
Sirisha & Kiran International Journal on Emerging Technologies 11(1): 414-420(2020) 414

International Journal on Emerging Technologies 11(1): 414-420(2020)

ISSN No. (Print): 0975-8364
ISSN No. (Online): 2249-3255

An Efficient and Lightweight Security Scheme for Big Data

N. Sirisha
1,2

 and K.V.D. Kiran
1

1
Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation, Vaddeswaram (Andhra Pradesh), India.
2
Department of Computer Science and Engineering,

MLR Institute of Technology, Dundigal, Hyderabad, India.

(Corresponding author: N. Sirisha)
(Received 07 October 2019, Revised 02 December 2019, Accepted 09 December 2019)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: In the contemporary era, most of the applications are operating online for exploiting benefits of
Internet. The comprehensive connectivity among devices in the real world has enabled technologies like
Internet of Things (IoT) where devices produce huge amount of data. It is one of the sources of big data
where there are massive amounts of data is produced. Such data needs to be protected from malicious
attacks. In other words, protecting critical digital infrastructure and its communications is to be given
paramount importance. In the proliferation of tools used for data analytics, there is probability of data
leakage and theft of data without the knowledge of data owner. Therefore, it is crucial to provide security to
big data. Traditional cryptographic primitives are not viable for protecting large volumes of data. Therefore,
there is need for lightweight approaches that can improve performance of networks besides safeguarding
massive data transfer activities. Both data confidentiality and integrity are essential to protect big data. In
this paper, we proposed a Lightweight Security Scheme (LSS) to achieve this. Elliptic Curve Diffie Hellman
(ECDH) based lightweight security algorithm is defined. It has mechanism for secure key exchange and
support smaller key sizes. A simplified approach is defined to compute modulus of a fractional number.
Experiments are made to evaluate the proposed scheme. Empirical results revealed that the LSS scheme
shows comparable performance over existing methods like RSA, DH and ECDH. For instance, when key size
is 80, DH and RSA needed 1024 bits to have identical security while ECDH and LSS needed only 160 bits.
Similarly, when data size is 500 MB, RSA needed 32.0845 seconds of time for data download while DH, ECDH
and LSS needed 18.9721, 17.4262 and 16.9856 seconds respectively.

Keywords: Big data, big data security, light weight security protocol, DH, ECDH, RSA.

Abbreviations: DH, Deffie Hellman; ECDH, Elliptic Curve Deffie Hellman, RSA, Rivest-Shamir-Adleman.

I. INTRODUCTION

In the era of big data, it is essential to have security
mechanisms that are feasible to the scale of data. With
the Internet based innovations like Internet of Things
(IoT) there is large volumes of data being produced. It is
therefore imperative to cope with such data besides
securing communications [9]. Cyber space now includes
a broad spectrum of possibilities. It encompasses the
connected devices of IoT as well besides networks of
banks, telecommunications and digital infrastructure of
any organization connected through Internet. This is the
critical digital infrastructure that needs to be protected
from cyber-attacks.
The traditional security mechanisms like RSA are not
suitable for big data security. The rationale behind this is
that they are not light weight. In the networks where
there is origin of big data, security mechanisms need to
be lightweight.
To overcome the aforementioned problem, many
lightweight schemes came into existence as in [2, 4, 11,
12]. Usage of RSA in [19, 20] revealed that it as a
widely used asymmetric encryption scheme. It is used
for big data security as well. However, it has drawbacks
in terms of overhead. In order to overcome this,
lightweight key sharing methods such as Diffie-Hellman

(DH) and Elliptic Curve Diffie Hellman (ECDH) came
into existence. From the literature, it is understood that
ECDH is lightweight and can cater to the needs of big
data. It can be used as a lightweight scheme for secure
key sharing along with mechanisms for encryption and
decryption.
The drawbacks of RSA are overcome with ECDH.
However, in this paper, we enhanced the EC part of the
ECDH for improving the mechanism involved in finding
modulus of a fractional number. This is important in
devices with low power and involved in exchanging
large volumes of data as witnessed in IoT use cases.
Thus we proposed a Lightweight Security Scheme
(LSS) based on ECDH and its proposed extension
made in this paper. Empirical study is carried out with
different big data workloads in terms of encryption,
decryption, upload time and download time. Security
analysis is made among RSA, DH, AES and ECDH. The
results revealed that both ECDH and LSS outperformed
the state of the art. LSS showed better performance
over ECDH in some aspects. Our contributions in this
paper are as follows.
– A security scheme known as Lightweight Security
Scheme (LSS) is proposed based on ECDH key sharing
mechanism.

