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ABSTRACT: In this article, we have studied the Black-Scholes partial differential equation (BSPDE) 

which is a fundamental model in financial mathematics that describes the behaviour of option pricing. One 

important application of the Black-Scholes equation is in the pricing of European call and put options 

traded in the stock markets. Traders and financial analysts use this model to estimate the fair value of 

options, helping them to decide when to buy or sell these contracts. Under the theoretical framework of BS 

model supporting the efficient functioning of financial markets, we can have accurate risk assessment and 

execute perfect investment strategies. In this study, we have employed the Crank-Nicolson (CN) method to 

solve the Black-Scholes equation for real volatility. An accurate second-order solution in both asset space 

and time dimension are provided by the finite difference Crank-Nicolson method. We have applied a tri-

diagonal matrix algorithm to solve the Black-Scholes PDE using the Crank-Nicolson method, in which a 

system of linear equations is constructed. In real-time situation, the accurate volatility estimation is crucial 

because it deeply affects the option pricing and the risk assessment. Volatility reflects the uncertainty or 

risk associated with the price movement of an underlying asset. Its precise estimate ensures that traders 

take well-informed decisions. Using accurate volatility estimates, investors can better manage their 

portfolios and hedge against potential market fluctuations, leading to more stable, predictable, and 

profitable outcomes. The Crank-Nicolson method provides an accurate and efficient solution to the Black-

Scholes equation for real volatility. The method is stable and can easily be extended to more complex 

financial models. Our scheme is designed to describe the behaviour of financial options in the presence of 

real-world volatility, which is often characterized by a nonconstant volatility. Here, we have applied the 

CN method to solve BS PDE numerically and simulated the call option results through MATLAB. We have 

also presented the graphical and numerical solutions to the option pricing problem.  

Keywords: Black-Scholes partial differential equation, European Option Pricing, Call option, Numerical scheme, 

CN Method, Indian financial market.   
 

INTRODUCTION 

In this paper, we examine Black Scholes partial 
differential equations (BSPDEs) which is a fundamental 

model in financial mathematics that describes the 

behaviour of Pricing options. The BSPDE can be used 

to price European-style options, and can also be used to 

model other financial derivatives such as mortgage-

backed securities. The BSPDE is a powerful tool for 

understanding the behaviour of financial markets. The 

BSPDE is used to analyse the pricing of financial 

derivatives such as stock options and futures contracts. 

It can also be used to model the pricing of financial 

assets such as stocks and bonds. The BSPDE is also 

commonly used to model the dynamics of stock prices. 
It is a powerful tool for financial modelling and can be 

used to price a wide range of financial instruments, 

including options, derivatives, and bonds. Its flexibility 

and accuracy make it an essential component in the 

toolkit of financial analysts and risk managers. By 

leveraging this tool, professionals can make more 

informed decisions and optimize their investment 

strategies, and also use the estimated volatility in the 
BSPDE of the real stock price data. This method 

provides a comprehensive approach to understanding 

market dynamics and making informed investment 

decisions. By incorporating real stock price data, the 

model offers a more accurate reflection of market 

conditions, enhancing its predictive capabilities and 

reliability and solve the BSPDE using the Crank-

Nicholson method. The BSPDE can also be used to 

analyse the effects of monetary policy on stock prices. 

In addition, the BSPDE can provide insight into the 

optimal investment strategy for an investor. The study 

of volatility and fluctuations of stock prices is 
important, as various models for determination of 

option pricing like the classic BS model help investors 

and traders in determining the fair value of financial 

derivatives based on the underlying assets.  
FIIs and MF are the major institutional investors that 

play a vital role in Indian stock market. The role of 

technology in shaping Mutual funds flow in India is 
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studied by Jain (2019). In her study the correlation 

between FIIs and MF flows in equity, and debt market 
is found to be significant and positive. It is concluded 

that the investment made by mutual funds has surpassed 

FIIs investment with technology playing a crucial role 

in developing mutual funds as a stronger institutional 

investor in the market. 

Volatility plays a crucial role in risk management by 

providing insights into the potential price movements of 

financial assets. It allows investors and risk managers to 

assess the level of uncertainty and potential risk 

associated with an asset’s future performance. By 

understanding volatility, they can implement strategies 

such as hedges to mitigate potential losses and optimize 
their investment portfolios. Volatility directly impacts 

option pricing through its influence on the option’s 

premium. As volatility increases, option premiums 

typically rise as the uncertainty increases the possibility 

of significant price swings, therefore increasing 

profitability. Alternatively, low volatility leads to low 

option premiums since price movements are less 

drastic. Historical data plays a vital role in predicting 

volatility as it provides a record of past price 

movements and market behaviour. By analysing 

historical trends and patterns, investors and analysts can 
estimate future volatility levels and make informed 

decisions about potential risk exposure. Additionally, 

historical data helps in calibrating models to forecast 

future price fluctuations and enhance the accuracy of 

volatility predictions. Historical data also helps to 

identify trends and patterns that can be used to develop 

trading strategies. It can also be used to identify 

potential market entry and exit points. By accurately 

pricing options, the BS model enables market 

participants to make informed decisions about hedging, 

speculation, and risk management. Understanding the 

volatility and price fluctuations of stocks is essential for 
the effective application of the model. The classic 

Black and Scholes model employs a continuous-time 

framework with several assumptions, like constant 

volatility and constant interest rates, to derive analytical 

solution for option pricing Black and Scholes (1973). 

The model has been refined and modified over time to 

account for more complex market conditions. Modern 

versions of the model also consider the effects of 

transaction costs and time decay. Alternatively, the 

Cox, Ross, Rubinstein (CRR) binomial model uses a 

discrete-time approach. A binomial tree is used in this 
approach in order to simulate probable price 

movements over time (Cox et al., 1979).  

Both models provide foundational tools for evaluating 

options, though they have been expanded and adapted 

to account for more complex market conditions that are 

fundamentally based on the estimation of asset’s 

volatility during the life time of the option concerned 

Black and Scholes (1973); Cox et al. (1979); Yamasaki, 

et al. (2005). 

