

Osero et al., International Journal on Emerging Technologies 11(3): 1147-1156(2020) 1147

International Journal on Emerging Technologies 11(3): 1147-1156(2020)
ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

A Virtualized Mobile Agents Based IoT Model with Map-Reduce: Using the
Python’s Spade Framework

Benard O. Osero
1
, Elisha Abade

2
 and Stephen Mburu

2

1
Lecturer, Department of Computer Science, Chuka, Kenya.

2
Senior Lecturer, School of Computing and Informatics, Nairobi, Kenya.

(Corresponding author: Benard O. Osero)
(Received 25 March 2020, Revised 20 May 2020, Accepted 23 May 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: By design, virtualization manages where data is located and controls access to data for users
and applications. The value of storage has moved from disk drives to the array controller as more features
and data protection capabilities have been added over time from the array to the point of virtualization. The
major challenge with most of the current storage systems is that the don’t scale well and also exprience high
latencies across the network which may also increase the security risk of the files being migrated. This paper
therefore seeks develop applications that can follow mobile users when they change to a different
environment, especially with the change of device and location by use of mobile agents. Implementation of
application mobility also depends on context-awareness and self-adaptation techniques. This paper has
delved into the concept of Virtualization and thus unearthing the deficiencies that impede performance of
distibuted Network (Latencies, Scalabity, and throughput) in centralized array based metadata blocks that
either employ physical file storage or virtualized file storage including the store and forward (SAF) file
systems and Object Storage Devices (OSD) systems and finally propose an IOT archtecture to be able to
solve the identified problems.

Keywords: Autonomic computing, distributed computing network storage, Multi-Agent Platforms, Mobile agent,
metadata, object storage, Network attached disk.

Abbreviations: SAN, storage area network; NASD, network attached secure disks; SAF, store and forward; OSD,
object storage device; DAS, direct attached storage; MAP, multiagent platform.

I. INTRODUCTION

Today, Big Data, IoT and Analytics are driving and
making the differences in key performing top
organizations. The interplay of these three areas can be
instrumental for the future development of research,
complex systems and enterprises. IoT will be estimated
to rise to billions of devices connected by 2020 [50].
Virtualization is a critical determinant which defines the
path distributed storage array and consequently IoT
systems should follow in order to succeed. By its nature
virtualization manages data right from its source. The
storage value has been is changing from drives to the
array cluster controllers while enhanced and data
protection policies are included in such systems with
time [28]. Applications of pervasive nature that can
change with the change of environment have been on
the increase. To Implement these applications context
awareness and self-adaptation techniques should be
considered [37].
Storage Area Networks (SAN) is a technology that is no
longer being experimented upon but rather mature
enough to influence the future of research and
technological advancements in the industry.
Implementing the SANs alone does not necessarily
guarantee solutions of the most basic issues in
satisfying the needs of the increased data demands
[18]. More than two decades later similar trends in the
storage requirements have been kept on the increase
thus calling for innovative methods to handle such big

data requirements in both data and its processing. The
major drawbacks with the current systems such as store
and forward (SAF) and Object storage devices (OSD) is
that they do not scale very well due to the tight coupling
of metadata and associated data, this problem is further
exacerbated by the fact that physical files or metadata
resources have to be available only in the server or
within the Storage Area Network (SAN) at the time of
request and thus leading to increased latencies during
request of these files. The fact that these files are also
transmitted across the network leads to high bandwidth
requirements.
This Research paper seeks to explore through literature
survey the strengths and weaknesses of the traditional
methods of storage in the client-server environments
like Store and Forward, Network attached secure disks
(NASD) and Object Storage Disks (OSD) and other
emerging trends in big data management like map
reduce model and other distributed systems
approaches, then identify suitable gaps and then
propose a suitable Virtualized IOT architecture, whose
major strength lies in the use of mobile agents and map-
reduce to sort and eventually cache metadata and thus
minimizing latencies and increasing throughput. The
research will in future blend the NoSQL databases with
SPADE to eventually develop an IoT simulator that will
eventually be used for performance improvement testing
and eventually the actual system implimentation.
This research paper is organized into eight sections;
Section I is the introduction, Section II shows the current

e
t

Osero et al., International Journal on Emerging Technologies 11(3): 1147-1156(2020) 1148

storage models, Section III delves into the client-server
architecture which forms the basis of all distributed
networks and also the various approaches for the client-
server implementation such as Distributed and
Autonomic Computing approaches, Section IV explains
more about Mobile Agents, Map-reduce and the
relationship between them, Section V compares various
Mobile Agent Platforms (MAPs) in order to identify the
best platform for the Mobile Agents on a distributed
network, Section VI explains ‘SPADE’ a mobile agents
implementation Framework as identified in Section 5,
Section VII gives justification for Map-reduce in a
distributed Client-Server environment, section VIII
shows the identified gaps in the Literature and the
proposed virtualized IOT storage architecture and
Section IX is the Conclusion. This research paper
majorly dedicates its effort towards identifying suitable
algorithms and models required for implementation of a
suitable architectural model of distributed storage on a
network in order to improve on performance of the
previously identified distributed data storage systems
and eventually propose a secure IOT implementation
owing to the growing demands for unstructured data.