e
t

Sirisha & Kiran International Journal on Emerging Technologies 11(1): 414-420(2020) 415

– An extension to ECDH is made to be part of elliptic
curve to improve performance of the proposed system.
– A prototype is built to have an empirical study in terms
of security analysis, encryption, decryption, upload and
download of large volumes of data.
The remainder of the paper is structured as follows.
Section II reviews related literature on security to big
data. Section III presents traditional cryptographi
methods like RSA algorithm and its drawbacks when
used with big data. Section IV presents the functionality
of Diffie-Hellman and its shortcomings. Section
V presents the proposed LSS which is the combination
of ECDH and an extension to it. Section VI presents
experimental results. Section VII concludes the paper
and provides directions for future scope of the research.

II. RELATED WORK

This section reviews relevant literature on security
primitives used for big data. Aljawarneh et al., proposed
an algorithm for multimedia content associated with big
data [1]. It is an AES based scheme known as Feistel
Encryption Scheme. They intended to run it in IoT
applications in future. Liang et al., proposed a security
scheme by combing AES and RSA [2]. Lu et al.,
focused on privacy to big data and provided useful
insights [3]. Tang et al., proposed a security scheme
known as Privacy-preserving Fog-assisted Information
Sharing (PFIS) scheme which is used to protect big data
in healthcare system. They intended to improve it in
future to reduce decryption cost [4].
Puthal et al., proposed a selective encryption scheme
for sensor data. It incorporated different strategies for
confidentiality and data integrity with selective
encryption. They intend to improve it to enhance
symmetric key encryption [5]. Bai et al., proposed a
lightweight encryption scheme for Body Area Network
(BAN) in healthcare domain. It has provision for
dynamic key updating besides being energy efficient [6].
Bakhtiari et al., proposed a lightweight encryption
standard for big data [7]. Kadhim et al., proposed CAST-
256 block cipher for securing big data [8]. Usman et al.,
proposed a secure lightweight mechanism for IoT
environments [9]. Talbi and Bouhlel tried lightweight
encryption for IoT communications [10]. Hong et al.,
(2006) proposed Secure IoT (SIT) for lightweight
encryption and decryption. They intended to improve
algorithm to use with FPGA designs [11]. Al-Souly et al.,
(2013) enhanced Transposition-Substitution-Folding-
Shifting (TSFS) algorithm to improve decryption process
by reducing errors [12].
Rajesh et al., [13] proposed a secure and lightweight
protocol of symmetric encryption to transfer content
among IoT devices. It was known as Novel Tiny
Symmetric Encryption Algorithm (NTSA). Big data
security issues are explored along with methods to
protect data while many encryption techniques used in
big data are studied [14-15]. A light weight scheme for
secure data sharing is made in [16] for Mobile Cloud
Computing (MCC). As explored in [19], RSA a widely
used algorithm for encrypting data. Other contributions
related big data security in distributed environment
include security with Apache Sentry [21], using KNOX
[22], protection of big data from encroachments [23],
protection from selective forwarding attacks [24], and
rise of big data which advocates security aspect [25].
From the literature, it is known that light weight

cryptography is essential for handling large volumes of
data. There is need for equivalent security to RSA kind
of algorithms with less number of bits. We find ECDH as
a suitable candidate and enhanced it to define an
algorithm named Lightweight Security Scheme (LSS).

