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ABSTRACT: It is quite clear that machine downtime due to a sudden machinery breakdown will cost the 

organization a lot of money. Organizations need to avoid this by using an innovative maintenance 

methodology. There are also available machine learning algorithms that can be utilized in the statistical 

checks to ascertain the primary cause of the problems that were not envisioned due to larger datasets that 

are available to the companies. The integration of Artificial Intelligence, Machine Learning, and Data 

Science has emerged as a transformative approach to preventive mechanical maintenance, offering 

profound enhancements in the reliability and operational efficiency of industrial machinery. The author’s 

aim is to predict the failure of mechanical components using Artificial Intelligence, Machine Learning, and 

Data Science in Mechanical Maintenance, with a particular focus on milling machine components, 

including the boom roller, copping roller, guide roller, and support material device. We used different 

supervised machine learning algorithms like Linear Regression, Gradient Boosting, Random Forest, 

Decision Tree, K-nearest neighbors, and Support Vector Machine. The findings reveal that the Support 

Vector Machine model delivers the highest accuracy than other algorithms, predicting failures with 

precision rates of 75% for the boom roller, 63.64% for the copping roller, 53.85% for the guide roller, and 

an impressive 69.23% for the Support Material Device. Additionally, the Mean Absolute Error analysis for 

the Support Vector Machine model indicates minimal prediction errors of 1 to 4 days. This research 

highlights the tangible benefits of implementing Artificial Intelligence-driven predictive maintenance in 

industrial settings, including cost savings, improved machinery performance, and enhanced safety 

standards. 

Keywords: Artificial intelligence, Data science, Machine learning, Predictive maintenance, Python, Data 

analysis, Data visualization, Mean absolute error. 

 

INTRODUCTION 

Mechanical components inevitably degrade over time 

due to wear, tear, and operational stresses, leading to 

costly downtimes and potential safety hazards. At the 

same time, we can base our choices on our prior 

knowledge and experience. To upgrade and make our 

time more successful we have to look deeply as to 

what, when, and how to do it and then identify the data 

to use. And most importantly, we must act wisely 

(Nacchia et al., 2021). Preventive maintenance, aimed 

at proactively identifying and addressing issues before 

they escalate into failures, has emerged as a crucial 
strategy for ensuring the smooth operation of 

machinery. Traditionally, preventive maintenance 

schedules were based on fixed intervals or accumulated 

operating hours, often resulting in unnecessary 

servicing or missed maintenance opportunities. Industry 

is becoming ‘smarter’ by introducing local intelligence 

in equipment in the form of machine learning (Nacchia 

et al., 2021). With advancements in technology, 

particularly in the fields of Artificial Intelligence (AI), 

Machine Learning (ML), and Data Science, A 

fundamental change has taken place in the approach to 

mechanical maintenance. By utilizing data mining 

techniques and machine learning algorithms like J48, 

predictive models can be developed to analyze 

historical data, assess risk, and enhance decision-

making, aligning with the goals of predictive 

mechanical maintenance to prevent failures and 

optimize operations (Sameh et al., 2024). 

With the use of machine learning algorithms, AI-driven 

predictive maintenance examines equipment data to 

predict when repair is necessary before a breakdown 
happens. AI can detect any problems early by tracking 

the functioning of the equipment in real time, enabling 

operators to do preventative maintenance. This method 

lowers maintenance expenses, minimizes downtime, 

and enhances overall machine reliability (Jambol et al., 

2024). Instead of relying solely on predetermined 

schedules or reactive approaches, predictive 

maintenance leverages real-time data and advanced 

analytical techniques to forecast equipment failures 

before they occur. By analyzing large volumes of real-
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time and historical data, AI models can detect patterns 

and anomalies in machine behavior, allowing for the 

early identification of potential issues (Joy et al., 2024). 

ML models trained on such data can then predict 

potential failure events, enabling maintenance teams to 

take pre-emptive action, such as scheduling 

maintenance activities during planned downtime or 

replacing worn components before catastrophic failures 
occur. 