II. CURRENT WORK IN THE CLIENT-SERVER
APPLICATIONS

A. Direct Attached Storage(DAS)
[47] referred this type of storage as store and forward
(SAF), in which the network disks involved have to keep
a copy of another redundant disk in the server. Every
time a client requests for a file a copy of the file has to
be kept before it is forwarded to the client for
downloading [22] further compared Direct Attached
Storage (DAS) and Network-Attached Storage Devices
(NASD) and demonstrated that by keeping a copy of the
disk there was a penalty on performance and scalability
he also demonstrated an improved security mechanism
by using tokenization on these platforms and concluded
that such systems can be improved by use of Object
storage management schemes and suggested further
work to be carried out on mobile agent and mobile-code
migration on a distributed network.

B. Network-Attached Storage Devices (NASD)
Network-attached storage (NAS) happens at the file-
level where one or more dedicated servers and disks
store data and share it with other clients on a network.
Network-Attached Secure Disks (NASD), is a
Networked object based shared storage system
discussed by [3] in their classification taxonomy, that
modifies the interface for the common direct attached
storage devices and thus eliminating the server
resources required for the movement of data. Fig. 12
outlines the major components of NASD
ARCHTECTURE [12, 22].

C. Object-Based Storage (OSD)
For Object storage the data is broken into small
connected units called objects kept in a single repository
(pool), instead of being kept as blocks on servers.
Most of the modern cluster file systems consists of
many Object Storage Devices (OSD) in information
storage consequently, attaining high performance.
Because of the unavailability of OSD-based disks in the
market, they are implemented by exporting an OSD-

based interface, and which locally utilizes regular file
system for objects storage. The FPFS metadata cluster
implements OSD+ devices in provision of a scalable
metadata and high performing system and service [5].

III. ISSUES AFFECTING CLIENT-SERVER
APPLICATIONS

DAS are Array based block storage which use a
Sequential contiguous access and thus experience
more execution time O(N2) and the need physical file for
execution to occur. NASD are Array Object based which
use Sequential Access and metadata prefetching with
an execution time of O (log n) due to the fact that file is
not cached there are high latencies involved in order to
get the file downloaded, physical disk needs to be
available [3, 12, 22, 23]. OSD on the other hand are
object based which use Metadata prefetching, caching
and Chunking. OSD has good performance, uses divide
and conquer to handle the files whose worst case run
time is O (n log n) leading to the Flattening of metadata,
although it also does not handle network bandwidth
well. OSDs purely use metadata objects to access
storage [2, 30], Hyper-dex [10, 19, 11] lustre [21, 24, 26,
8, 5, 14] suggests metadata prefetching and flattening
as a solution to the OSD problems this method has the
following benefits:
— The Object ID is a locality hint, with closeness
indicating relationships, for internal layout and cache
management policies.
— Index structures for object metadata may be
arranged as tables to offer better locality.
— A set of related files may be identified by a unified
object ID range instead of an enumerated list.
Although metadata prefetching solves the issues of
latencies it does not provide a solution to the high
latencies experienced through metadata requests and
transmission. To better solve these problems [15, 2, 20],
Rados Gateway [7, 35, 16] have used agent based
solutions to improve the problems encountered during
the client-server interractions. Self-managed systems
use two approaches, Distributed approach and
Autonomic Computing approaches:

A. Distributed approach
In this architecture the number of client storage
interactions that must be relayed through the file
manager is reduced and thus leading file manager’s
reduced work. Since one channel can be used to
transmit the data effectively this reduces bandwidth.

B. Autonomic Computing approaches
Alberola (2010) describes Autonomic computing as the
self-managing characteristics of distributed computing
resources, adapting to unpredictable changes while
hiding intrinsic complexity to operators and users [1].
The popular approaches that have previously been
applied under this category are:
—Architectural Approach: This approach promotes
the assembly of components, autonomic in nature, thus
influencing the actions taken by the system in response
to changes in the user behavior or environment.
—Control Theoretic Approach: This approach has
classically been used in solving control problems in
computer systems like throughput regulation, power
management and load balancing. It further uses

Osero et al., International Journal on Emerging Technologies 11(3): 1147-1156(2020) 1149

prediction control mechanism to solve the network
delays and unpredictable operating environments to
solve challenges beyond classical control.
 —Emergence-based Approach: This approach
emerges simple behaviors of systems at the micro level
with asynchronous exchange of data between
subsystems.
— Agent-based Approach: This approach is suited for
distributed systems with many complex interactions;
forming large societies or organizations used to handle
distributed problems [33].
— Legacy Systems: This approach focuses on defining
the requirements for a system to be adaptable to
existing platforms and therefore it can easily be
controlled.
Our research focused on the Agent based approach in
solving the client-server issues, together with Map
reduce for metadata sorting in order to create sorted
metadata domains.