The outcome of the unpredictable movement of stock 

prices can be explained with the help of the evolution of 

stochastic processes like Brownian, geometric 
Brownian, and Levi process having i. i. d. increments 

Geman and Yor (1993); Madan (2010). Wiener process 

has been defined on the basis of probabilities assigned 

to the sets concerning process path. It has normally 

distributed increments which are independent, with a 
zero mean and the variance that is proportional to the 

time interval Madan (2010). For European call and put 

options, the BS model, as well as some other alternative 

models, can also be solved analytically. It is difficult to 

have an analytical solution for path-dependent options, 

like American or barrier options. However, numerical 

methods, such as Monte Carlo simulations or binomial 

trees, can be used to approximate their values. These 

methods provide a practical way to handle the 

complexity of path-dependent options. Numerical 

methods for these contracts have their own limitations 

Boyle (1997). Now a days jump diffusion models have 
become important as these models are more realistic. 

Jump diffusion models incorporate sudden, large 

changes in asset prices, which reflect real-world market 

events like economic announcements or geopolitical 

events. Unlike traditional models that assume 

continuous price changes, jump diffusion models 

capture the erratic and unpredictable nature of financial 

markets. This makes them more effective in modelling 

and forecasting asset price movements Kou (2002), also 

studies a jump diffusion model for option pricing. Asati 

et al. (2024) have presented a comprehensive analysis 
of Black Scholes Model encompassing its historical 

context, theoretical foundations, practical applications, 

limitations, and presented a critical review of the 

existing literature on the exact as well as the numerical 

solutions to the Black-Scholes model and discussed 

recent advancements in the field. Gangele and Asati 

(2024) have studied the Black-Scholes pricing model 

under varying dividend condition. Anwar and Andallah 

(2018) have studied some numerical solution of Black-

Scholes model. 

LITERATURE REVIEW 

Partial differential equations are very useful tools in 
mathematical modelling. The BSPDE is the most 

popular PDE for determining the price of an option 

contract Wilmott et al. (1995). Various researchers 

have also applied finite element methods to solve the 

BSPDE numerically Emmanuel et al. (2012); Thomas 

(1995); Babasola et al. (2018); Wilmott et al. (1995); 

Wade et al. (2007); Umeorah and Mashele (2019). 

Other than the finite element method, researchers often 

use finite difference methods, which approximate 

derivatives using difference equations on a grid. Singar 

et al. (2020) have studied the key generation using 
featured based Finite Element Method. The Finite 

Element Method (FEM) has turned into an effective and 

well-known apparatus to tackle the problems and find 

the solution of Engineering mathematics and financial 

world. 
Spectral methods are another alternative, where the 

solution is represented as a sum of basic functions, 

allowing for high accuracy with fewer grid points. 

Furthermore, the finite volume method conserves 

energy and mass over control volumes in computational 

fluid dynamics. Spectral methods have been widely 

used in fluid dynamics, where they provide accurate 
solutions for problems involving turbulence and 

complex boundary conditions. They are also applied in 
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meteorology for weather prediction models, where they 

help capture the global features of atmospheric 
phenomena. Additionally, spectral methods are utilized 

in quantum mechanics to solve eigenvalue problems 

with high precision. They are also used in image 

processing and computer vision, where they can be 

used to recognize objects in images. Spectral methods 

are also used in many other areas of science and 

engineering. Spectral methods are also widely used in 

finance, where they are used to solve complex 

optimization problems. They are also used in signal 

processing and data analysis, where they are used to 

detect patterns in data. Spectral methods are also widely 

used in weather forecasting, where they help to predict 
and analyse weather patterns. They are also used in 

medical imaging, where they are used to analyse 

medical images. The convection diffusion equation that 

is converted into a fully discrete problem with the help 

of the compact approximations for spatial discretization 

and Crank-Nicolson scheme for temporal discretization 

is studied by Goswami and Patil (2022). They have 

used a matrix method approach to establish the stability 

of Crank-Nicolson compact schemes for convection-

diffusion equation. Emmanuel et al. (2012) have 

studied some finite difference methods like implicit 
method and Crank-Nicolson methods for determination 

of option pricing. It is concluded that the Crank- 

Nicolson finite difference method is more stable, more 

accurate and converges faster than that of the implicit 

method. Wade et al. (2007) have applied an improved 

smoothing strategy for the Crank–Nicolson method 

which is unique in achieving optimal order convergence 

for barrier option problems. This strategy enhances the 

accuracy of numerical solutions by effectively 

addressing the discontinuities at barrier boundaries, 

making it a significant advancement in financial 

mathematics. Furthermore, the numerical experiments 
for one asset and two assets have been discussed. 

Umeorah and Mashele (2019) have employed the 

Crank-Nicolson finite difference scheme to estimate the 

prices of rebate barrier options. They have also 

discussed the effect of rebates on barrier option values. 

The numerical solution of the Black-Scholes PDE is an 

important area of research, with contributions from 

several notable authors, viz., Smith (1985); Smith et al. 

(2018); Jones and Brown (2016). These authors have 

explored various numerical methods and their 

applications in financial mathematics, further advancing 
the field Jeong et al.  (2018); Babasola et al. (2018). 

These authors have explored the finite difference 

methods like Crank-Nicholson with their convergence 

and stability for the option pricing problem regarding 

European options. Kumar and Agrawal (2017) have 

studied the computational efficiency of various 

numerical schemes for solving the BS equation. They 

have extended the BS model, incorporating dividend 

yields and stochastic volatility in the model. The 

application of the Crank-Nicolson method in case of 

these situations makes it an efficient instrument for 

financial world problems. Ganga Ram et al. (2022) 
have studied the exotic options, such as barrier and 

lookback. They emphasized the ability of the Crank-

Nicolson method to handle non-smooth payoff 

structures effectively. Amadi et al. (2020) have also 

presented the applications of numerical methods 
applicable in the case of real-world market problems for 

high frequency trading. Banu (2019a) have studied the 

analyse of the effect of monetary policy instruments on 

the bank’s revenue and profitability of the India’s 

largest public bank “State Bank of India”. Banks played 

an un-denying relentless role in the banking system of 

modern India. It is not only commendable but also 

adorable. The efficiency of the banks is crucial for the 

existence of smooth flow of trade locally and 

internationally. The results indicate that there exists a 

strong correlation among public, private and foreign 

sector banks with regard to return on equity, return on 
investments, return on assets and return on advances on 

the profitability position Banu and Vepa (2019b). 