III. ISSUES WITH TRADITIONAL CRYPTOGRAPHY

RSA (Rivest-Shamir-Adleman) is one of the
cryptographic algorithms widely used. It is an example
for asymmetric cryptography where different keys are
used for encryption and decryption. It has mechanisms
that are complex in nature. Its key size is more for
adequate security. It is therefore considered heavy
weight and not suitable for the parties or devices to
exchange massive amounts of data [20]. The algorithm
is as follows.
Step-1: Alice and Bob choose two secret prime numbers
such as p=13 and q=19 where both are <� and � ≠ �.
Step-2: A public parameter such as n=p∗ � is computed
followed by a primitive parameter like ∅��	 =
�� − 1	�� − 1	 = 216.
Step-3: An integer e is chosen by Alice such that
1 < � < ∅��	 and gcd(∅��	, �)=1
Step-4: A secret key computed by Bob using (e, ∅��)
i.e. d ≡ ����mod ∅��		. For instances if e=31, it results
in � = 7
Step-5: The generated public key is �� = e, n=31, 247
and the private key is ��= {d, n} = 7, 216.
Algorithm 1: Rivest-Shamir-Adleman (RSA)
As presented in Algorithm 1, RSA enables two parties to
have secure communications. Both Alice and Bob select
secret numbers. Whereas public keys are provided to
other parties. Encryption is carried out with the public
key of receiver and then the encrypted message can
only be decrypted by the private key of the receiver. It is
made possible due to some distinct mathematical
relationship between public key and private key pair
associated with each party. There are many issues with
RSA when it comes to securing big data. First, it was
not designed to work with large volumes of data.
Second, the big key size of RSA increases complexity,
computation time and communication time. Third, it is
heavy weight and not feasible for big data security.

IV. DIFFIE HELLMAN KEY EXCHANGE

Public key cryptography causes overhead on systems
due to its complex Public Key Infrastructure (PKI).
However, key exchange is made simple with Diffie-
Hellman scheme. Instead of sharing secret key, both
parties involved in a crypto system compute secret key.
The scheme is as follows.
Step-1: Both parties, Alice and Bob, agree to use two
big prime numbers such as n & g and there is no need
to keep them secret. They can be made public.
Step-2: Alice takes another big random number denoted
as X which is kept secret. Then Alice computes A as
� = ��mod n
Step-3: Then it is sent to Bob.
Step-4: Similarly, Bob takes another big random number
denoted as Y which is kept secret. Then Bob computes
B as = �!mod n
Step-5: Then it is sent to Alice
Step-6: Alice computes secret key as "1 = �mod n
Step-7: Bob computes secret key as "2 = �!mod n
Step-8: When K1 = K2, it is evident that key exchange is
completed successfully.

Sirisha & Kiran International Journal on Emerging Technologies 11(1): 414-420(2020) 416

Algorithm 2: Diffie Hellman key exchange scheme
As provided in Algorithm 2, the DH key exchange
scheme helps in secure key exchange.
Two parties without having prior knowledge on each
other also can exchange keys. The illustration of key
exchange is as follows.
 1. Alice & Bob agree two prime numbers n, g
 If n=11 and g=7 then

2. X=3 y=6
� = ��mod n = �!mod n

3. � = 7% mod 11 = 7& mod 11
A=343 mod 11 B=117649 mod 11
A=343-341 B=117649-117645
A=2 B=4

4. B=4 A=2
5. K1 = �mod n "2 = �!mod n

K1= 4% mod 11 "2 = 2& mod 11
K1=64 mod 11 K2=64 mod 11
K1=64-55 K2=64-55
K1=9 K2=9

It has many advantages. It can be used in encryption
methods. Key sharing is done safely and after key
exchange, data transfer can be made in insecure
channel as well. Finally, it resulted in K1=K2 reflecting
successful key exchange.

Fig. 1. Diffie Hellman key exchange mechanism.

As presented in Fig. 1, the DH key exchange protocol
can be used to compute secret keys by both sender and
receiver parties to overcome key exchange problem
associated with symmetric key encryption techniques.
However, it has certain limitations. It cannot be used for
asymmetric key exchange effectively. It is not suitable

for signing digital signatures. As it does not authenticate
users, it is vulnerable to man-in-the-middle attacks. Fig.
3 shows the graphical flow of the DH algorithm. That is
the reason, the proposed scheme in this paper is based
on ECDH.