IV. MOBILE-AGENT BASED DISTRIBUTED
NETWORKS

Distributed Mobile Agents use in distributed networks
are an emerging technology that is gaining momentum
in the field of distributed and autonomic computing to
develop applications for mobile, pervasive, and
distributed computing. The use of mobile agents can
bring some interesting advantages when compared with
traditional client/server solutions; it can reduce the traffic
in the network, it can provide more scalability, it allows
the use of disconnected computing and it provides more
flexibility in the development and maintenance of the
applications. A common problem when one wants to
benefit from mobile agent technology to develop
distributed applications is the decision about which
platform to use fortunately in the latest years several
commercial implementations of mobile agent systems
have been presented in the market, in which for the
clients to be easily identfied domain metadata needs to
be first sortedinto specific IP cluster domains and
eventually mapped to the clients via the Domain
controller (DMC).

A. Reasons for Mobile Agents
The study of mobile agents has a wide range of
applications in our day to day applications which is not
only promoted by technological advancements demands
but also how they can be of help in creating distributed
network environments. The following are the motivating
factors for the use of mobile agents [4]:
— Load reduction. In Fig. 1. Computations are taken or
moved to the data and not the data being taken or
moved to the computations.
— They overcome network latency, can be localized
and directly executed via the controller.
— They are used in encapsulation of protocols; Mobile
agents, are able to migrate to remote hosts in order to
establish a channels of communication based on
proprietary protocols.
— The agent execution is asynchronous and
autonomous in nature. They can act on their own

without undue influence of the process that created
them as shown.

Fig. 1. Mobile Agents Reduce Network Load [4].

Fig. 2. Disconnected Operation with Mobile Agents.

— They are able to adapt dynamically. They can
optimally be distributed over the network to other nodes
to solve particular problems.
— They are heterogeneous in nature.
— They are fault-tolerant and robust. Since they provide
a centralized code server, from where all the other code
is stored. Although the server code ensures a solid
structure it does not necessarily permit an efficient
migration of the agents through the platform. A single
centralized point of request can easily become a point of
failure in the system. Fetching the classes from a single
node can equally be a very inefficient approach and
does not meet the needs for high-performance
computing. One major characteristic of the mobile agent
systems is capability of flexibly and efficiently
transporting both the data and code to where they are
mostly needed.

B. Mobile agent-based Map Reduce system
Map Reduce is a computing platform with certain kinds
of distributable problems using a cluster consisting of a
large number of computers, the original map-reduce
consists of three phases: Map-phase, worker phase and
Reduce phase. New models using agents have been
suggested where the Mapper agent is a container agent
corresponding to the master node in the Map Reduce
pattern, it supports multicast coordination and contains
at least one worker agent inside it.
Fig. 3, developed by Satoh (2014) describes a platform
for dynamically organizing multiple mobile agents for
computing, it depicts a comprehensive model for map-
reduce platform employing mobile agents, advancing on
the model previously proposed by [31], also previously
demonstrated that agent size has a direct implication on
cost.

Osero et al., International Journal on Emerging Technologies 11(3): 1147-1156(2020) 1150

`
Fig. 3. Mobile agent-based Map-Reduce system.

V. A PERFORMANCE EVALUATION OF MULTI-
AGENT PLATFORMS

In order to implement the mobile agent system in
distributed network a suitable model has to be sought to
cost effectively design and test the system. Multi-agent
Platforms (MAPs) provide tools to help in the
improvement, development and implementation of Multi
Agent Systems (MASs). Following the large number of
existing MAPs in the market, choosing a suitable tool to
develop a MAS becomes a challenging for MAS
developers, Alberola, (2010) [1] gives an analysis of the
current MAP deficiencies through an in-depth research
where he analyzed the current MAPs and the features

they provide as shown in the Table 1 below. These
results have been a key driver in the choice of multi
agent platforms.
According to Alberola, (2010), there are many existing
criteria for selecting MAP like; the tutorials, degree of
support, availability of different operating systems,
documentation support for development, discussion
forums, and etc. According to their study platforms that
are FIPA compliant and Open Source OS are the most
preferred: Java based Zeus and Python based Spade
are the best satisfying all the identified MAP selection
criteria.