Wokoma et al. (2020) have presented the estimation of 

Stock Prices using Black-Scholes Partial Differential 

Equation for Put Option.  

MATHEMATICAL DETAILS 

Black and Scholes (1973) derived a complete option 

pricing model depending only on observable variables 

Duffy (2013). Their work revolutionized financial 

markets by providing a theoretical framework to price 

options, which was previously considered an art rather 
than a science. This model, known as the Black-Scholes 

model, assumes that the price of the underlying asset 

follows a geometric Brownian motion, leading to a log-

normal distribution of prices. The stock value in the 

model follows a log-normal diffusion process  

                  𝑑𝑆 𝑆⁄ =  𝜇 𝑑𝑡 +  𝜎 𝑑𝑊 .                           (1) 

Let 𝑆𝑡  be the value of the stock at the time t. The stock 

price can fluctuate due to various factors such as market 

conditions, company performance, and investor 

sentiment. By analysing these factors, investors can 

make informed decisions about buying or selling the 

stock. Change in this value from the previous value in 

percentage terms from 𝑡 to 𝑡 +  𝑑𝑡 is represented as 

(𝑆𝑡+𝑑𝑡 − 𝑆𝑡)/𝑆𝑡. A log-normal distribution for 𝑑𝑆/𝑆 

consists of two components: a drift term µ 𝑑𝑡, and a 

normally distributed stochastic term 𝜎 𝑑𝑊. The 

stochastic term is independent for each state, distributed 

normally with mean zero and variance 𝜎2𝑡. Hence, the 

percentage change in stock value from 𝑡 to 𝑡 +  𝑑𝑡 is 

normally distributed with mean µ 𝑑𝑡 and 

variance 𝜎2 𝑑𝑡. This implies that over a small-time 

interval, the stock price follows a geometric Brownian 

motion, which is a common model for stock price 

movements in financial mathematics. As 𝑑𝑡 gets small 

(tends to zero), 𝑆𝑡+𝑑𝑡 will not differ much from 𝑆𝑡 . This 

represents the characteristics of a diffusion process, 

which is a continuous, frictional kind of random walk 

around a trend term (Cox et al., 1979). 

NOTATIONS AND SYMBOLS 

In this Paper we have used the following Mathematical 
notations 

(1)  𝑉1  (𝑆, 𝑡): Theoretical value of the option.  
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(2)  K : Arbitrary fixed choice of strike price.  

(3) 𝑆 : Spot price, in addition, we use S by 𝑆𝑡  for 
simplicity. 

(4) 𝑒− 𝑟(𝑇−𝑡) : Discounting factor used for continuous 

discounting.  

(5) 𝑟 : risk-free interest rate.  

(6) 𝑡: Exercise time.  

(7) 𝜎 : Volatility of the stock.  

(8) 𝑑1 and 𝑑2 : Intermediate variables (constants).  

(9) 𝑁(𝑑1) and 𝑁(𝑑2): Values of the cumulative 

distribution functions (CDF) of the standard normal 

distribution at  𝑑1and 𝑑2 respectively. 
(10) P: Value of the put option.  

(11) 𝑉1 : Value of the call option.  

(12) 𝑃𝑉1(𝐾) : Present value of the strike price. 

DERIVATION OF THE BLACK SCHOLES 

PARTIAL DIFFERENTIAL EQUATION 

As per the assumptions of the Black-Scholes model, the 

price of the underlying asset (typically a stock) follows 

a geometric Brownian motion Wilmott et al. (1995); 

Jeong et al. (2018); Madan (2010). That is, 

𝑑𝑆   =S (µ dt + σ dW )                                               (2) 

where 𝑊 is a stochastic (Brownian) process, and also 

called the Winner Process. The uncertainty originates 

due to the infinitesimal increment in 𝑊, represented as 

𝑑𝑊. It is the only source of uncertainty in the stock 

price. Hence, 𝑊 is a process that wiggles up and down 

in such a random way that its expected change over any 

time interval approaches zero. This property makes 𝑊 a 

martingale, a process where future values are 

conditionally independent of past values, given the 

present. Consequently, predicting the future stock price 

based solely on its past performance is impossible. In 

addition, its variance over time 𝑇 remains non-zero. A 

good discrete analog for 𝑊 is a simple random walk. 

This implies that while the stock price can fluctuate 

unpredictably in the short term, its long-term trend is 

unpredictable. According to the random walk model, 

future stock prices cannot be predictably predicted 

based on past price movements. Thus, the above Eq. (2) 

states that the infinitesimal rate of return on the stock 

has an expected value µ and variance 𝜎 2 𝑡. The payoff 

of an option 𝑉1(𝑆, 𝑡) at maturity is known. To find its 

value at an earlier time, we need to know how 𝑉1 

evolves as a function of 𝑆 and 𝑡. Based on Ito’s lemma 

and stock value 𝑆 and time 𝑡, we have 

𝑑𝑉1  =  (  
𝜕𝑉1 

𝜕𝑡
 + 𝜇𝑆 

𝜕𝑉1 

𝜕𝑆
+ 

1

2
 𝜎2𝑆2

𝜕2𝑉1

𝜕𝑆2
 ) 𝑑𝑡 

                                            + 𝜎𝑆 
𝜕𝑉1  

𝜕𝑆
 𝑑𝑊                    (3) 

Now, we can have a portfolio, called the delta-hedging 

portfolio, consisting of a short position in one option 

and a long position of  
𝜕𝑉1

 𝜕𝑆
 shares at time 𝑡. 

