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ABSTRACT: The occurrence of extreme events changes correlations in financial markets significantly. The 
identification of trend of stock price variation which results into financial bubble has been a challenging task. 
In the present investigation an attempt is made to understand the structure and dynamics of the Indian stock 
market in the wake of the global financial crisis of 2008 erupted in the United States. We have studied the 
time series of 128 stocks of S&P500 index of India. We have considered three durations in the time series as 
pre-crisis, during crisis and post-crisis. We have constructed correlation matrices based on Pearson 
correlation among the stocks in three considered periods. We have applied the random matrix theory to test 
the economic importance of the data. We have applied the complex network approach and constructed 
correlation based networks. We have distinguished various extreme or critical events and proposed indicator 
of the systemic risk. The findings of present study are beneficial in understanding of similar crises in future 
and in deciding the remedial actions for the same. These investigations also found applications in portfolio 
designing and risk management. 

Keywords: Correlation matrices, Complex networks, Inverse participation ratio, Random matrix theory, Financial 
crisis, Volatility. 

Abbreviations: CS, Complex Systems; FM, Financial Markets; GFC08, Global Financial Crisis of 2008; RMT, 
Random Matrix Theory; CAN, Complex Network Analysis; CCM, Cross-Correlation Matrix; EVS, Eigenvalues; EVD, 
Eigenvalue Distribution; EVR, Eigenvector; CBN, Correlation Based Networks; DJIA, Dow Jones Industrial Average; 
NYSE, New York Stock Exchange; PMFG, Planar Maximally Filtered Graphs; ISM, Indian Stock Market; NSE, 
National Stock Exchange; WWW, World Wide Web; BSE, Bombay Stock Exchange; LEV, Largest Eigenvalue; CD, 
Consumer discretionary; FIN, Financials;  HEA, Healthcare; IND, Industrials; IT, Information Technology; MAT, 
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I. INTRODUCTION 

In our daily life we came across many complex systems 
associated with nature, society and infrastructure. In 
nature climate, organism, human brain and ecosystem 
are examples of complex systems. In society economy, 
collaboration, friendships are the complex systems. The 
internet, power grids, World Wide Web (WWW), 
transport, telecommunication are example of Complex 
Systems (CS) in infrastructure sector [1-3]. Human 
ability to reason and comprehend makes human brain a 
very complex system which requires the coherent 
activity of billions of neurons. Our society is very good 
example of complex system which is formed from 
millions of individuals. The society requires cooperation 
among all individuals forming the society. Human brain 
is at base and natural language is one of its emergent 
constructions. No development in the civilization is 
possible without language. The Financial Markets (FM) 
is the creation of human civilization. The financial 
markets are one of the most important complex 
systems. Financial markets form open systems, where 
inflow and outflow of the investments represent the 
energy of the system. The investor’s decisions are often 