Table 1: Features Provided by Various Multi-agent Platforms [2].

Platform Language O.S. FIPA Sec Org. Comm
3APL Java � � - - RMI
AAP April � � - - ICM
ABLE Java � - RMI
ADK Java - - � -

AgentDock Java - � RMI
AgentScape Java/Python � - - - RMI

Aglets Java � - � - RMI
Ajanta Java � - � RMI

Ara � - � - RMI
CAPA Java � - -

CapNet C# - � � - Several
Concordia Java - - � - RMI
Cougaur Java � - � - RMI/Corba/http

CrossBow Java - Proxy
Cybele Java � - -

Dagents � - � - RPC
Decaf Java � - -
Genie Java � � - - RMI

Grasshopper Java - � � - RMI
Cypsy Java � - � - RMI
Hive Java � - � - RMI
Jade Java � � - - RMI/Corba/http
Jack Java - - - � tcp/ip

Jackal Java - - � tcp/ip
Jason Java � � - Jade
Mage Java � � - RMI
Madkit Java � - - � Sockets
Sage Java � � � - RMI

Samoa Java � - � - RMI
Soma Java � - � - Corba
Spade Python � � � � Jabber
Spyse Python � � -

Voyager Java - - � - RMI/Corba
Zeus Java � � � �

1151

VI. SPADE AGENT FRAMEWORK FOR IOT
IMPLEMENTATION

SPADE platform research has been carried out by [1] on
Multi Agent Platforms (MAPs) where he Identified the
strengths of various platforms, the strength of SPADE
lay in the use of FIPA and open source and it has also
inbuilt enabled security features. The other strengths of
SPADE are described in [9, 47].
The model is composed of a connection, a message
dispatcher, and a set of different behaviors. Every agent
requires Jabber ID (JID) and a password for the
establishment of a connection with the XMPP server.
The JID is composed of a username, an @, and a
server domain which will be the name that identifies an
agent in the platform,
e.g.myagent@myhomeprovider.com. This model will be
suitable in the implementation of the actual mobile agent
model.

A. Common Spade Agent Services
[65] describes some of the common agent service as a
component to provision user machines or application
servers across the whole enterprise an architecture that
has been advanced in the design of our IOT based
model. These services provide remote deployment
capabilities, secure connectivity, and shared machine
resources. The Services they offer include the
subcomponents shown in Fig. 4.

Fig. 4. Common Agent Services [33].

1. Agent manager: It ensures a secure connection
between managed endpoints and maintaining the
database information.
2. Common agent: It acts as common container for all
of the subagents to share resources during the
management of a system.
3. Resource Manager: Together with the subagents
they are used for software distribution and software
inventory scanning.

B. Spade with FIPA Framework
The Spade agent model conforms to the standard FIPA
specifications which makes it compatible with other
network and software platforms [37] described the FIPA
framework as consisting of the following key
components as illustrated in the FIPA reference model
below.

Fig. 5. FIPA archtecture.

FIPA Agent Communication procedures define the
Agent Communication Language (ACL) messages
which describe how; message exchange interaction
protocols, speech act theory-based communicative acts
and content language representations.
The FIPA ACL contains message specific
communications controls within the FIPA framework.
The objectives of standardizing the FIPA ACL message
provide:
— Compatibility through a standard set of ACL message
structure.
— Well-defined process to maintain the defined set.

C. Spade Agent messaging relationships
An agent is thought of having the following relationships
as defined by [36] depicted as a UML in Fig. 6.

Fig. 6. UML- Basic agent relationships.

Xu et al., [36] further describes the transport relationship
from one agent to another, with Transport-message
being the conveyed object from one agent to another. It
further contains the transport-descriptor for the sender
of the message and receiver(s), along with a payload
containing the message, as shown in Fig. 7.

Osero et al., International Journal on Emerging Technologies 11(3): 1147-1156(2020) 1152

Fig. 7. UML Transport relationships.

The relationships described in the above models are
an important precursor in the design and
implementation of an effective IOT design.