Alternatively, we can also apply the concept of the 

replicating portfolio. To introduce a replicating 

portfolio to equate to 𝑉1 as a function of stock price and 

time, we arrive at the BSPDE. For constructing the 

replicating portfolio, a mixture of investments is 

constructed to produce a net return equivalent to the 

option segment. This mixed investment combination 

behaves like a replicating financial derivative. Let us 

consider the initial stock value 𝑆0, which is the stock 

price at 𝑡 =  0. The stock can move to possible values 

at time 𝑡 =  𝜏 , one being 𝑆𝑢 and the other 𝑆𝑑 . Here, a 

financial derivative for the option value 𝑉1 depends on 

time 𝑡 and is also dependent on the performance of the 

stock value 𝑆. If 𝑆 goes up, the value of 𝑉1(𝑆, 𝑡) will be 

reflected as 𝑈. If 𝑆 goes down, the value 𝑉1(𝑆, 𝑡)  will 

be equal to 𝐷. For the analysis, we also need the 

riskless interest rate 𝑟. This rate serves as a benchmark 

for evaluating investment opportunities and calculating 

the present value of future cash flows. It represents the 

return on an investment with no risk of financial loss. 

Typically, the riskless interest rate is derived from 

government bonds, such as U.S. treasury securities, 

which are considered free from default risk. This rate is 

crucial in determining the discount rate used in 

discounted cash flow (DCF) analysis. The riskless 

interest rate is a fundamental component in financial 

modelling, providing a baseline for assessing the 

potential returns of various investments. Its stability and 

predictability make it an essential tool for investors 

seeking to make informed decisions in the market. 

Consider a short-term bond with an initial value of one 

dollar. With continuous compounding, the value of 

such a bond at time 𝑡 is given by 𝑒𝑟𝑡 . Let us now 

construct a portfolio consisting of “𝑎” units of the stock 

and “𝑏” units of the bond, each worth one dollar. Thus, 

the portfolio’s value at time 𝑡 =  0 equals 

𝑃0  =  𝑎 𝑆0 + b. 1 

Based on a stock model, we can predict two future 

portfolio values at time 𝜏. At time  , the portfolio value 

is as follows: 

   𝑃𝜏  =  𝑎 𝑆𝑢 + b. 𝑒𝑟 𝑡 (up state),   𝑃𝜏 = 𝑈, 

   𝑃𝜏  =  𝑎 𝑆𝑑 + b. 𝑒𝑟 𝑡   (down state),  𝑃𝜏 = 𝐷 

Thus, the value of our portfolio 𝑃 is identical to the 
derivative security. In this case, the portfolio is said to 

replicate 𝑉1. This replicating portfolio is a very 

powerful tool. Now, we search for a suitable 

combination of stock and bond investments. At any 

time, the net worth of this investment is the target value 

𝑉1(𝑆, 𝑡). Assume that 𝑉1(𝑆, 𝑡) is some given smooth 

function of the variables 𝑆 and 𝑡. Define 𝜙(𝑡) as the 

number of shares of stock and 𝜓(𝑡) as the number of 
bonds. Therefore, the portfolio value is 

𝑉1(𝑆, 𝑡) = ∅. 𝑆 + 𝜓.𝑃𝑡       for   0 ≤ 𝑡 ≤ 𝑇, 
where 𝑃𝑡  is the value of a bond. The following equation 

represents the changes in the net worth of the portfolio 

𝑑𝑉1 = 𝜙 d𝑆 + 𝜓 d𝑃𝑡                                                   (4) 

For the stock and bond derivatives, we have 

𝑑𝑆 =  𝜇 𝑆 𝑑𝑡 +  𝜎 𝑆 𝑑𝑊. 
and 

𝑑𝑃 = 𝑟 𝑃 𝑑𝑡.                                                             (5) 
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Thus, eq. (4) becomes 

𝑑𝑉1 = 𝜙 (𝜇 𝑆 𝑑𝑡 +  𝜎 𝑆 𝑑𝑊) + 𝜓 (𝑟 𝑃 𝑑𝑡) 
Simplifying, we get 

 

𝑑𝑉1 = 𝜙 (𝜇 𝑆 𝑑𝑡 +  𝜎 𝑆 𝑑𝑊) + 𝜓 (𝑟 𝑃𝑑𝑡) 
                      =  (𝜇𝜙 𝑆 + 𝑟𝜓 𝑃)𝑑𝑡 +  𝜎 𝜙𝑆 𝑑𝑊        (6) 

 

Substitute this into Eq. (3) we obtain 

(𝜇𝜙 𝑆 +  𝑟𝜓𝑃) 𝑑𝑡 +  𝜎𝜙𝑆 𝑑𝑊 = ( 
𝜕𝑉1 

𝜕𝑡
+ 𝜇 𝑆

𝜕𝑉1 

𝜕𝑆
)𝑑𝑡  

+(
1

2
𝜎2 𝑆2

𝜕2𝑉1

𝜕𝑆2
 )𝑑𝑡 + 𝜎 𝑆

𝜕𝑉1 

𝜕𝑆
 𝑑𝑊 

 (7) 

Assuming 𝜙 as 

 

𝜙 (𝑡) =
∂V1

∂S
                                                                 (8) 

 

Substituting the value of 𝜙 into the Eq. (7) 

 

𝑟𝜓𝑃 𝑑𝑡 = ( 
𝜕𝑉1 

𝜕𝑡
+

1

2
𝜎2 𝑆2 𝜕2 𝑉1

𝜕𝑆2  ) 𝑑𝑡                         (9) 

 

Since 𝑉1(𝑆, 𝑡) = 𝜙𝑆 + 𝜓𝑃𝑡  ,we have 𝜓𝑃 = 𝑉1 − 𝜙 𝑆. 

From eq. (8)  

𝜓𝑃 = 𝑉1 − 𝑆
𝜕𝑉1 

𝜕𝑆
 

Substituting this into Eq. (9)  

 

𝑟 (𝑉1 −   𝑆 
𝜕𝑉1 

𝜕𝑆
)𝑑𝑡 = ( 

𝜕𝑉1   

𝜕𝑡
+

1

2
𝜎2 𝑆2 𝜕2 𝑉1 

𝜕𝑆2  )𝑑𝑡    (10) 

  

Simplifying, eq. (10) the option price PDE is obtained 

as follows 
 
𝜕𝑉1

𝜕𝑡 
+

1

2
 𝜎2 𝑆 2  

𝜕2𝑉1

𝜕𝑆2  +  𝑟 𝑆 
𝜕𝑉1

𝜕𝑆 
 − 𝑟 𝑉1 = 0             (11) 

 

This is known as the BSPDE for option pricing. Under 

the assumptions of the BSPDE, this second-order partial 

differential equation provides the option value (call or 

put) for any European option, as long as its price 

function 𝑉1 (𝑆, 𝑡) is twice differentiable with respect to 

𝑆 and once differentiable with respect to 𝑡. The BSPDE 

is a powerful tool in financial mathematics, offering a 

rigorous framework for pricing options. Its ability to 

handle a wide range of European options makes it a 

cornerstone of modern option pricing theory, that is 

based on the payoff function at expiry and boundary 

conditions Smith (1985); Øksendal (2003). 