influenced by a solid irrational component. The irrational 
component in investors decisions result in herding 
behaviour which led to bubbles and crashes [4]. Due to 
incomplete knowledge of market, investors are not able 
to decide the genuineness of embedded information in 
asset price. The overestimation of the embedded 
information result in positive feedback which degrades 
the association among asset value and the information 
content [5]. Bubbles and crises break the equilibrium 
state of the market. Bubbles and crises are connected 
to the volatility assembling. Volatility is presence of 
consecutive eras of major magnitude of price variations. 
Volatility clustering indicates prolonged existence of 
fluctuation amplitude. The estimation of number of 
internal or external factors affecting the structure and 
dynamics of market is difficult. The intelligence of 
investors results in unevenly fast self-organization of 
financial markets and enhancement in their complexity 
[6-8]. So the construction of realistic market models is a 
very challenging task. The financial markets have been 
studied by researchers from economics, mathematics 
and physics background [9]. The correlations among the 
time series of the stocks have been widely investigated 
by the physicists [9, 10]. The nature of financial time 
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series and the correlation among them are very 
important in the field of Econophysics. 
The study of financial markets is very important for 
developing and designing investment strategies [11]. 
The interacting components of the financial markets 
form complex networks at different stages result in self- 
organisation of financial markets. The frequency of 
occurrence of financial crisis is more than the 
expectation of the investors. Due to the financial crises, 
the stock markets experience rapid changes like phase 
transitions. The structure of the correlation among the 
stocks modifies during the crisis. So understanding the 
time evolution of stock market is very beneficial and 
important. The study of correlation among stock 
markets, time evolution of the correlation has become 
popular research field in the past years [12]. 
Stock markets are accompanied by uncertainties. To 
understand the trend of variations of cost of stocks 
resulting into up and downs in FM is a difficult task. 
Global Financial Crisis of 2008(GFC08) is a severe 
economic crash. The GFC08 erupted in the United 
States and then spread to the whole of the world. The 
GFC08 is started in 2007 and despite the efforts of US 
Federal reserve for its prevention; it affects most of the 
stock markets around the globe. It is a very difficult task 
to give any prediction about such crisis. Many empirical 
models based on the physics and statistical theories [1-
12] have been applied to study the complexity of the 
financial markets. Various techniques or methods based 
on the concept of physics and mathematics have been 
used by the researchers to extract information from 
financial databases. Many approaches based on 
physical phenomenon have been used to analyse the 
financial market [13-23]. The Brownian motion, entropy, 
random walk, chaotic motion and turbulence are few 
phenomena which have been used in the past to study 
the financial markets. The statistical and quantum 
mechanics have been used in many studies to describe 
the complex nature of stock markets [24, 25]. Random 
Matrix Theory (RMT) and Complex Network Analysis 
(CNA) have been used extensively in the analysis of 
time series of global financial markets.  
RMT is one of the extensively used techniques for 
investigation of correlations among stocks [2, 10, 25-
34]. RMT was originally established in 1951 by Wigner 
[26] by explaining nuclear spectra in terms of statistical 
properties of eigenvalues (EVS) of large random 
matrices. Since then RMT has been used as an 
effective and useful tool for analysis in numerous areas; 
Physics, nano-devices, ultrasonic, underwater 
acoustics, geophysics, seismology and financial 
markets [9, 34]. RMT analysis involves the comparison 
of eigenvalue distribution (EVD) of correlation matrix 
constructed from random time series (Wishart Matrix) 
with EVD of the Cross Correlation Matrix (CCM) 
constructed from empirical time series. In RMT 
approach, the deviations of eigenvalues of CCM 
(obtained from empirical time series) from the RMT 
predictions (largest and smallest eigenvalues of Wishart 
matrix) show the existence of information in dataset. 
The RMT have been used successfully in FM for the 
portfolio management [35–40].  

RMT have been used to identify genuine correlations 
among stocks [41]. Kumar and Deo [34] have used RMT 
to investigate correlation among the dominant indices of 
global stock markets. Zheng et al. [42] have observed 
direct connection between variations in correlation and 
occurrence of booms, bubbles and crises. 
In CNA the financial markets are represented by 
networks where stocks form the nodes of the network 
and some statistical measures of interactions among 
stocks are the links connecting the nodes. The complex 
network approach has been used to investigate financial 
markets of various countries [43-50].The weighted 
networks connecting various elements of the system 
have been used to study FM. The credit of construction 
of correlation based networks (CBN) goes to Mantegna 
[51]. He investigated the DJIA and S&P 500 of United 
States using CBN. Onnela et al. [52] have investigated 
New York Stock Exchange (NYSE) using CBN. 
Tumminello et al [53] have used PMFG to investigate 
topology of NYSE. In our previous study [54] we have 
studied the stability of Sensex index of BSE and Nifty50 
index of NSE. From the literature survey, we can 
conclude that different techniques have been applied to 
different stock markets all around the globe but very 
less systematic work studying the structure and 
dynamics of Indian stock market is available. We find 
little systematic work where impact of different extreme 
or critical events on the Indian stock market has been 
investigated.  
In the present work we have studied the structure and 
dynamics of network of 128 stocks of S&P 500 index of 
India. The S&P 500 index is leading stock market index 
of Indian Stock Market(ISM). This index covers around 
96% of market capitalization. Around 93% of the total 
turnover on National Stock Exchange (NSE) of India is 
represented by S&P 500.The organization of paper is as 
follows: in section-II, we discuss the filtration of data and 
techniques used. In section-III, we discuss the results 
and conclude the findings of the investigation in section-
IV. 