VII. THE NEED FOR MAP REDUCE IN A

DISTRIBUTED NETWORK

It is estimated that there will be approximately 125
billion Internet of Things (IoT) devices connected to the
Internet by 2030, which are expected to generate large
amounts of data. This will challenge data processing
capability, infrastructure scalability and privacy [49].
The map-reduce model uses the key-value pairs where
the records with similar key (i.e. word) are grouped
together where finally they are fed into the reducing
function which then aggregates the input values and
generates an output of the aggregate occurrences in a
given document(s) [25], therefore, map-reduce is a
simple and efficient for computing aggregate. The idea
of map-reduce is not different from “filter and then group
aggregation” and its major advantages are as follows
[17]:
— Simple and easy to use: Only define the work by use
of map and reduce functions.
— Flexibility Map-Reduce: There is loose coupling
between data model and schema; irregular or
unstructured data can easily be handled than it is with
the DBMS.
— Independence storage: Map-reduce does not rely on
the underlying data models layers but are compatible
with different storage layers like the Big Table and
others.
— Fault-tolerant: Map reduce can continue to work even
if some failures have been encountered in the system.
— Highly scalable: Map-Reduce is advantageous
because of its high scalability. Yahoo has in its report
that the Hadoop gear was able to scale out 4,000
nodes.
Performed An experiment showed that map-reduce
scales better on both increased nodes and data [25].
Dataset: File Size used = 100 Mb
Experiment for increasing size of dataset and nodes

Fig. 8. Execution time versus the number of nodes

[25].

Fig. 9. Execution time, varying dataset and Nodes
[25].

Fig. 8 above indicates as that the number of nodes
increases the time of execution decreases in the
Hadoop cluster. It is also clear in Fig. 9 that as the
number of node increase from 2 to 4 the time taken to
download the same amount of data decreases
significantly; a clear indication of how scalable map
reduce is with increase in load capacity. In applying
Map-reduce Model to the cloud [45], Fig. 10 and 11
compares the response time and throughput of Map-
reduce and Round-Robin scheduling algorithm and he
observed that there was an improvement of Map
Reduce as compared to Round Robin in regards to
Response time and Throughput as shown below:

Fig. 10. Reponse time of Map Reduce over Round
Robin [45].

Osero et al., International Journal on Emerging Technologies 11(3): 1147-1156(2020) 1153

Fig. 11. Shows improvement of Map-Reduce over
Round Robin in terms of throughput [45].

A. Performance Comparison of Open MP, MPI, and
Map Reduce in Practical Problems
Open MP: Open MP is an (API) that facilitates easy
development of parallel programs in shared memory
where threads can share the same memory address
space and thereby enabling communication between
threads to be very efficient [38].
MPI: Is a message passing library on a distributed
computing environment. Programmers take charge of
partitioning workload and mapping tasks about which
tasks are to be computed by each process. Table 2 and
3 below shows practical problems execution time [38].
Execution Times for the all-pairs-shortest path problem.

Table 2: Execution Times for the all-pairs-
shortest path problem.

Node size Framework

 MapReduce Cluster

Single
Machine

MPI

Open MP

10 2m 26s 0.32 s 0.34 s 0.1 s

100 16m 52s 0.44 s 0.41 s 0.25 s

1000 4h 4m 39 s 4m 48 s 24.14 s 8.03 s

Table 2 above compares three parallel system
execution frameworks the results above indicate poor
performance of map-reduce on computational-intensive
and iterative computation problem.
There are improved response times as the number of
Nodes increase.

Table 3: The execution time for the join problem.

Problem Framework

 MapReduce MPI Open MP
The Join
problem

24m 15s 135h34m 93h14m

Table 3 shows that the execution time varies depending
on the execution context like network bandwidth and
resource management for operating systems. The same
experiments have been conducted three times for each
setting. The MapReduce-based program was the best
one among the three models for data-intensive
processing of big volume of data [38]. Therefore this
justifies the need for Mapreduce in dealing with
distributed unstructured data/metadata sets.

VIII. GAPS IDENTIFIED IN THE RELATED WORK

There have been a number of gaps that have been
observed in the previous researches some of which this
research aims to accomplish including the following:
— There has been an increase in the data processing
demands and this requires faster systems that can scale
well over short periods of time, most of the systems so
far covered in the literature are either traditional in
nature like SAF (DAS) systems which are array based
or they are object based like NASD and OSD but they
experience high latencies and decreased throughput as
witnessed in [10, 11, 13, 19, 22, 23].
— In all the models so far discussed in the literature
none has attempted to compare all the other previous
models: SAF, NASD, OSD and their associated
metadata with the agent based and map reduce
platform in order to establish the weaknesses or
strengths of these models in terms of performance and
scalability.
— So far there has been no specific model or
framework for agent development that has been
implemented on the existing mobile agent frameworks
with map reduce; although [31, 32, 39-42] only provide
models for agent development and no particular
framework or architectural model for agents has been
implemented so far in these systems.
— Low bandwidth and unmanaged Latencies have a
major effect on the performance a distributed cluster or
network, data prefetching methods have been
implemented through predictive prefetching algorithms,
but little progress has so far been made on metadata
management schemes [48]; Although, [5] provide a
solution to bandwidth issues which occur when the
client and server interact, this solution only improves on
bandwidth and not latencies.
— So far there has been little effort to consider the
effects of creating locality of reference through metadata
sorting and subsequently identifying its effects on
performance improvement on a distributed cluster. In
their solution [10,14] extensively used unsorted blocks
of metadata for mapping the metadata to the client,
which is not efficient.
— There is no major distributed network platform that
has so far been developed for testing the performance
of a distributed network more specifically using mobile
agents together with the map reduce algorithm that has
been independently been used for big data and data
mining solutions [46] and the Internet of things IOT [32].
There have been major attempts to use Mobile agents
on a distributed network platform together with map
reduce by [31, 32, 39-43] but they didn’t explore the
performance implication of both the agents and map
reduce.
— So far there is no Custom made Distributed storage
performance testing Simulator developed to address file
level performance testing although, most of the
simulators existing are only meant for the lower layers of
the OSI model (Physical, Data link and Network layers)
as witnessed in [43, 44]. This makes it very hard to test
file performance and scalability on this physical
networks and custom made simulation tools.