V. PROPOSED LIGHTWEIGHT SCHEME

A security scheme is proposed for big data. It is known
as Lightweight Security Scheme (LSS). It is based on
ECDH which is well known for key light cryptography.
Since it is the combination of EC and DH, it becomes
lightweight and robust and viable for massive data
transfer among devices. Thus it is suitable for low power
IoT devices as well. Before presenting the enhancement
to the ECDH, the steps involved in ECDH is provided as
in Algorithm 3. It depicts secure key exchange between
two parties known as Alice and Bob.
Step-1: Alice chooses an integer denoted as �*as her
private key and �* < �. Alice produces her public key
with Eqns. 1-4. The public key is denoted as �* = �* ∗ +
and base point is denoted as ,-(a, b).

Step-2: Similarly Bob chooses a secret integer denoted
as �.as private key and �. < �. Then, Bob produces his
privacy key �. = �. ∗ + and base point is ,-(a, b).

Step-3: Alice computes the secret key K=�* ∗ �.while
Bob computes secret key K=�. ∗ �*.
Step-4: The generated key for Alice and Bob should be
same because " = ��∗� = ��∗(� ∗+) = � ∗(��∗+).
Algorithm 3: ECDH scheme for key exchange
Usage of elliptic curves in key exchanges makes it
lightweight. As explored in [18], elliptic curves are used
as follows. First of all, a whole number denoted as q is
considered. It may be either a number of the structure
2m or a prime number. Parameters of elliptic curve such
as / and 0 are used to define the value of (a, b). Then a
base point denoted as + = (11, 21) is chosen in (a, b)
with order n as a large value. The smallest integer like
�+ = 0 can define order n where the parameters are
denoted as � and + and these are known to all
participants of a crypto system. Then key exchange as
per ECDH is carried out as illustrated in Fig. 3.
As can be seen in Fig. 2, it is evident that the key
exchange is taken place between two parties without
the need for any third party authority. Moreover, it is
simple and lightweight. The shared secret key at the
end for both parties is K= (4, 2).
Since both parties obtained same key known as shared
secret key, the key exchange mechanism is
successfully completed. The illustration of ECDH is as
follows. Both parties such as Alice and Bob select E as
curve denoted as 23 = 1% + 1 + 6 over 56. A public base
point denoted as B= (2,4) is chosen by Alice and Bob.
Afterwards, 7 = 4 is chosen by Alice and perform
computation such as P= 7 = 4�2,4	 = �6,2	. Then the
P is sent by Alice to Bob. Alice does not disclose 7 and
keeps it as a secret value. Then 8=5 is selected by Bob
and computation such as Q= 8 = 5�2,4	 = �1,6	 is
made. Then Q is sent to Alice while the value of 8 is
kept secret. Afterwards, Alice performs computation like
"*=79 = 4�1,6	 = �4,2	 while Bob performs computation
such as ".=8� = 5�6,2	 = �4,2	. Thus the shared key is
established as K= (4, 2) which is same at both the
parties.

B

1. If n=11
and g=7

1. If n=11
and g=7

2. Alice choose
Number X

2. Bob chooses
number Y

3. � =
��mod n
If x=3

3. = �!mod
n

If y=6

Bob sends
this to Alice

Alice sends
this to Bob

A=2

B=4

4. Alice

computes

secret key K1

4. Bob

computes

secret key K2

5."1 =
 �mod

n=9

5."2 =
�!mod

n=9

K1==K2

Alice and bob agree
upon 2 large prime
numbers –n & g.

A

Sirisha & Kiran International Journal on Emerging Technologies 11(1): 414-420(2020) 417

Fig. 2. ECDH key exchange mechanism.

Fig. 2 explains about ECDH exchange technique, in this
Alice computes, keeps a key secret key with better
encryption.

A. Why Elliptic Curve
Many crypto systems in the real world are based on
RSA. However, for adequate security, RSA NEEDS
lengthy keys to be used. The key length is being
increased to have higher level of protection. Thus it
causes much overhead on applications in which RSA is

being used. Therefore, RSA is found to be not ideal for
applications where massive amounts of data are
exchanged. The heavy weight of RSA has its impact on
different real world applications such as e-Commerce
and banking and IoT where large amount of data is
being transferred. To overcome this drawback, Elliptic
Curve Cryptography (ECC) provides lightweight
mechanisms. It provides similar level of security of RSA
with very smaller key size. Thus it reduces overhead
drastically. That is the reason, EC based DH approach
is preferred in the proposed system. Algebraic addition
is used with EC to empower it for computation of
increments. As explored in [17], provided two different
points denoted as � = (1: , 2:) and 9 = (1; , 2;)

respectively and slope denoted as < = (2; − 2:)/(1; −

1:), the sum of two points denoted as R=P+Q is
computed as in Eqns. 1, 2.
1� = <3 − 1: − 1; (1)

2� = −2: ∗ 1: − 1� (2)
When there is doubling operation such as � +� = 2� = =
and when 2: ⁄= 0, Eqn. 1 and 2 can be redefined as in
Eqns. 3 and 4.