II. DATA DESCRIPTION AND METHODOLOGY 

We have analyzed the time series of 128 dominant 
stocks of S&P 500 index of India. The daily closing price 
of 128 stocks of S&P 500 India (detailed description is 
given in Table 1) from 2006 to 2018 is taken from Lal 
Bahadur Shastri Institute of Management, New Delhi. 
We have filtered the data using the technique opted by 
Lynall et al. [55].The mean variance (volatility) of returns 
of the stocks is calculated for sliding time window of one 
year with a shift of one month. The volatility of the 128 
stocks of S&P500 index is plotted in the Fig.1.The 
GFC08 erupted in the United States and then spread to 
the all the countries around the globe. To study the 
impact of GFC08 on the ISM, we consider 3 sub-periods 
[34]. The periods from 7/6/2006 to 30/11/2007 and 
1/12/2007 to 306/2009 are considered as “pre-crisis” 
and “during the crisis” respectively. The period from 
1/1//2010 to 30/6/2011 is considered as “post-crisis”. 
We have applied the techniques of RMT and CNA to 
extract the hidden information from time series of 128 
stocks of S&P 500 index. 
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Table 1: List of 128 stocks of S&P 500 index of India studied. 

S. 
No. 

Abbre. Full Name Sector S.N Abbre. Full Name Sector 

1 TTMT TATA Motors Ltd CD 65 GLXO GlaxoSmithKline Phamaceuticals Ltd HEA 

2 MM Mahindra and Mahindra Ltd CD 66 APHS Apollo Hospitals HEA 

3 HMCL Hero MotoCorp Ltd CD 67 PIEL Piramal Enterprises Limites HEA 

4 BOS Bosch Ltd CD 68 TRP Torrent Pharmaceuticals Ltd HEA 

5 MSS MothersonSumi Systems 
Ltd 

CD 69 IPCA IPCA Labs Ltd HEA 

6 TTAN Titan Company Ltd CD 70 SANL Sanofi India Limted HEA 

7 Z Zee Entertainment Private 
Ltd 

CD 71 PFIZ Pfizer Ltd HEA 

8 BHFC Bharat Forge Company Ltd CD 72 NTCPH NATCO Pharmaceuticals Ltd HEA 

9 EXID Exide Indus Ltd CD 73 LT Larsen and Toubro Ltd IND 

10 APTY Apollo Tyres Ltd CD 74 BHEL Bharat Heavy Electricals Ltd IND 

11 MRF MRF Ltd CD 75 SIEM Siemens Ltd IND 

12 IH Indian Hotels Company Ltd CD 76 CCRI Container Corp. of India IND 

13 BATA Bata India Ltd CD 77 ABB ABB India Ltd IND 

14 BIL Balkrishna Industries Ltd CD 78 EIM Eicher Motors Ltd IND 

15 EIH EIH Ltd CD 79 KKC Cummins India Ltd IND 

16 WHIRL Whirlpool of India Ltd CD 80 BHE Bharat Electronics Ltd IND 

17 TC Thomas Cook Ltd CD 81 HAVL Havells India Ltd IND 

18 SF Sundram Fasteners Ltd CD 82 GDSP Godrej Industries Private Ltd IND 

19 BBTC Bombay Burmah Trading 
Corp. Ltd. 

CD 83 ENGR Engineers India Ltd IND 

20 KRB KRBL Ltd. CD 84 AMRJ Amara Raja Batteries Ltd IND 

21 ITC ITC Ltd CD 85 VOLT Voltas Ltd IND 

22 HUVR Hindustan Unilever Ltd CS 86 SKF SKF India Ltd IND 

23 DABUR Dabur India Ltd CS 87 3M 3M India Ltd IND 

24 CLGT Colgate Palmolive CS 88 FNXC Finolex Cables Ltd IND 

25 SKB GlaxoSmithKline CS 89 GRIL Graphite India Ltd IND 

26 MRCO Marico Ltd CS 90 ESC Escorts Ltd IND 

27 PG Procter and Gamble Ltd CS 91 AL ashokaleyland ltd IND 

28 BRIT Britannia Industries Ltd CS 92 HEG HEG ltd IND 

29 TGBL TATA Global Beverages Ltd CS 93 SCHFL Schaeffler India Ltd. IND 

30 GILL Gillette India Ltd CS 94 INFO Infosys Ltd IT 

31 AISG Asahi India Glass Ltd CS 95 WPRO WIPRO Ltd IT 