Osero et al., International Journal on Emerging Technologies 11(3): 1147-1156(2020) 1154

A. The General Virtualized Secure Agent Based IOT
Architecture
To address the gaps that exist between mobile agents
and network attached disks that have not yet been fully

exploited; a more intelligent, self-managed and secure
storage environment has been proposed to address the
issues of latencies and throughput on big data requests
on Internet of Things.

Fig. 12. A Conceptual Architecture for intelligent objects using agents and Map-reduce.

Fig. 12 above shows an architectural model of the agent
based design using map-reduce it is a three tiered
model with the client as the front end the virtual serve as
the middle tier and storage SAN as the backend, the
functionalities of this model are as follows:

1. Storage Area network (SAN)-It is responsible for the
storage of the physical files it is implemented as a
storage container that has a global IP address to identify
the container; included is also the port number and
individual internal IP address to identify each internal
individual container.
2. Virtual Server(VS)-It contains the logical
implementation of the switching of networks to enable
the clients access the metadata. It is also responsible
for the authentication of the clients by providing a
tokenization mechanism whose capabilities are stored in
the database and later mapped onto the storage to
allow clients download files.
3. Client-It is an important aspect of this distributed
architecture. It is responsible for requesting for the files
and then allowing the clients to view the files through
the console or preferred browser interface.
4. Map-reduce Functions-Responsible for sorting and
reducing metadata functions which can then be
transported to client side for further processing.
5. Mobile Agent-It is responsible for migrating sorted
metadata values from the virtual resource server to the
client side.
6. Local Client-Functions hand in hand with the domain
controller, which manages the local switching of clients
and keeps a registry of the requested and served
metadata requests for each client, it also caches the
requests for future access.
The model uses a search mechanism to the existing
metadata resource storage pool enhanced by the map
reduce algorithm that sorts the metadata blocks
according to the client IP address domains before
mapping them to a mobile agent and eventually
migrated to a Domain Controller (DMC).
The mobile agent then fetches the sorted metadata
(using map-reduce function) pool and migrates them to

one of the selected local servers where they are
executed henceforth, this would be terminated if this
particular local server terminates normally or it is
terminated by the parent server in case the local server
used the resources that were not allocated to it or
issued instructions beyond its allocated mandate or a
critical unrecoverable event happened.
The clients within a particular domain are then given the
resource paths indicating where a certain physical
resource is located in the storage area network physical
disks as long as the requests are valid.
The local server has the potential of enforcing their local
security mechanisms to be able to protect the clients
within a particular domain.

IX. CONCLUSION

We have explored using literature survey the strengths
and weaknesses of client-server environments and also
the strengths of map reduce model, we were able to
identify distributed systems approaches such as
Distributed approach and Autonomic Computing
approaches.
As can be seen in Fig. 9-11 and also Table 2 and 3 it is
clear that map reduce has the capability of improving
both throughput and system scalability and therefore
justifying the reason why it has been earmarked to be
used our IoT architecture design.
This research is also based on the autonomic approach
by use of mobile agents which also combines the aspect
of map reduce to come up with the hybrid architectural
design aimed at eventually improving performance of a
distributed network through delocalization of metadata
by creating independent and secured metadata clusters
through caching at the domain controller(DMC).Unlike
the SAF and OSD models, the IOT model in this paper
will have the capability of creating independent clusters
which will be cached in the DMC with their identified
domains and therefore minimizing the fetch execute
cycles which will not only improve the security of the
system but also minimize latencies and increase
throughput.

Osero et al., International Journal on Emerging Technologies 11(3): 1147-1156(2020) 1155

Having identified subtle gaps with other existing storage
models this research was able to make a contribution in
formulating an IOT architectural design that will
eventually be implemented as a simulator for
performance improvement testing of the traditional
methods (SAF, NASD and OSD) of storage as
compared to mobile agent based OSDs in a distributed
storage network.