THE BLACK-SCHOLES FORMULA 

The Black–Scholes formula evaluates the price of 
European put and call options. The obtained option 

price is consistent with the BSPDE (11) that we have 

already derived. This consistency confirms the validity 

of the formula and its practical application in financial 

markets. Furthermore, it allows traders to accurately 

price options, facilitating informed decision-making 

and risk management. In order to obtain this formula, 

one must solve the BSPDE for the terminal and 

boundary conditions given by Black and Scholes 

(1973); Hull and Basu (2017); Kumar and Agrawal 

(2017) as follow  

𝑉1( 0, 𝑡 )  =  0   for all t, 

 𝑉1 ( 𝑆 , 𝑡 ) →  𝑆 − 𝐾  𝑎𝑠 𝑆 →  ∞, 

𝑉1 ( 𝑆 , 𝑇 )  =  𝑚𝑎𝑥 { 𝑆 –  𝐾 , 0 }. 

The value of a call option for a non-dividend-paying 

underlying stock in terms of the Black–Scholes 

parameters is 

𝑉1(𝑆 , 𝑡 )  = 𝑁 (𝑑1)𝑆 −  𝑁 (𝑑2)𝐾𝑒−𝑟(𝑇−𝑡) , 
Where 

𝑑1 =
1

𝜎 √𝑇−𝑡 
  [ln (

𝑆

𝐾
) + (𝑟 −

𝜎2

2
) (𝑇 − 𝑡)], 

𝑑2 = 𝑑1 − σ√𝑇 − 𝑡 . 

The put–call parity condition allows us to evaluate the 

price of a corresponding put option based on put–call 

parity, with a discount factor 𝑒−𝑟(𝑇−𝑡). Hence, the value 

of the put option is given by 

𝑃 (𝑆, 𝑇) = 𝐾 𝑒−𝑟(𝑇−𝑡) − 𝑆 + 𝑉1(𝑆 , 𝑡) . 

This can also be written as 

𝑃 = 𝑁(−𝑑2 ) 𝐾 𝑒−𝑟(𝑇−𝑡) − 𝑁(−𝑑1 )𝑆   

Alternatively, the value of put option can be expressed 

as 

𝑃 = 𝑉1 +   𝑃𝑉1(𝐾) –  𝑆 . 

DERIVATION OF CRANK-NICOLSON SCHEME 

The Black-Scholes PDE that is the eq. (11)  for call 

option pricing is given as Dura et al. (2010); Rana and 

Ahmad (2012); Wade et al. (2007) 

𝜕𝑉1

𝜕𝑡 
+

1

2
 𝜎2 𝑆 2  

𝜕2𝑉1

𝜕𝑆2  +  𝑟 𝑆 
𝜕𝑉1

𝜕𝑆 
 − 𝑟 𝑉1 = 0               (12) 

Using the transformation 𝜏 = 𝑇 − 𝑡,  eq. (12) becomes 
 
𝜕𝑉1

𝜕𝜏 
 −

1

2
 𝜎2 𝑆 2  

𝜕2𝑉1

𝜕𝑆2  − 𝑟 𝑆 
𝜕𝑉1

𝜕𝑆 
 + 𝑟 𝑉1 = 0      (13) 

Using the initial and boundary conditions as 

𝑉1(𝑆, 0) =  𝑚𝑎𝑥 (𝑆(0) − 𝐾, 0)                                 (14) 

Our aim is to solve the BSPDE on a discrete asset-time 

grid. The domain of the problem is defined as 

[0, 𝑆𝑚𝑎𝑥]  × [0, 𝑇]. We discretize this domain using 

uniform asset and time strata with steps ∆𝑆 and ∆𝑡, 

respectively. The payoff at time 𝑇 is known, and thus 

the solution involves applying the concept of backward 

iteration to the square or rectangular grid until the 

expiration time 𝑇. Let us denote the option value at a 

given time and asset price as 𝑉𝑖,𝑘 = 𝑉(𝑡𝑖 , 𝑆𝑘  ), where 

𝑘 = 0,… , 𝑚 , and 𝑖 = 0,… , 𝑛, and 𝑆𝑘 = 𝑘 ∆𝑆 is the 

asset price at step 𝑘, 𝑡𝑖  = 𝑖 ∆𝑡  is the time at step 𝑖. The 

discretization forms a grid where the backward iteration 

starts with the payoff at 𝑡 =  𝑇 and proceeds step-by-

step to 𝑡 =  0. 

Crank and Nicolson (1947) introduced a numerical 

solution to a PDE arising from heat conduction 

problems. Their method, known as the Crank-Nicolson 

scheme, is an implicit finite difference approach that 

offers greater stability and accuracy compared to 

explicit methods. This technique is widely used in 

computational finance, engineering, and physics due to 

its robustness in handling complex boundary conditions 
and time-dependent problems. It is an unconditionally 

stable method.  
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Using the explicit finite difference (forward) scheme to 

transform the BSPDE (13), we obtain its discretized 
form as follows Hull and Basu (2003); Crank and 

Nicolson (1947). In order to simplify the notation of 

symbols, 𝑉1 ( 𝑆 , 𝑇 )  to 𝑉 (𝑆, 𝑡) is used. 

