

Fig. 2. ( when t=1, 2, 3,…10, 1) will get the following 
graphical representation). 
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IV. CONCLUSION 

The new introduced method is defined and explained 
the properties through derivations. This transform is 
related with other integral transform to show the duality 
between other five transforms .raj transform first and 
second order derivatives also derived based on the 
result two numerical examples also solved. Using this 
transform is very easy to solve differential equation 
problem or linear and non-liner cases.  

V. FUTURE SCOPE  

This can help for researcher to solve higher order 
differential equations, Partial differential, fractional 
equations and other problems in engineering and real 
life. 
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