X. FUTURE SCOPE

Since IOT is an emerging trend, our research will focus
in Implementation and testing, using the resulting
simulator, of the above IOT architecture in the Python
environment and then testing of the performance
improvement in the Mobile agent based OSDs as
compared to the SAF and OSD and eventually the
actual IoT system implementation.

ACKNOWLEDGEMENTS

The authors would like to thank the School of
Computing and informatics, University of Nairobi, and
Chuka University Department of Computer Science for
ALL the resources and the Conducive environment they
have provided to enable us to carry out our research.

Conflict of Interest. This research paper has no conflict
of interest since no similar research is being carried out
nor being funded by any other institution.

REFERENCES

[1]. Alberola, J. M. (2010). A performance evaluation of
three Multiagent Platforms. Artificial Intelligence Review,
34(2), 145–176.
[2]. Amazon (2019). 10-Minute Tutorials. Available at:
https://aws.amazon.com/getting-started/tutorials/.
[3]. Andrei, P. S. (2014). Evolution towards Distributed
Storage in a Nutshell,1267–1274.
[4]. Anon (2016). Concordia White paper. Available at:
https://www.cis.upenn.edu/bcpierce/629/papers/Concor
dia-Whitepaper/ (Accessed: 17 March 2016).
[5]. Avilés-González, A., Piernas, J. and González-
Férez, P. (2014). ‘Scalable metadata management
through OSD+ devices. International Journal of Parallel
Programming, 42(1), 4–29.
[6]. Caidi, M. (2008). ‘The Google File System Sanjay’,
Journal de Chirurgie, 145(3), 98–299. doi:
10.1016/S0021-7697(08)73776-1.
[7]. Ceph (2016). Welcome to Ceph. Available at:
http://docs.ceph.com/docs/master/# (Accessed: 30 April
2019).
[8]. CORP (2016). Content addressed storage systems,
EMC. Available at:
http:www.emc.com/products/systems/centera.jsp?openf
older=platform (Accessed: 26 June 2016).
[9]. Escriv, M., C, J. P. and Bada, G. A. (2014). ‘A
Jabber-based Multi-Agent System Platform ∗’, (January
2006). doi: 10.1145/1160633.1160866.
[10]. Factor, M. (2006). ‘Object Storage: The Future
Building Block for Storage Systems A Position Paper’,
119–123. doi: 10.1109/lgdi.2005.1612479.
[11]. Feng, D. (2004). ‘Enlarge Bandwidth of Multimedia

Server with Network Attached Storage System 3 The
Redirection of Data Transfer’, 489–492.
[12]. Gibson, G. A. (2001). A cost-effective, high-
bandwidth storage architecture’, High Performance
Mass Storage and Parallel I/O: Technologies and
Applications, (2014). 431–444. doi:
10.1109/9780470544839.ch28.
[13]. Hendricks, J. (2006). ‘Improving small file
performance in object-based storage’, (May).
[14]. James (2006). ‘Improving small file performance in
object based storage.’, CMU-PDL-06-104.
[15]. Karakoyunlu, C. (2013). ‘Toward a Unified Object
Storage Foundation for Scalable Storage Systems’.
[16]. Li, G. (2006). ‘Researches on Performance
Optimization of Distributed Integrated System Based on
Mobile Agent*’, 4038–4041.
[17]. Maitrey, S. (2015). ‘Handling Big Data Efficiently by
using Map Reduce Technique’. doi:
10.1109/CICT.2015.140.
[18]. Mark (2000). Storage Virtualisation, What is it all
about?
[19]. Mesnier, M. (2003). ‘01222722’, (August), 84–90.
[20]. ‘MSST-Cabrera’ (1991).
[21]. Oracle, S. (2011). ‘Lustre Software Release 2. x
Operation Manual’.
[22]. Osero, B. O. (2010). Storage virtualisation and
management. University of Nairobi.
[23]. Osero, B. O. (2013). ‘Network Storage
Virtualisation and Management Benard Ong ’ Era Osero
Lecturer Network Attached Devices , Storage
virtualization, Security. International Journal of
Education and Research, 1(12), 1–10.
[24]. Panasas, I. (2016). ‘Panasas’, Wikipedia. Available
at: https://en.wikipedia.org/wiki/Panasas.
[25]. Pedro Jos´e Marr ´on, Stamatis Karnouskos, D. M.
A. O. and the C. consortium (2011) No Title.
[26]. Permabit (2015). ‘Permabit’, Wikipedia. Available
at: https://en.wikipedia.org/wiki/Permabit.
[27]. Rajguru, P. (2011). ‘Available Online at
www.jgrcs.info ANALYSIS OF MOBILE AGENT’,
Journal of Global Research in Computer Science, 2(11),
pp. 6–10. Available at: www.jgrcs.info.
[28]. Randy, Fellows, A. R. and Kerns, R. (2012). ‘SAN
Virtualization Evaluation Guide’, p. 2.
[29]. Riedel, E. and Nagle, D. (1999). ‘Active Disks -
Remote Execution for Network-Attached Storage Thesis
Committee’, Science. Available at:
https://pdfs.semanticscholar.org/74ac/0dd0a14ea27f016
b170a1254c14fe8c73b37.pdf.
[30]. Rodríguez-enríquez, L. R. C. (2015). A general
perspective of Big Data : applications , tools’, The
Journal of Supercomputing. Springer US. doi:
10.1007/s11227-015-1501-1.
[31]. Satoh, I. (2011). Mobile Agent Middleware for
Dependable Distributed Systems.
[32]. Satoh, I. (2014). MapReduce-based Data
Processing on IoT’, (iThings). doi:
10.1109/iThings.2014.32.
[33]. Tate, J. (2017). Introduction to Storage Area.
[34]. Tekniska, K., Ögskolan, H. and Simsarian, K. T.
(2000). VETENSKAP OCH KONST Dissertation, March
2000 Computational Vision and Active Perception