 
𝑉𝑖,𝑘−  𝑉𝑖−1,𝑘

∆𝑡
+ 𝑟𝑘 ∆𝑆 

𝑉𝑖−1,𝑘+1−  𝑉𝑖−1,𝑘−1

2∆𝑆
+

         
(𝜎𝑘 ∆𝑆)2

2
 
𝑉𝑖−1,𝑘+1−2𝑉𝑖−1,𝑘 +  𝑉𝑖−1,𝑘−1

(∆𝑆)2
 =  𝑟𝑉𝑖−1,𝑘     (15) 

Now, applying the implicit finite difference (backward) 

scheme to the transformed BSPDE (13) we obtain 
𝑉𝑖,𝑘−  𝑉𝑖−1,𝑘

∆𝑡
+ 𝑟𝑘 ∆𝑆 

𝑉𝑖,𝑘+1−  𝑉𝑖,𝑘−1

2∆𝑆
+

            
(𝜎𝑘 ∆𝑆)2

2
 
𝑉𝑖,𝑘+1−2𝑉𝑖,𝑘  +  𝑉𝑖,𝑘−1

(∆𝑆)2
 = 𝑟𝑉𝑖,𝑘                (16) 

Now, considering the average of (15), (16) and 

rearranging the terms, the numerical scheme becomes 
 

−𝛼𝑘𝑉𝑖−1,𝑘−1 + (−1 − 𝛽𝑘) 𝑉𝑖−1,𝑘 − 𝛾𝑘 𝑉𝑖−1,𝑘+1 =
                             𝛼𝑘𝑉𝑖,𝑘−1 + (1 + 𝛽𝑘) 𝑉𝑖,𝑘 − 𝛾𝑘  𝑉𝑖,𝑘+1                         

                                                                                 (17) 

The discretized finite difference scheme can be written 

in the matrix form as 

𝑨 𝑽𝑖+1 = 𝑩𝑽𝑖 , 

where A and B are tridiagonal matrices, and 𝑽𝑖 is the 

vector of option values at time step 𝑖. The tridiagonal 

matrix A is given as 

𝑨 =  

[
 
 
 
 
−1 − 𝛽1 −𝛾1 0 … 0

−𝛼2 −1 − 𝛽2 −𝛾2 … 0
0 −𝛼3 −1 − 𝛽3 … 0
⋮ ⋮ ⋮ ⋱ −𝛾𝑚−1

0 0 0 −𝛼𝑚 −1 − 𝛽𝑚]
 
 
 
 

 

and the tridiagonal matrix B is given as 

          𝑩 =  

[
 
 
 
 
1 + 𝛽1 𝛾1 0 … 0

𝛼2 1 + 𝛽2 𝛾2 … 0
0 𝛼3 1 + 𝛽3 … 0
⋮ ⋮ ⋮ ⋱ 𝛾𝑚−1

0 0 0 𝛼𝑚 1 + 𝛽𝑚]
 
 
 
 

 

where,  

(a) 𝑚 :     Number of asset price steps.  

(b) 𝑛 :      Number of time steps.  

(c) 𝑆𝑘  =  𝑘∆𝑆 : Asset price at step 𝑘. 

(d) 𝑡𝑖  =  𝑖∆𝑡 : Time at step 𝑖.  

(e) 𝛼𝑘 =
∆𝑡

4
 (𝑟𝑘 − 𝜎2  𝑘2)   : Coefficient determined by  

the discretization.  

(f)  𝛽𝑘 =
∆𝑡

2
 (𝑟 + 𝜎2  𝑘2) : Coefficient determined by 

the discretization.  

(g) 𝛾𝑘 =
− ∆𝑡

4
 (𝑟𝑘 + 𝜎2  𝑘2) : Coefficient determined by 

the discretization.  

(h) 𝑘 :    Index of the asset price step.  

(i) 𝑉𝑖,𝑘:  Option value at time step 𝑖 and asset price step 

k. 

(j) ∆𝑡 :Time step size.  

(k) ∆𝑆 :Asset price step size.  

Now, we simulate the Crank-Nicolson scheme in matrix 

form to generate graphs of option price with respect to 

stock price and time to be presented in the subsequent 

analysis in depth. 

 

 

EMPERICAL STUDY OF CALL OPTION SBI 

DATA 

Accurate volatility estimation is crucial because it 

directly impacts the pricing of options and the 

assessment of risk in financial markets. Volatility 

reflects the uncertainty or risk associated with the price 

movement of an asset. Precise estimate ensures that 

traders can make well-informed decisions. By using 

accurate volatility estimates, investors can better 

manage their portfolios and hedge against potential 

market fluctuations, leading to more stable and 

predictable financial outcomes. We have evaluated the 

volatility of the State Bank of India (SBI) security 
prices over the duration of 20 sessions during April–

May 2024. Here, we have applied various parameters 

and variable values as 𝑆𝑚𝑖𝑛 = 0, 𝑆𝑚𝑎𝑥 = 1520, 𝐾 =
760 and 𝑇 =  1 12⁄ . In this study, we have considered 

grid size 𝑚 =  600, 𝑛 =  800. The estimated volatility 

of SBI is 0.016 (𝜎), and the risk-free interest rate in the 

Indian context is chosen as 𝑟 =  0.065. Here, we have 

estimated the volatility of three stocks. We used the 
standard deviation of daily returns over the past year to 

estimate the volatility. This method provides insight 

into how much the stock prices have fluctuated during 

this period. By calculating the standard deviation 

(volatility), we can assess the risk associated with each 

stock. In the case of these three stocks, we calculate real 

volatility and plot the results. 

  
 
Fig. 1. The graph showing option value corresponding 

to the stock price. 

 
Fig. 2. The graph showing option value corresponding 

to the stock price and time. 
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Table 1: Data: One-month Historical data of Tata Consultancy Services. 