We will explore how these technologies are utilized to 

predict failures of critical components, focusing on 

spiral pipe mill machine components such as Boom 

Roller, Guide Roller, SMD (Support Material Device), 

and Copping Roller. The report will examine the 

various parameters shown in Fig. 1, considered in 

predictive maintenance models, including Speed of 

machine (S), Diameter of pipe (D), Thickness of coil(T) 

and ratios such as Diameter of pipe/ Thickness of coil 

(D/T), Thickness of coil/ Diameter of pipe (T/D), 

Diameter of pipe/Speed of machine (D/S) and 
Thickness of coil/Speed of machine (T/S). Through a 

comprehensive analysis of real-time readings and 

historical failure data, we will highlight the benefits, 

challenges, and implications of adopting predictive 

maintenance strategies powered by AI, ML, and Data 

Science in industrial settings. 

 

(A) Parameters of coil. 

 

(B) Parameters of pipe. 

Fig. 1. Parameters of coil. 

LITERATURE REVIEW 

Mechanical components inevitably degrade over time 

due to wear, tear, and operational stresses, leading to 

costly downtimes and potential safety hazards. At the 

same time, past knowledge and experience aid the 

decision-making process. We need to study, analyze, 
and use data systematically, but above all, wisely, to 

improve ourselves while minimizing efforts (Nacchia et 

al., 2021). Predictive Maintenance (PdM) is a key 

strategy that uses real-time data to estimate a machine's 

remaining usable life (RUL) and diagnose a 

malfunction. This is especially effective for industrial 

machinery, where safety is of utmost importance 

because of the high cost and potential harm to people. 

Machine learning is a technology that uses data to make 

accurate predictions. The use of machine learning in 

PdM has significantly reduced costs and guaranteed the 
protection of human life (Adryan and Sastra 2021). 

Therefore, to facilitate complicated decision-making in 

the manufacturing industry, we can further exploit the 

great potential of the AI and ML techniques, if the 

problems are properly formulated based on the 

understanding of system properties (Huang et al., 

2020). 

According to reports, supervised learning is the most 

used prediction strategy. The most often used 

techniques, comprising 40% of papers, were found to 

be Random Forest, Support Vector Machine, and 

Neural Networks. Of these, 67% were associated with 
Deep Neural Networks, with a prevalence of long short-

term memory. However, no robust approach that is, no 

one ideal performance across a range of case tests—

works well for every situation (Nacchia et al., 2021). 

Pure physical models or hybrid models may still be the 

best option under various conditions, not machine 

learning, is the basic implication inferred over here but 

modern machine learning adds to the repertoire of tools 

required for PdM. However, this does not imply that 

machine learning will completely supplant previous 

strategies. Pure physical models or hybrid models may 
still be the best option in some circumstances (Theissler 

et al., 2021). 

A. Aim of the current study 

The aim of this study is to predict the failure of 

mechanical components using AI, ML, and Data 

Science in Mechanical Maintenance. This study 

investigates the application of these cutting-edge 

technologies in predicting mechanical failures, with a 

particular focus on milling machine components, 

including the boom roller, copping roller, guide roller, 

and support material device. 

B. Objectives of the current study 

1. To develop an AI-based system that can 

automatically predict the failure of components based 

on various input data. 

2. Utilize data analytics to develop optimized 

maintenance schedules, to identify potential production 

issues well before lead to machine shut-down, reducing 

unnecessary maintenance and minimizing downtime. 

3. Improve the efficiency of resource utilization by 

minimizing the frequency of inspections and 

maintenance activities, while ensuring machinery 

operates reliably and safely. 

METHODOLOGY 

The methodology of the project starts with the 

collection of data from a milling machine, with an 

emphasis on important operating characteristics 

including speed, thickness, and diameter. Certain parts 

of the milling machine, such as the support material 
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device (SMD), copping roller, guiding roller, and boom 

roller are chosen for in-depth examination. 

Subsequently, the next step involves the analysis of 

component data to identify key patterns and trends. 

After that, data is visualized using programs like 

Matplotlib to help better understand the correlations 

between different variables. Next, a comprehensive 

analysis of machine learning methods is carried out to 
identify which models like SVM, Random Forest, or 

Linear Regression best suit the predictive maintenance 

requirement. Once appropriate machine learning 

algorithms have been chosen, they are trained and 

verified using historical data. Finally, a comparison of 

actual vs. AI-predicted data is performed to evaluate the 

accuracy of the predictions, ensuring the reliability of 

the maintenance forecasts. 