Osero et al., International Journal on Emerging Technologies 11(3): 1147-1156(2020) 1156

Laboratory (CVAP).
[35]. Weil, S. A., Brandt, S. A. and Miller, E. L. (2006).
CRUSH : Controlled, Scalable, Decentralized Placement
of Replicated Data.
[36]. Xu, H. and Shatz, S. M. (2001). A Design Model for
Intelligent Mobile Agent Software Systems’, pp. 1–23.
Available at:
file:///C:/Users/ltturche/Downloads/32bfe51224d170bc4
2.pdf.
[37]. Yazdi, H. T., Fard, A. M. and Akbarzadeh, T, M. R.
(2008). ‘Cooperative criminal face recognition in
distributed web environment’, AICCSA 08 - 6

th

IEEE/ACS International Conference on Computer
Systems and Applications, 524–529. doi:
10.1109/AICCSA.2008.4493582.
[38]. Kang, S. J., Lee, S. Y. and Lee, K. M. (2015).
‘Performance Comparison of OpenMP, MPI, and
MapReduce in Practical Problems’, Advances in
Multimedia, 2015, pp. 1–9. doi: 10.1155/2015/575687.
[39]. Satoh, I. (2003). ‘Building reusable mobile agents
for network management’, IEEE Transactions on
Systems, Man and Cybernetics Part C: Applications and
Reviews, 33(3), pp. 350–357. doi:
10.1109/TSMCC.2003.818944.
[40]. Satoh, I. (2004). Dynamic Federation of Partitioned
Applications’, 2–6.
[41]. Satoh, I. (2016). ‘Agent-based MapReduce
Processing in IoT’, 1(Icaart), 250–257. doi:

10.5220/0005802102500257.
[42]. Satoh, I. and Society, I. C. (2003). ‘A Testing
Framework for Mobile Computing Software’,
[43]. Sarkar, N. I., Member, S. and Halim, S. A. (2011).
‘A Review of Simulation of Telecommunication
Networks : Simulators, Classification, Comparison,
Methodologies , and Recommendations’.
[44]. Kabir, M. H. (2014). ‘Detail Comparison of Network
Simulators’, (November). doi:
10.13140/RG.2.1.3040.9128.
[45]. Sowmya, N., Aparna, M. and Tijare, P. (2015). ‘An
Adaptive Load Balancing Strategy in Cloud Computing
based on Map Reduce’, (September), 4–5.
[46]. Li, G. (2006). Researches on Performance
Optimization of Distributed Integrated System Based on
Mobile Agent. 4038–4041.
[47]. Palanca, J. (2018). ‘SPADE Documentation’.
[48]. Tutorialpoint (no date) REDIS - QUICK GUIDE
REDIS - ENVIRONMENT REDIS - DATA TYPES.
[49]. Alsboui, T., Qin, Y. and Hill, R. (2020). Enabling
distributed intelligence for the Internet of Things with
IOTA and mobile agents’. Springer Vienna.
[50]. Chang, V., Méndez, V. and Muthu, M. (2020).
Emerging applications of internet of things, big data,
security, and complexity : special issue on collaboration
opportunity for IoTBDS and COMPLEXIS’, Computing.
Springer, 102(6), 1301–1304.

How to cite this article: Osero, B. O., Abade, E. and Mburu, S. (2020). A Virtualized Mobile Agents Based IoT
Model with Map-Reduce: Using the Python’s Spade Framework. International Journal on Emerging Technologies,
11(3): 1147–1156.