Date Open High Low Close Volume Change (%) 

27/12/24 4,164.85 4,163.00 4,180.95 4,147.25 858.10K -0.25 

30/12/24 4,158.80 4,151.00 4,199.30 4,112.00 1.53M -0.10 

31/12/24 4,094.80 4,135.00 4,139.95 4,032.05 1.56M -1.54 

01/01/25 4,112.45 4,094.40 4,134.00 4,085.45 763.16K +0.43 

02/01/24 4,175.75 4,120.00 4,183.00 4,096.95 1.72M +1.54 

03/01/24 4,099.90 4,179.95 4,179.95 4,092.30 1.79M -1.82 

06/01/24 4,095.00 4,105.50 4,149.65 4,066.40 2.09M -0.12 

07/01/24 4,028.30 4,114.95 4,140.35 4,011.55 2.67M -1.63 

08/01/24 4,108.40 4,034.90 4,126.00 4,017.75 2.18M +1.99 

09/01/24 4,038.85 4,101.00 4,137.75 4,025.30 2.39M -1.69 

10/01/24 4,198.72 4,134.10 4,229.58 4,104.57 7.89M +3.96 

13/01/24 4,223.77 4,178.39 4,255.12 4,161.07 4.00M +0.60 

14/01/24 4,166.63 4,234.50 4,246.24 4,152.85 3.44M -1.35 

15/01/24 4,182.92 4,151.82 4,189.66 4,141.43 1.65M +0.39 

16/01/24 4,140.30 4,193.16 4,226.62 4,126.08 2.64M -1.02 

17/01/24 4,124.30 4,159.00 4,160.60 4,100.05 1.76M -0.39 

20/01/24 4,077.80 4,145.80 4,145.80 4,068.10 1.29M -1.13 

21/01/24 4,035.85 4,095.30 4,111.00 4,030.00 1.97M -1.03 

22/01/24 4,156.60 4,050.00 4,163.15 4,044.20 2.41M +2.99 

23/01/24 4,169.70 4,168.00 4,187.95 4,155.95 932.74K +0.32 

Table 2: Data: One-month Historical data of Infosys. 

Date Open High Low Close Volume Change (%) 

27/12/24 1,916.75 1,924.15 1,903.90 1,909.40 3.94M +0.49 

30/12/24 1,906.00 1,916.00 1,886.50 1,915.70 7.79M -0.56 

31/12/24 1,880.00 1,897.00 1,845.05 1,892.30 3.61M -1.36 

01/01/25 1,882.85 1,892.95 1,874.00 1,874.00 1.84M +0.13 

02/01/24 1,957.85 1,962.65 1,885.30 1,887.00 7.08M +4.00 

03/01/24 1,938.75 1,952.95 1,922.00 1,952.95 6.22M -0.98 

06/01/24 1,937.85 1,973.00 1,928.00 1,952.00 7.16M -0.05 

07/01/24 1,930.85 1,958.55 1,923.65 1,945.00 4.29M -0.36 

08/01/24 1,933.15 1,938.60 1,888.75 1,930.00 5.48M +0.12 

09/01/24 1,917.30 1,951.85 1,910.55 1,934.05 6.83M -0.82 

10/01/24 1,966.95 1,977.80 1,932.25 1,937.00 8.04M +2.59 

13/01/24 1,962.20 1,982.80 1,949.00 1,956.00 5.80M -0.24 

14/01/24 1,940.05 1,971.80 1,931.10 1,968.85 5.79M -1.13 

15/01/24 1,949.65 1,958.05 1,937.10 1,947.00 2.99M +0.49 

16/01/24 1,928.45 1,966.95 1,916.85 1,965.95 7.53M -1.09 

17/01/24 1,815.45 1,858.00 1,812.00 1,851.00 16.41M -5.86 

20/01/24 1,813.30 1,827.95 1,793.15 1,822.95 4.33M -0.12 

21/01/24 1,800.70 1,831.65 1,793.05 1,819.05 7.17M -0.69 

22/01/24 1,856.45 1,865.80 1,805.15 1,807.40 8.37M +3.10 

23/01/24 1,874.35 1,879.55 1,853.45 1,858.00 3.04M +0.96 

Table 3: Data: One-month historical data of Tech Mahindra. 

Date Close Open High Low Volume Change (%) 

27/12/24 1,711.65 1,704.95 1,716.50 1,698.70 647.95K +0.76 

30/12/24 1,740.85 1,715.00 1,773.60 1,693.80 6.78M +1.71 

31/12/24 1,706.20 1,729.00 1,729.00 1,682.45 1.46M -1.99 

01/01/25 1,703.85 1,700.60 1,717.60 1,691.25 721.48K -0.14 

02/01/24 1,726.95 1,709.00 1,735.70 1,696.00 1.24M +1.36 

03/01/24 1,689.45 1,712.20 1,729.85 1,681.35 2.45M -2.17 

06/01/24 1,686.30 1,704.75 1,711.30 1,675.00 945.69K -0.19 

07/01/24 1,671.15 1,693.00 1,705.00 1,661.50 1.31M -0.90 

08/01/24 1,663.75 1,667.95 1,669.95 1,634.00 673.34K -0.44 

09/01/24 1,642.80 1,663.70 1,669.50 1,638.20 774.07K -1.26 

10/01/24 1,705.60 1,653.10 1,714.00 1,636.30 2.21M +3.82 

13/01/24 1,659.65 1,698.05 1,701.00 1,649.90 1.40M -2.69 

14/01/24 1,647.50 1,669.90 1,670.45 1,621.30 2.48M -0.73 

15/01/24 1,675.95 1,658.00 1,679.00 1,650.15 1.08M +1.73 

16/01/24 1,687.65 1,695.00 1,722.85 1,670.95 2.33M +0.70 

17/01/24 1,660.30 1,684.75 1,699.90 1,650.40 2.501M -1.62 

20/01/24 1,674.60 1,663.00 1,987.15 1,625.00 4.86M +0.86 

21/01/24 1,640.50 1,674.60 1,703.55 1,636.10 2.50M -2.04 

22/01/24 1,683.95 1,642.70 1,688.75 1,635.25 4.86M +2.65 

23/01/24 1,712.00 1,671.00 1,729.45 1,671.00 2.50M +1.67 

Table 4: Data: Estimated volatility of TCS, Infosys, Tech Mahindra Stocks. 