 
Fig. 2. AI and ML Integration Methodology for 

Predictive Maintenance. 

SELECTION OF COMPONENTS 

In the area of predictive maintenance for industrial 

machinery, such as spiral pipe milling machines, 

selecting the right components for analysis is critical to 

effectively forecast and prevent failures (Tessoni and 

Amoretti 2022). For this project, the components 

chosen boom roller, copping roller, guide roller, and 

SMD were identified based on their significance in 

operational integrity and historical failure patterns. 

A. Important of component selection 

1. Criticality and Functionality: Each selected 

component has a crucial function in the overall 

functioning and performance of the spiral pipe milling 

machine. Understanding their failure modes and 

implications is essential for maintaining operational 

continuity and minimizing downtime. 

2. Historical Failure Analysis: Prior analysis of real-

time data revealed that the boom roller, copping roller, 

guide roller, and SMD frequently experienced failures. 

These failures were documented based on factors such 

as operational hours, load conditions, and 

environmental influences. 

3. Impact on Production: Failures in these 

components can significantly disrupt production 

schedules and lead to costly repairs or replacements. 

Predicting failure dates allows proactive maintenance 

interventions, reducing the risk of unplanned downtime 

and optimizing machine uptime (Jambol et al., 2024). 

B. Methodology and data collection 

1. Real-Time Data Acquisition: Data collection 

involved gathering operational metrics such as 

rotational speed, temperature, vibration levels, and 

specific performance indicators unique to each 

component. This real-time data provided a 

comprehensive view of component health and 

operational status. 

2. Failure Analysis Criteria: Components were 

selected based on the frequency of failure incidents 

observed over a specified period. The analysis focused 

on identifying patterns or anomalies in data that 
correlated with impending failures, using techniques 

such as time-series analysis and anomaly detection 

(Quatrini et al., 2020). 

C. Predictive model development 

1. Feature Engineering: Relevant features extracted 

from real-time data included performance metrics 

specific to each component. This involved calculating 

metrics such as speed, thickness, and deviations from 

optimal operating conditions. 

2. Machine Learning Algorithms: Utilizing machine 

learning algorithms, predictive models were trained to 
forecast failure dates for the selected components 

(Tessoni and Amoretti 2022). Algorithms such as 

regression, decision trees, and neural networks were 

employed to analyze historical data patterns and predict 

future failure events. 

D. Components 

1. Boom Roller: Positioned above the forming section, 

the boom roller plays a crucial role in controlling the 

diameter and pitch of the spiral, ensuring uniformity 

and precision in the final product, as shown in Fig. 3 

(A). 
2. Copping Roller: Positioned at the entry point of the 

machine, the copping roller ensures that the strip's 

edges are properly aligned and trimmed before entering 

the forming section, as shown in Fig. 3 (B). 

3. Guide Roller: Positioned strategically along the 

length of the machine, these rollers play a vital part in 

maintaining the proper alignment and tension of the 

strip, ensuring smooth and consistent formation of the 

spiral pipe, as shown in Fig. 3 ©. 

4. SMD: Positioned underneath the strip, the SMD 

applies pressure and support to prevent distortion or 

deformation as the strip is shaped into a spiral, ensuring 
that the pipe maintains its desired shape and structural 

integrity, as shown in Fig. 3 (D). 
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(A) Boom roller 
 

(B) Copping roller 

 

(C) Guide roller 

 

(D) Support Material Device 

Fig. 3. Components of the Milling Machine. 

MACHINE LEARNING 

Machine learning is the field that studies computer 
algorithms to make accurate predictions and responses 

in specific situations or to act smart. Speaking, machine 

learning uses past knowledge to figure out how to 

create better conditions down the road. Machines gain 

knowledge and skills from existing data. So, machine 

learning is the development of programs that allow us 

to pick relevant data from various sources, assess that 

data, and use it to forecast how the system will act in 

similar or different scenarios (Subasi, 2020). Machine 

learning is a branch of artificial intelligence whose goal 

is to create algorithms that allow computers to 

understand data and use it to make predictions or 
choices. In contrast to traditional programming, which 

requires explicit instructions, machine learning systems 

learn how to do a task via practice (Surden, 2021).  The 

goal of machine learning, a branch of artificial 

intelligence, is to create algorithms that let computers 

understand data and utilize it to forecast or make 

choices. In contrast to traditional programming, which 

requires explicit instructions, machine learning systems 

learn how to do a task via practice. This learning 

process involves identifying patterns in data and using 

these patterns to make informed predictions or 
decisions. ML techniques support the resolution of 

numerous business issues, including clustering, 

associations, forecasting, classification, regression, and 

others (Savitha et al., 2023). 