32 ONGC Oil and Natural Gas Corp. of 
India 

CS 96 MPHL Mphasis Ltd IT 

33 RIL Reliance Industries Ltd EN 97 HEXW Hexaware Technologies Ltd IT 

34 IOCL Indian Oil Corp. Ltd EN 98 HWA Honeywell Automation India Ltd IT 

35 BPCL Bharat Petroleum Corp. Ltd EN 99 CYL Cyient Ltd IT 

36 HPCL Hindustan Petroleum Corp. 
Ltd 

EN 100 TELX TATA Elexsi Ltd IT 

37 MRPL Mangalore Refinery and 
Petrochemicals Ltd 

EN 101 HZ Hindustan Zinc Ltd MAT 

38 HDFCB Great Eastern Shipping 
Company Ltd 

EN 102 APNT Asian Paints Ltd MAT 

39 SBIN Gujarat Mineral 
Development Corp. Ltd 

FIN 103 TATA TATA Steel Ltd MAT 

40 ICICIBC ABAN Offshore Ltd FIN 104 SAIL Steel Authority of India Ltd MAT 
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41 HDFC HDFC Bank Ltd FIN 105 HNDL Hindalco Industries Ltd MAT 

42 AXSB Axis Bank Ltd FIN 106 ACEM Ambuja Cements Ltd MAT 

43 KMB Kotak Mahindra Bank Ltd FIN 107 GRASIM Grasim Industries Ltd MAT 

44 BOB Bank of Baroda FIN 108 JSTL Jindal Steel and Power Ltd MAT 

45 IIB IndusInd Bank Ltd FIN 109 ACC ACC Ltd MAT 

46 SHTF Shriram Transport Finance 
Ltd 

FIN 110 SRCM Shree Cement Ltd MAT 

47 BOI Bank of India FIN 111 PIDI Pidilite Industries Ltd MAT 

48 IDBI IDBI Bank Ltd FIN 112 CSTRL Castrol India Ltd MAT 

49 LICHF LIC Housing Finance Ltd FIN 113 NACL National Aluminium Company Ltd MAT 

50 RCAPT Reliance Capital Ltd FIN 114 UPLL UPL Ltd MAT 

51 BJHI Bajaj Holdings and 
Investment Ltd 

FIN 115 BRGR Berger Paints Ltd MAT 

52 CRISIL Crisil Ltd FIN 116 TTCH TATA Chemicals Ltd MAT 

53 BAF Bajaj Finance Ltd FIN 117 KNPL KansalNerolac Paints Limted MAT 

54 FB Federal Bank Ltd FIN 118 TRCL Ramco Cements Ltd MAT 

55 GRHF Gruh Finance Ltd FIN 119 SI Supreme Industries Ltd MAT 

56 CIFC Cholamandalam Investment 
and Finance Company Ltd 

FIN 120 CENT Century Textiles and Industries Ltd MAT 

57 DEWH Dewan Housing Finance 
Corp. Ltd 

FIN 121 GFLC Gujarat Fluorochemicals Ltd MAT 

58 CUBK City Union Bank FIN 122 PI PI Industries Ltd MAT 

59 JM JM Financial Ltd FIN 123 BASF BASF India Ltd MAT 

60 SUNP Sun Pharmaceutical 
Industries Ltd 

FIN 124 ATLP Atul Ltd MAT 

61 LPC Lupin Ltd HEA 125 VEDL vedanta ltd MAT 

62 DRRD Dr. Reddy's Laboratories Ltd HEA 126 GAIL GAIL India Ltd UTI 

63 CIPLA CIPLA Ltd HEA 127 TPWR TATA Power Company Ltd UTI 

64 ARBP Aurobindo Pharmaceuticals 
Ltd 

HEA 128 RELI Reliance Infrastructure Ltd UTI 

Abbreviation Used: CD, Consumer discretionary; FIN, Financials;  HEA, Healthcare; IND, Industrials; IT, Information Technology; 
MAT, Materials; UTI, Utilities;  

 

 
Fig. 1. Average volatility of 128 stocks of S&P 500 index 

of India. 

 

A. Random Matrix Theory  
In RMT approach [31-36], we calculate the eigenvalues 
of Wishart matrix which is constructed from completely 
random time series of the same length (L) as that of 
empirical time series. 
The CCM of 128 stocks of S&P 500 index is constructed 
as follows: Let ���(�) denote the daily closing prices of 
the stock ‘�’ at time (� = 1, 2, …..m). The logarithmic 
returns ��(�)  of stocks is defined by  ��(�) ≡ln ���(�) − ln ���(� − 1) 
Then the normalized returns of the stock ‘�’ is defined 
as  ���(�) = ��(�)�〈��〉