Sr. No. Stocks Estimated Volatility Volatility in percentage Market Capital 

1. TCS 0.015825 1.58 15.03LCr 

2. Infosys 0.019935 1.99 7.80LCr 

3. Tech Mahindra 0.017606 1.76 1.68LCr. 
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RESULTS AND DISCUSSION 

A stock price cannot be negative because it represents 
the market value of a company’s shares, which cannot 

be dropped below zero. If a stock were to reach zero, it 

would imply that the company has no remaining 

financial value, but it cannot go below zero as that 

would suggest an investor owes money simply for 

holding the stock. Therefore, 𝑆𝑚𝑖𝑛  is set at zero to 

reflect this logical constraint. In stock analysis, 𝑆𝑚𝑖𝑛  

represents the theoretical minimum price a stock can 

reach, which is 0, indicating the company has lost all its 

value. This value is significant as it serves as a baseline 
for risk assessment, helping investors understand the 

worst-case scenario for their investments. It also helps 

in determining the stop-loss limits and evaluating the 

potential for a stock’s recovery. The 𝑆𝑚𝑎𝑥  is chosen as 

1520 by assuming that the underlying asset cannot 

reach twice its present value before the expiration 

period. For instance, if an investor is analysing a stock 

currently priced at 760 and they set 𝑆𝑚𝑎𝑥 as 1520, they 

are effectively considering scenarios where the stock 

could double in value. This upper limit is used to 
determine potential profit margins and to evaluate the 

feasibility of long-term investment strategies. By 

setting 𝑆𝑚𝑎𝑥, analysts can also assess the stock’s 

volatility and potential for growth, providing a 

framework for decision-making in portfolio 

management. It is customary to choose a large value for 

𝑆𝑚𝑎𝑥. In literature, it is usually chosen as triple the 

strike price. Using 𝑆𝑚𝑎𝑥 offers a straightforward 

approach to gauge the potential upside of a stock by 

setting a tangible ceiling that factors in significant 
growth scenarios. This method allows investors to 

easily visualize profit margins and align their strategies 

with market expectations, making it particularly useful 

for long-term planning. In contrast, other risk 

assessment methods, such as 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑡 − 𝑟𝑖𝑠𝑘 (𝑉𝑎𝑅) 

or 𝑏𝑒𝑡𝑎 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠, may provide some deeper insights 

into market volatility and correlation but can be more 

complex and less intuitive for quick decision-making. 

We have also investigated the graphical behaviour of 

option pricing at various grid sizes. Finer grid sizes 
provide more accurate approximations of option 

pricing, while coarser grids lead to less precise results. 

Additionally, it is also observed that the smaller grid 

size allows for faster convergence and better stability 

for option pricing problem. For visualization, in figure 

1 and figure 2, we have plotted the graphs for grid 

points 𝑚 =  600, 𝑛 =  800. When the strike price of 

the call option is less than or equal to the spot price of 

the underlying asset (out of the money), the call option 

has no value. The grid size selection procedure reflects 
the sensitivity to determine the optimal balance 

between computational efficiency and accuracy. Hence, 

testing a range of grid sizes is required to identify the 

point at which further refinement yields diminishing 

returns in terms of increased precision. Additionally, 

adaptive grid techniques, which dynamically adjust grid 

sizes based on the variability of the underlying asset’s 

price, can be employed to enhance the accuracy of 

option pricing models while maintaining computational 

efficiency. If the value of the underlying asset reaches 

ahead of the strike price of the option (in the money 

case) then exercising the option would result in a profit 
for the holder. During the time period in which the 

underlying asset value exceeds the strike price of the 

option (in the money case), exercising the option would 

result in a profit for the holder. This scenario is 

advantageous for the investors as it allows them to 

capitalize on favourable market conditions. Being in the 

money can also increase the option’s market value, 

making it more attractive for potential buyers. The 

variation in call option value with respect to both time 

and stock price is plotted in Fig. 2. The value of a call 

option decays dramatically, as time approaches expiry. 

Time decay, also known as theta, refers to the reduction 
in the value of an options contract as it approaches its 

expiration date. This occurs because options are time-

sensitive financial instruments and the likelihood of the 

option being profitable decreases with the passage of 

time. As expiry nears, the remaining time for the 

underlying asset’s price to move favourably as per 

expectation decreases. In this scenario, the option’s 

extrinsic value decreases. The Fig. 2 provides crucial 

insights into the temporal dynamics of the call option 

value, illustrating how it declines significantly as the 

expiration date nears. This visualization highlights the 
sensitivity of option pricing to time decay, emphasizing 

the importance of timely decision-making for investors. 

By analysing these variations, traders can better 

understand the impact of time on option pricing, aiding 

in more informed investment strategies. The behaviour 

of the graph at other grid points remains the same. In 

our study, we have estimated the volatility of SBI on 

the basis of twenty real values (taken from NSE 

sources). The volatility (𝜎) of SBI is estimated as 0.016 

using real data. Based on the Indian banking system, we 

have incorporated the value of the risk-free interest rate 

(𝑟) as 0.065. 

CONCLUSIONS 

The main objective of this paper is to investigate the 

European call option pricing problem by using 

differential equations. We presented the derivation of 

the numerical scheme and simulated it in MATLAB. 

The results demonstrated the effectiveness of the 

numerical scheme in approximating the option price. 

The findings suggest that differential equations provide 

a robust framework for understanding and solving 

complex financial problems. Using the data set of the 
State Bank of India security. We have also performed 

volatility estimation for the same data set. The 

estimated volatility turns out to be 0.016. It suggests 

that the underlying asset experiences relatively small 

price fluctuations over the time variable. This implies 

that the option traded is likely to have lower risk, which 

can affect its pricing and enhances its attractiveness for 

trading among investors. As a result, traders might 

adjust their strategies when considering to get into the 

option contracts offered by the SBI in view of its stable 

market condition. The parameter values on which 
option pricing depends are indicated in the section 

“results & discussion”. Results obtained here through 

Crank-Nicolson method are in line with the results 

obtained by the analytical BS formula. The volatility of 
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the underlying is a critical factor in option pricing as it 

measures the extent to which the price of the underlying 
asset is expected to fluctuate over time. Generally, 

higher volatility increases the option premium because 

it increases the likelihood of significant price 

movements, which could lead to more profitable 

outcomes. Conversely, lower volatility, as seen in this 

case, typically results in a lower premium, making the 

option less costly but also suggesting that major price 

changes are less likely.  

FUTURE SCOPE 

The option pricing estimated in this study can also be 

extended for American options other more complex 

financial contracts. As a future project, we have 
planned to analyse stability as well as convergence for 

both European and American options 
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