Machine learning has the potential to revolutionize 

preventive mechanical maintenance by enabling 

predictive capabilities that were previously 

unattainable. By leveraging data from machinery and 

advanced ML algorithms, organizations can achieve 

significant improvements in operational efficiency, cost 

savings, and equipment reliability. As ML technology 
continues to advance, its role in preventive maintenance 

will likely become even more integral, driving further 

innovation and benefits across various industries. 

The different supervised machine learning algorithms 

like Linear Regression, Gradient Boosting, Random 

Forest, Decision Tree, k-nearest neighbors, and Support 

Vector machines are used to predict the failure date of 

components and to find which algorithm is best suited 

according to the problem. 

DATA ANALYSIS 

Data analysis serves as the foundational step in the ML 

pipeline, guiding decisions from data pre-processing to 
model selection, validation, and ongoing refinement. It 

ensures that ML models are not only accurate but also 

robust, interpretable, and aligned with real-world data 

dynamics and requirements. Data analysis guides the 

process of uncovering hidden insights within the 
dataset. Exploratory Data Analysis (EDA) makes 

visible any patterns or issues in the data, which results 

in a hypothesis (Rahmany et al., 2020). We mainly 

focus more on real-time data analysis of the milling 

machine dataset and finding insights. We used Python 

programming language for data analysis with libraries 

like NumPy, Pandas, and scikit-learn. Python has 

become one of the most popular interpreted 

programming languages, along with Perl, Ruby, and 

others (Hope, 2020). 

Data analysis plays a pivotal role in understanding the 

performance and failure patterns of milling machine 
components. This report delves into the application of 

correlation, R2 coefficient, and linear regression 

methods to establish relationships between key 

parameters and the failure days of components such as 

the boom roller, copping roller, guide roller, and 

support material device (SMD). The following 

parameters were analyzed about the failure days of the 

components: Speed of machine (S), diameter of pipe 

(D), thickness of coil (T), diameter/thickness(D/T) 

ratio, thickness/diameter(T/D) ratio, diameter/speed 

(D/S) ratio, thickness/speed(T/S) Ratio. 

A. Correlation analysis 

An examination of correlation was used to measure the 

strength and direction of the linear relationships 

between each parameter and the failure days of the 

components. Correlation coefficients close to +1 

indicate a strong positive relationship, while 

coefficients close to -1 signify a strong negative 

relationship. A coefficient near 0 suggests no linear 

relationship. 

To find the correlation of two variables, In Python, we 

used the most commonly used function to find the 
correlation between two variables corr() from the 

Pandas library and the excel correl function to validate 

the result. 

Table 1: Correlation of the parameters and day of 

component failure with the help of python’s corr() 

from the Pandas. 

Parameters 
Boom 

Roller 

Copping 

Roller 

Guide 

Roller 
SMD 

Speed -0.47 0 -0.4 -0.6 

Diameter 0.64 0.43 0.39 0.71 

Thickness 0.18 0.15 0.32 0.45 

D/T 0.84 0.57 0.33 0.34 

T/D -0.84 -0.64 -0.44 -0.44 

D/S 0.67 0.43 0.4 0.73 

T/S 0.28 0.15 0.33 0.51 
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Table 2: Correlation analysis of the parameters and 

day of component failure with the help of excel’s 

correl function. 

Parameters 
Boom 

Roller 

Copping 

Roller 

Guide 

Roller 
SMD 

Speed -0.47 0 -0.4 -0.6 

Diameter 0.64 0.43 0.39 0.71 

Thickness 0.18 0.15 0.32 0.45 

D/T 0.84 0.57 0.33 0.34 

T/D -0.84 -0.64 -0.44 -0.44 

D/S 0.67 0.43 0.4 0.73 

T/S 0.28 0.15 0.33 0.51 

 

B. Linear regression 

Linear regression models were fitted to quantify the 

linear relationship between each parameter and the 

failure days. These models provide insights into the rate 

of change in failure days concerning changes in the 

parameters, offering a predictive framework for 

understanding component reliability. 