1� = �>%∗?@
ABCD

3∗EF
	3 − 2 ∗ 1: (3)

 2� = ��%∗?@
ABC	

3∗EF
	 ∗ 1G − 1� − 2: (4)

Based on these four equations, the EC related
integration is made in ECDH based LSS scheme
proposed in this paper.

B. Extension to ECDH
The main focus of this paper is to have a lightweight,
low power and robust algorithm for key exchange,
encryption and decryption mechanisms suitable for big
data. The proposed method is based on ECDH. An
improvement is proposed in the area of calculation of
modulus of fractional numbers. These numbers are
used as EC portion of EC-DH for improved
performance. The optimization of EC is carried out with
the following algorithm.
Step-1 : Consider natural numbers up to P-1
Step-2 : For each number i in P
Step-3 : Get smallest sun that D∗ H > � > J ∗ �H − 1	
Step-4 : End For
Step-5 : Update N as K = K ∗ H%�
Step-6 : Update D as D=D∗ H%� = J ∗ H − �
Step-7 : If D≠ 1 Then
Step-8 : Repeat steps 2 – 4
Step-9 : End If
Step-10 : Return N
Algorithm 4: Computing modulus of a fractional
number
As presented in Algorithm 4, the modulus of a fractional
number is computed and returned. It will be used as part
of EC which is used in the proposed Lightweight
Security Scheme (LSS) which is based on ECDH. With
the optimization to ECDH, its power consumption and
other performance capabilities are increased.

V. EXPERIMENTAL RESULTS

Experiments are carried out to observe mechanisms like
key exchange, encryption and decryption. Observations
are made in terms of performance metrics such as
execution time, key exchange, power consumption and
security comparison. Elliptic curve denoted by M3 =
(N%+/N +0) mO� � is taken where elements of (P) are

Alice Bob

3. Alice

choose

7 = 4

3. Bob

choose

8=5

4. Computes

P= 7 =
4�2,4	 = �6,2	

4. Computes

Q=8 =
5�2,4	 =
�1,6	

Alice

sends P

to Bob

Bob

sends Q

to Alice

6. Alice

computes

"*=79 =
4�1,6	 = �4,2	

6. Bob

computes

".=8� =
5�6,2	 =
�4,2	

Shared secret

key is K= (4, 2).

5. Alice

keeps

7 P�QR�S

5. Bob

keeps

8 P�QR�S

2. Bob

choose the

public base

point to be

B= (2, 4).

1. Bob choose

E to be the

curve 23 =
1% + 1 + 6

1. Alice choose E

to be the

curve23 = 1% +
1 + 6

2. Alice

choose the

public base

point to be B=

(2, 4).

Sirisha & Kiran International Journal on Emerging Technologies 11(1): 414-420(2020) 418

denoted as X and Y while a, b are integers modulo P

satisfying 4 /% + 2703 ≠ 0(TO� �). Values for elliptic
curve are generated for which P=37, a=2 and b=0.

A. Security Analysis
Key size of any cryptography algorithm has its influence
on the security. Thus difficulty in AES is found to be
exponential 2U. When it comes to ECDH, the difficulty is

sub exponential √2U. The difficulty is computed in RSA
by n as shown in Eqn. 5. Whereas L denotes number of
bits in key.

W = �.X3%∗ YZ∗[\�3] ∗ Y[\�Z∗[\�3		A] �^.&X
[\�3	

 (5)

Fig. 3. Results of security analysis.