�〈��� 〉�〈��〉� , 
where 〈… 〉 represent the time average over the period of 
study. 
The normalized returns are used in the construction of 
cross correlation matrix having elements  ������ ≡ 〈���(�)���(�)〉 
lying in the range [-1, 1]. 
The value of ������ = 1, −1 &  0 corresponds to perfect 
correlation, perfect anti-correlation and no correlation in 
stocks respectively. In the limiting values of m and L 

( " → ∞, � → ∞ ) with ratio % = �� ≥ 1 , the probability 

distribution ( �'()*(+) ) of eigenvalues (η) of Wishart 
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matrix which follows Marchenko-Pastur distribution is 
given by, �'()*(η)

= - %2/ (0(+�(1 − η)(η − η�2)))η η�2)  ≤ η ≤ η�(10                             �4�5678 9:�;8 �9<=8 > 
The smallest and largest eigenvalue of the random 
matrix is given by η�2),�(1 = ?1 ∓ A B√DEFG

. 

For a random data, all the eigenvalues of CCM fall in 
the limits [η�2) , η�(1]. Any deviation from this bound 
indicate the presence of economic information in time 
series. The probability distribution of the eigenvalues of 
cross-correlation matrices of 128 stocks of S&P 500 
index and probability distribution of eigenvalues of 
Wishart matrix in pre, during and post-crisis periods are 
shown in the Fig. 2, Fig. 3 and Fig. 4 respectively.  

 
Fig. 2. Probability distribution of eigenvalues of 
correlation matrix of 128 stocks of S&P 500 and 
eigenvalues of Wishart matrix in pre-crisis period 
 

 
Fig. 3. Probability distribution of eigenvalues of 
correlation matrix of 128 stocks of S&P 500 index and 
eigenvalues of Wishart matrix during the period of crisis. 

 
Fig. 4. Probability distribution of eigenvalues of 
correlation matrix of 128 stocks of S&P 500 index and 
eigenvalues of Wishart matrix in post-crisis period. 

The probability distribution of eigenvalues of CCM 
constructed form the daily returns of S&P 500 stocks 
are compared with that of Wishart matrix and results are 
summarized in Table 2.  
 

Table 2: RMT results for 128 stocks of S&P 500 
index of India. 

Eigenvalues 
 

Wishart 
Matrix 

Empirical correlation Matrix 

  Pre-
Crisis 

During 
Crisis 

Post-
Crisis 

Largest 2.4740 36.482 44.239 29.606 

Smallest 0.1824 0.0920 0.0695 0.0981 

 
Most of the EVS of CCM in pre-crisis, during crisis and 
post-crisis periods fall beyond the RMT predictions. This 
indicates that the data under consideration is not 
completely random but contain economically important 
formation. The findings of the RMT approach are listed 
in the Table 2. The first Largest Eigenvalue (LEV) of the 
CCM represents the market mode and gives the 
collective dynamics of the stocks. The second largest 
eigenvalue provide the information related to sector or 
cluster formation among the stocks of S&P 500 index. 
The first and second largest eigenvalues are outside 
RMT bounds (η�2) , η�(1  of Wishart matrix) in all the 
considered periods. 
The numbers of EVS which are smaller than the 
smallest eigenvalue of Wishart matrix and number of 
eigenvalues which are greater the largest eigenvalue of 
the Wishart matrix are computed in the moving window 
of one year and plotted  in the  Fig. 5. 
We find that the numbers of EVS which are smaller than 
the smallest eigenvalue of Wishart matrix increases 
during the period of financial crisis. In random matrix 
theory, the elements of the eigenvector associated with 
second largest EVS provide clustering information. The 
components of EVR (Uk) corresponding to I

st 
and 2

nd
 

LEV in the pre, during and post-crisis periods are in 
shown in the Fig. 6. 
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Fig. 5. Number of eigenvalues greater than RMT upper 
bound (red colour) and number of eigenvalues smaller 

than lower bound of RMT predictions (blue colour). 

Fig. 6. Components of eigenvectors associated with first 
and second largest eigenvalues of correlation matrices 
in different periods of crisis. 

We have calculated the Inverse Participation Ratio (IPR) 
in different periods of crisis. IPR delivers information 
linked to the involvement of component/stocks in the 
eigenvalue. The IPR [29] is defined as I� ≡ ∑ [;�L ]M�LNB , where ;�L  , l=1,2…m are the elements  of 
eigenvector( ;�). 
In the computation of IPR, we consider those elements 
of the eigenvector which have dominantly contributed in 
the eigenvalues. The IPR in pre, during and post crisis 

period is shown with different colours in Fig.7.We found 
variation in the contribution of components/stocks during 
the different period of crisis of 2008. 