To find the linear regression of two variables, In 

Python, we used the Linear Regression class from 

sklearn.linear_model module in the Scikit-Learn library 

for more advanced linear regression analysis. 

Table 3: Linear regression analysis of the 

parameters and day of component failure with the 

help of python’s sklearn.linear_model. 

 

Parameters 
Boom 

Roller 

Copping 

Roller 

Guide 

Roller 
SMD 

Speed -75.07 0 -318.56 -142.1 

Diameter 0.12 0.07 0.07 0.14 

Thickness 5.04 4.15 7.76 9.24 

D/T 2.18 1.64 1.31 0.73 

T/D -20942.97 -17721.56 -16434.18 -11395.08 

D/S 0.57 0.35 0.36 0.68 

T/S 38.23 20.75 40.51 51.82 

 

C. Coefficient of determination 

The R2 coefficient or coefficient of determination, was 

calculated to assess how well the variation in each 

parameter explains the variability in the failure days of 
the components. A higher R2  value (closer to 1) 

indicates that the parameter is more predictive of the 

component's failure days. The coefficient of 

determination (R-squared) is more informative and 

truthful, therefore suggests the usage of R-squared as a 

standard metric to evaluate regression analyses in any 

scientific domain (Chicco et al., 2021). 

Table 4: Coefficient of determination analysis of the 

parameters and day of component failure with the 

help of python. 

Parameters 
Boom 

Roller 

Copping 

Roller 

Guide 

Roller 
SMD 

Speed 0.22 0 0.16 0.36 

Diameter 0.41 0.18 0.15 0.5 

Thickness 0.03 0.02 0.1 0.2 

D/T 0.7 0.33 0.11 0.11 

T/D 0.7 0.41 0.19 0.2 

D/S 0.45 0.18 0.16 0.54 

T/S 0.08 0.02 0.11 0.26 

 

DATA VISUALIZATION 

Data visualization tools have become an essential part 

of the data analysis process (Lavanya et al., 2023). Data 

visualization plays a pivotal role in understanding 

complex datasets by visually representing relationships, 
trends, and patterns. An important component of the 

scientific method is data visualization. A scientist will 

be able to explain their findings to others and 

understand their own data with the help of effective 

visuals (Waskom, 2021). Understanding the 

relationships between key parameters and the failure 

times of machine components is crucial for predictive 

maintenance and optimizing operational efficiency. 

This study utilizes Matplotlib, a Python library for data 

visualization, to explore and analyze the relationships 

between various parameters of milling machine 

components and their failure times.  The components 
studied include the boom roller, copping roller, guide 

roller, and support material device (SMD). The 

parameters explored are Diameter/Thickness (D/T), 

Thickness/Diameter (T/D), and Diameter/Speed (D/S) 

ratios with respect to the number of days until 

component failure. By plotting these relationships using 

scatter plots, we aim to gain insights into the 

performance characteristics and failure patterns of these 

components. 

Data visualization graphs 

The components and parameters analyzed in this study 
shown in Figure include: 

1. Boom Roller: Diameter/Thickness (D/T) ratio vs. 

Day of failure, shown in Fig. 4 (A). 

2. Copping Roller: Thickness/Diameter (T/D) ratio vs. 

Day of failure, shown in Fig. 4 (B).  

3. Guide Roller: Thickness/Diameter (T/D) ratio vs. 

Day of failure, shown in Fig. 4 (C). 

4. SMD: Diameter/Speed (D/S) ratio vs. Day of failure, 

shown in Fig. 4 (D) 

 
A. Boom roller- D/T ratio vs. Day of failure. 

 
B. Copping roller- T/D ratio vs. Day of failure. 
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C. Guide roller- T/D ratio vs. Day of failure. 

 
D. SMD- D/S ratio vs. Day of failure. 

Fig. 4. Data visualization graphs. 