As presented in Fig. 3, for each algorithm equivalent
number of bits in order to provide identical security is
provided in vertical axis against different key sizes (L)
provided in horizontal axis. The base algorithm for
analysis is AES. When key size is 5, DH and RSA
needed 16 bits to have identical security while ECDH
and LSS need only 10 bits. When key size is 27, DH
and RSA needed 128 bits to have identical security
while ECDH and LSS needed only 54 bits. When key
size is 57, DH and RSA needed 512 bits to have
identical security while ECDH and LSS needed only 114
bits. When key size is 80, DH and RSA needed 1024
bits to have identical security while ECDH and LSS
needed only 160 bits. When key size is 110, DH and
RSA needed 2048 bits to have identical security while
ECDH and LSS needed only 220 bits. The results
revealed that proposed LSS and ECDH need less key
size to provide equivalent security of RSA and DH.
Except AES, LSS/ECDH has significant improvement in
terms of making the encryption and decryption schemes
lightweight.

B. Encryption Time Comparison
Encryption is made with different workloads such as 10
MB, 50 MB, 100 MB and 500 MB. Observations are
made on encryption time performance. It is measured in
seconds. The algorithms whose execution time is
compared are RSA, DH, ECDH and the proposed
(LSS).
As presented in Fig. 4, the workload details are provided
in X axis and execution time for encryption is provided in
Y axis. The workload is found to have influence on the
execution time. And different algorithms showed
different performance. When data size is 10 MB, RSA
needed 2.9938 seconds of time for encryption while DH,
ECDH and LSS needed 0.9539, 0.8057 and 0.7989
seconds respectively. LSS revealed improved
performance over the existing methods.

This trend is maintained for all workloads. For instance,
when data size is 500 MB, RSA needed 25.1956
seconds of time for encryption while DH, ECDH and
LSS needed 14.1906, 13.6537 and 12.9896 seconds
respectively. Therefore, from the results it is found that
LSS shows highest performance while the RSA shows
the least performance.

Fig. 4. Execution time comparison for encryption.

C. Decryption Time Comparison
Decryption is made with different workloads such as 10
MB, 50 MB, 100 MB and 500 MB. Observations are
made on the time taken by algorithms to decrypt data. It
is measured in seconds. The algorithms whose
execution time is compared are RSA, DH, ECDH and
the proposed (LSS).

Fig. 5. Time taken for decryption.

As presented in Fig. 5, the workload details are provided
in X axis and Y axis shows execution time measured in
seconds. The workload has its impact on the execution
time. And different algorithms showed different
performance. When 10 MB data is used, RSA needed
2.6391 seconds of time for decryption while DH, ECDH
and LSS needed 1.0847, 0.7945 and 0.6921 seconds
respectively. LSS exhibited improved performance over
existing methods.
This trend is maintained for all workloads. For instance,
when data size is 500 MB, RSA needed 18.953 seconds
of time for decryption while DH, ECDH and LSS needed
10.2907, 9.6734 and 9.0132 seconds respectively.
Therefore, from the results it is found that LSS shows
highest performance while the RSA shows the least
performance.

Sirisha & Kiran International Journal on Emerging Technologies 11(1): 414-420(2020) 419

D. Upload Time Comparison
Data upload time comparison is made with different
workloads such as 10 MB, 50 MB, 100 MB and 500 MB.
Observations are made on the time taken by different
schemes for uploading data. It is measured in seconds.
The algorithms whose execution time is compared are
RSA, DH, ECDH and the proposed (LSS).

Fig. 6. Total upload time performance.

Fig. 6 showed that, the workload details are provided in
horizontal axis while the vertical axis shows execution
time taken for data upload. The workload has its impact
on the execution time. And different algorithms showed
different performance. When 10 MB of data is
considered, RSA needed 1.7191 seconds of time for
data upload while DH, ECDH and LSS needed 0.6443,
0.5862 and 0.5568 seconds respectively. LSS showed
better performance over the state of the art. This trend
is maintained for all workloads. For instance, when data
size is 500 MB, RSA needed 32.0845 seconds of time
for data upload while DH, ECDH and LSS needed
18.9721, 17.4262 and 16.9856 seconds respectively.
Therefore, from the results it is found that LSS shows
highest performance while the RSA shows the least
performance.

E. Download Time Comparison
Data download time comparison is made with different
workloads such as 10 MB, 50 MB, 100 MB and 500 MB.
Observations are made on the time taken for
downloading data. It is measured in seconds. The
algorithms whose execution time is compared are RSA,
DH, ECDH and the proposed (LSS).