 
Fig. 7. Inverse Participation Ratio in pre, during and 

post crisis period. 

B. Construction of correlation networks 
To get information regarding the topology of the 128 
stocks of S&P 500 index, we have constructed 
correlation networks from correlation matrices. The 128 
stocks of S&P 500 index form the nodes of the network 
and correlation among them are the links connecting 
them. The data investigated in this work include the 
daily closing price of 120 stocks of S&P500 index. The 
time series of stocks from 2006 to 2018 is divided into 
155 overlapping time windows of width 250 trading days 
(approx. one year). In each time epoch, we construct 
the correlation network and calculate the average 
correlation coefficient. The time evolution of correlation 
coefficients is shown in Fig. 8.  

 

Fig. 8. Average correlation coefficient of 128 stocks of 
S&P 500 index of India. Peaks number with 
corresponding time periods are: 1(2008), 2(2012), 
3(2014), 4(2016), 5(November, 2016). 

III. RESULTS AND DISCUSSION 

We found increase in the volatility of the 128 stocks of 
S&P 500 index during the period of crisis (GFC08) as 
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shown in Fig. 1. From RMT analysis, we found that time 
series of 128 stocks of S&P500 index investigated in 
this work contain useful information. The LEV of the 
cross correlation matrices lies outside the RMT 
predictions in all the periods of crisis as shown in the 
Fig. 2, Fig. 3 and Fig. 4. We have found that LEV has 
increased significantly during the period of crisis. The 
Fig. 5 shows increase in the number of EVS smaller 
than RMT predicted lower bound during the period of 
crisis. This is an indicator of systemic risk in the system, 
as a peak is observed during the period of crisis. The 
EVR associated with first largest eigenvalue showing 
the market mode as all the components are positive as 
shown in Fig. 6. The contribution of eigenvalues to the 
Inverse participation ratio is different in different periods 
of crisis as shown in the Fig. 7. We have found certain 
peaks in the average correlation graph as shown in Fig. 
8. These peaks occurs in the periods 2008, 2012, 2014, 
2016, Nov 2016 which corresponds to GFC08, 
European sovereign debt crisis, General Elections in 
India, Chinese Financial crisis and Demonetization 
period in India. So the changes in correlation have 
detected major extreme events in India and world.  

IV. CONCLUSION 

From this investigation, we can conclude that the huge 
information is hidden in financial time series which is 
meaningless until transformed into useful information. 
The time series of 128 stocks of S&P 500 index has 
important economic importance. The largest eigenvalue 
has increased around 21% which is a significant 
increase. Peaks are observed in the average correlation 
graph which corresponds to the period of extreme 
events. So we conclude that rise in volatility, increase in 
LEV, Increase in number of eigenvalues less than lower 
bound of RMT predictions and increase in correlation 
act as indicators of systemic risk in financial systems. 

V. FUTURE SCOPE 

In the present work we have focused on the static 
properties of the networks. There are enormous 
imminent works that can directly outgrow from the 
present research work.The correlation matrices 
constructed in present work can be filtered using power 
mapping technique.  The eigenvalues within RMT 
predictions mainly signify noise and have negligible 
meaning.  The eigenvalues beyond the Wishart matrix 
lower and upper bounds have structural implications, 
and represent collections of correlated stocks. Any 
empirical CCM (Ccorr) can be represented as summation 
of two matrices, one matrix (Cran ) have random portion 
which includes all EVS fall within RMT bounds and 
second matrix (Cst) have EVS more than LEV of Wishart 
matrix. The structured portion (Cst) of CCM have the 
LEV of empirical CCM which represent the market 
mode. The EVS excluding the LEV of empirical CCM 
corresponds to mesoscopic clusters. The stocks in the 
mesoscopic clusters have same dynamics. These 
mesoscopic clusters is also called Group mode and can 
be analysed to extract more precise information. In 
present work we have considered only the network and 
their properties only in the static periods. We have not 
studied the dynamic topological properties. So 
investigation of the evolution of networks may be further 

scope of work. To investigate the dynamic properties of 
the network of financial indices, we had to compute the 
dynamic correlation among the stocks. Moving time 
window of suitable length is considered and it is shifted 
through a time epoch. 
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