RESULTS 

In the project, focused on the various machine learning 

algorithms Gradient Boosting, Linear Regression, 

Decision Tree, Random Forest, KNN, SVM were 
applied to predict the maintenance needs of milling 

machine components: boom roller, copping roller, 

guide roller, and SMD. 

SVM achieved the highest accuracy rates of 75% for 

the boom roller, 63.64% for the copping roller, 53.85% 

for the guide roller, and an impressive 69.23% for 

SMD. 

Error Analysis: MAE calculations revealed the 

predictive capabilities in terms of days shown in Table 

10: 

Boom roller: ±0.67 days 
Copping roller: ±1.36 days 

Guide roller: ±1.38 days 

SMD: ±3.65 days 

These results highlight SVM's ability to provide reliable 

predictions. Among the algorithms tested, SVM 

emerged as the most effective, demonstrating superior 
performance across the components. 

In Tables 5-8, the actual failure date of the components 

is shown in the 1st column & other columns show the 

predicted failure date of the component by the 

respective algorithm. Di shows the difference in the 

predicted failure date by algorithms & actual failure 

date of the component. 

Where the negative (-) sign of difference (Di) indicates 

that the algorithm predicts the failure before the actual 

failure. A positive (+) sign of difference (Di) indicates 

that the algorithm predicts the failure after the actual 
failure. Zero (0) in difference (Di) indicates the exact 

prediction of failure date.

Table 5: Actual date and predicted date by algorithms for boom roller. 

Table 6: Actual date and predicted date by algorithms for copping roller. 

Actual Date 
Linear Regression Gradient Boosting Random Forest Decision Tree K - Nearest Neighbors Support Vector Machine 

Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di 

26-08-2023 03-09-2023 8 10-09-2023 15 06-09-2023 11 11-09-2023 16 04-09-2023 9 02-09-2023 7 

13-09-2023 28-08-2023 -16 31-08-2023 -13 30-08-2023 -14 29-08-2023 -15 28-08-2023 -16 05-09-2023 -8 

13-09-2023 26-09-2023 13 29-09-2023 16 29-09-2023 16 30-09-2023 17 25-09-2023 12 25-09-2023 12 

26-09-2023 26-09-2023 0 30-09-2023 4 30-09-2023 4 30-09-2023 4 27-09-2023 1 25-09-2023 -1 

07-10-2023 10-10-2023 3 14-10-2023 7 14-10-2023 7 14-10-2023 7 14-10-2023 7 09-10-2023 2 

20-10-2023 24-10-2023 4 30-10-2023 10 25-10-2023 5 31-10-2023 11 19-10-2023 -1 20-10-2023 0 

02-11-2023 04-11-2023 2 13-11-2023 11 11-11-2023 9 13-11-2023 11 04-11-2023 2 02-11-2023 0 

15-11-2023 12-11-2023 -3 27-11-2023 12 21-11-2023 6 28-11-2023 13 20-11-2023 5 14-11-2023 -1 

27-11-2023 02-12-2023 5 29-11-2023 2 30-11-2023 3 29-11-2023 2 03-12-2023 6 29-11-2023 2 

10-12-2023 29-12-2023 19 02-12-2023 -8 02-12-2023 -8 30-11-2023 -10 29-11-2023 -11 09-12-2023 -1 

22-12-2023 29-12-2023 7 07-01-2024 16 03-01-2024 12 08-01-2024 17 30-12-2023 8 25-12-2023 3 

 

 

Actual Date 
Linear Regression Gradient Boosting Random Forest Decision Tree K - Nearest Neighbors Support Vector Machine 

Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di 

07-08-2023 19-08-2023 12 23-08-2023 16 21-08-2023 14 24-08-2023 17 19-08-2023 12 16-08-2023 9 

21-08-2023 22-08-2023 1 27-08-2023 6 26-08-2023 5 28-08-2023 7 23-08-2023 2 19-08-2023 -2 

28-08-2023 10-09-2023 13 11-09-2023 14 10-09-2023 13 12-09-2023 15 06-09-2023 9 03-09-2023 6 

11-09-2023 13-09-2023 2 19-09-2023 8 18-09-2023 7 20-09-2023 9 14-09-2023 3 11-09-2023 0 

26-09-2023 28-09-2023 2 03-10-2023 7 03-10-2023 7 03-10-2023 7 01-10-2023 5 26-09-2023 0 