Fig. 7. Comparison of download time.

As presented in Fig. 7, the workload details are provided
X axis and Y axis shows download time. The workload
has its impact on the execution time. And different
algorithms showed different performance. When data
size is 10 MB, RSA needed 1.7191 seconds of time for
data download while DH, ECDH and LSS needed
0.6443, 0.5862 and 0.5568 seconds respectively. LSS
showed performance enhancement when compared
with the existing schemes. This trend is maintained for
all workloads. For instance, when data size is 500 MB,
RSA needed 32.0845 seconds of time for data
download while DH, ECDH and LSS needed 18.9721,
17.4262 and 16.9856 seconds respectively. Therefore,
from the results it is found that LSS shows highest
performance while the RSA shows the least
performance.

F. Discussion
The empirical study and results presented in the
preceding sub sections are based on the proposed LSS
scheme. LSS is based on the EC-DH with an extension
to make it more secure and lightweight. The
experimental results showed the security advantages of
the LSS over other methods. Since it is lightweight, it
showed better performance in terms of time taken as
well.

VI. CONCLUSION

In this paper, a cryptography scheme is developed for
big data. It is termed as Lightweight Security Scheme
(LSS) is an improved form of ECDH. ECDH is well
known for its lightweight means of key exchange. With
the use of Elliptic Curve (EC) and Diffie Hellman (DH)
combination along with an improved form of computing
modulus of a fractional number used with EC. In the era
of big data produced by IoT devices and other sources,
it is essential to have lightweight cryptography.
The proposed LSS consumes less power, reduces
computational overhead and provides equivalent
security when compared with other public key
cryptography techniques like RSA. Empirical study is
made with a prototype application with different
algorithms like RSA, DH, ECDH and LSS. Security
analysis and data encryption and decryption revealed
that the LSS scheme outperforms the state of the art. Its
performance in execution time taken for encryption,
decryption, uploading data and downloading data of
different size.

VII. FUTURE SCOPE

In future, we intend to improve lightweight security with
support for operations such as search and data
manipulations directly on the encrypted data.

ACKNOWLEDGEMENTS

I thank to my guide and MLRIT for guiding me to
produce this manuscript.

Conflicts of Interest. Authors have no conflict of
interest.

REFERENCES

[1]. Aljawarneh, S., Talafha, W. A., & Yassein, M. B.
(2017). A resource-efficient encryption algorithm for
multimedia big data. Multimedia Tools and
Applications, 76(21), 22703-22724.

Sirisha & Kiran International Journal on Emerging Technologies 11(1): 414-420(2020) 420

[2]. Liang, C., Ye, N., Malekian, R., & Wang, R. (2016).
The hybrid encryption algorithm of lightweight data in
cloud storage. In 2016 2nd International Symposium on
Agent, Multi-Agent Systems and Robotics
(ISAMSR) (pp. 160-166). IEEE.
[3]. Lu, R., Zhu, H., Liu, X., Liu, J. K., & Shao, J. (2014).
Toward efficient and privacy-preserving computing in
big data era. IEEE Network, 28(4), 46-50.
[4]. Tang, W., Zhang, K., Ren, J., Zhang, Y., & Shen, X.
(2017). Lightweight and privacy-preserving fog-assisted
information sharing scheme for health big data.
In GLOBECOM 2017-2017 IEEE Global
Communications Conference, 1-6. IEEE.
[5]. Puthal, D., Wu, X., Nepal, S., Ranjan, R., & Chen, J.
(2017). SEEN: A selective encryption method to ensure
confidentiality for big sensing data streams. IEEE
Transactions on Big Data, 1-14.
[6]. Bai, T., Lin, J., Li, G., Wang, H., Ran, P., Li, Z., ... &
Jeon, G. (2018). A lightweight method of data
encryption in BANs using electrocardiogram
signal. Future Generation Computer Systems, 92, 800-
811.
[7]. Bakhtiari, M., Zainal, A., Bakhtiari, S., & Mammi, H.
K. (2015). Lightweight Symmetric Encryption Algorithm
In Big Data. Int. J. Advance Soft Compu. Appl., 7(3), 45-
55.
[8]. Kadhim, F. A., Abdul-Majeed, G. H., & Ali, R. S.
(2017). Enhancement CAST block algorithm to encrypt
big data. In 2017 Annual Conference on New Trends in
Information & Communications Technology Applications
(NTICT) (pp. 80-85). IEEE.
[9]. Usman, M., Ahmed, I., Aslam, M. I., Khan, S., &
Shah, U. A. (2017). SIT: a lightweight encryption
algorithm for secure internet of things. International
Journal of Advanced Computer Science and
Applications, 8(1), 1-10.
[10]. Talbi, M., & Bouhalel, M. S. (2018). Application of a
Lightweight Encryption Algorithm to a Quantized
Speech Image for Secure IoT. 1-16.
[11]. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo,
B. S., & Kim, H. (2006). HIGHT: A new block cipher
suitable for low-resource device. In International
Workshop on Cryptographic Hardware and Embedded
Systems (pp. 46-59). Springer, Berlin, Heidelberg.
[12]. Al-Souly, H. A., Al-Sheddi, A. S., & Kurdi, H. A.
(2013). Lightweight symmetric encryption algorithm for
secure database. International Journal of Advanced
Computer Science and Applications, 3(4), 53-62.
[13]. Rajesh, S., Paul, V., Menon, V. G., & Khosravi, M.
R. (2019). A secure and efficient lightweight symmetric

encryption scheme for transfer of text files between
embedded IoT devices. Symmetry, 11(2), 1-21.
[14]. Thayananthan, V., & Albeshri, A. (2015). Big data
security issues based on quantum cryptography and
privacy with authentication for mobile data
center. Procedia Computer Science, 50, 149-156.
[15]. Harinath, D., Babu, K. R.,Chithra, B.,& Murthy, M.
V. R., (2015). Encryption Techniques for Big Data in a
Cloud. International Journal of Modern Trends in
Engineering and Research, 2(8), 1-18.
[16]. Sushmitha, S, Singh, M., & Naaz, F. (2018). A
lightweight data sharing scheme using mobile cloud
computing. International Journal of Computer
Engineering and Applications, 12, 1-6.
[17]. Diffie, W., & Hellman, M. (1976). New directions in
cryptography. IEEE transactions on Information
Theory, 22(6), 644-654.
[18]. Stallings, W. (2010). Cryptography and Network
Security: Principles and Practice, 5th ed. Upper Saddle
River, NJ, USA: Prentice Hall Press,
[19]. Rivest, R. L., Shamir, A., & Adleman, L. (1978). A
method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2),
120-126.
[20]. Jonsson, F., & Tornkvist, M. (2017). RSA
Authentication in Internet of Things. Available at
http://www.divaportal.org/smash/get/diva2:1112039/FUL
LTEXT01.pdf
[21]. Sirisha, N., & Kiran, K. V. D. (2018). Authorization
of Data In Hadoop Using Apache Sentry. International
Journal of Engineering and Technology, 7(3), 234-236.
[22]. Sirisha, N., Kiran, K. V. D., & Karthik, R.
(2018).Hadoop security challenges and its solution
using KNOX. Indonesian Journal of Electrical
Engineering and Computer Science,12(1), 107-116.
[23]. Sirisha, N., & Kiran, K. V. D. (2017). Protection of
encroachment on bigdata aspects International Journal
of Mechanical Engineering and Technology, 8(7), 550-
558.
[24]. Suriya, U., Kumar, R., Dhamodharan, Nagamani,
M., & Krishnamoorthy, V. (2019). An Efficient Node
Ranking Mechanism for Identifying Selective Forwarding
Attacks in WSN. International Journal on Emerging
Technologies, 10(4), 50-56.
[25]. Myla, S., Marella, S. T., Karthikeya, K., Preetham
B., & Ahammad, S. K. H. (2019). The Rise of “Big Data”
in the Field of Cloud Analytics. International Journal on
Emerging Technologies, 10(4), 125-130.

How to cite this article: Sirisha, N. and Kiran, K.V.D. (2020). An Efficient and Lightweight Security Scheme for
Big Data. International Journal on Emerging Technologies, 11(1): 414–420.