12-10-2023 14-10-2023 2 19-10-2023 7 19-10-2023 7 19-10-2023 7 18-10-2023 6 11-10-2023 -1 

28-10-2023 06-11-2023 9 06-11-2023 9 04-11-2023 7 07-11-2023 10 29-10-2023 1 28-10-2023 0 

08-11-2023 12-11-2023 4 23-11-2023 15 19-11-2023 11 24-11-2023 16 05-11-2023 -3 07-11-2023 -1 

20-11-2023 19-11-2023 -1 05-12-2023 15 01-12-2023 11 02-12-2023 12 27-11-2023 7 20-11-2023 0 

09-12-2023 09-12-2023 0 14-12-2023 5 14-12-2023 5 14-12-2023 5 14-12-2023 5 06-12-2023 -3 

26-12-2023 29-12-2023 3 07-01-2024 12 03-01-2024 8 07-01-2024 12 03-01-2024 8 26-12-2023 0 

14-01-2024 15-01-2024 1 21-01-2024 7 20-01-2024 6 19-01-2024 5 19-01-2024 5 14-01-2024 0 
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Table 7: Actual date and predicted date by algorithms for guide roller. 

Actual Date 
Linear Regression Gradient Boosting Random Forest Decision Tree K - Nearest Neighbors Support Vector Machine 

Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di 

05-08-2023 21-08-2023 16 22-08-2023 17 22-08-2023 17 22-08-2023 17 22-08-2023 17 14-08-2023 9 

25-08-2023 22-08-2023 -3 23-08-2023 -2 24-08-2023 -1 24-08-2023 -1 23-08-2023 -2 15-08-2023 -10 

27-08-2023 07-09-2023 11 16-09-2023 20 13-09-2023 17 17-09-2023 21 08-09-2023 12 05-09-2023 9 

10-09-2023 08-09-2023 -2 19-09-2023 9 16-09-2023 6 19-09-2023 9 14-09-2023 4 09-09-2023 -1 

22-09-2023 22-09-2023 0 04-10-2023 12 01-10-2023 9 05-10-2023 13 26-09-2023 4 22-09-2023 0 

30-09-2023 10-10-2023 10 11-10-2023 11 11-10-2023 11 12-10-2023 12 10-10-2023 10 05-10-2023 5 

10-10-2023 13-10-2023 3 20-10-2023 10 21-10-2023 11 20-10-2023 10 20-10-2023 10 14-10-2023 4 

25-10-2023 26-10-2023 1 06-11-2023 12 02-11-2023 8 07-11-2023 13 24-10-2023 -1 25-10-2023 0 

05-11-2023 12-11-2023 7 22-11-2023 17 14-11-2023 9 14-11-2023 9 01-11-2023 -4 05-11-2023 0 

20-11-2023 18-11-2023 -2 04-12-2023 14 28-11-2023 8 05-12-2023 15 24-11-2023 4 18-11-2023 -2 

05-12-2023 06-12-2023 1 14-12-2023 9 13-12-2023 8 15-12-2023 10 13-12-2023 8 05-12-2023 0 

20-12-2023 22-12-2023 2 05-01-2024 16 01-01-2024 12 31-12-2023 11 25-12-2023 5 20-12-2023 0 

01-01-2024 07-01-2024 6 17-01-2024 16 15-01-2024 14 15-01-2024 14 15-01-2024 14 05-01-2024 4 

Table 8: Actual date and predicted date by algorithms for SMD. 

Actual Date 
Linear Regression Gradient Boosting Random Forest Decision Tree K - Nearest Neighbors Support Vector Machine 

Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di Predicted Date Di 

04-08-2023 19-08-2023 15 23-08-2023 19 23-08-2023 19 24-08-2023 20 19-08-2023 15 17-08-2023 13 

05-08-2023 20-08-2023 15 24-08-2023 19 24-08-2023 19 24-08-2023 19 22-08-2023 17 18-08-2023 13 

05-08-2023 21-08-2023 16 25-08-2023 20 26-08-2023 21 26-08-2023 21 26-08-2023 21 21-08-2023 16 

21-08-2023 22-08-2023 1 26-08-2023 5 26-08-2023 5 26-08-2023 5 26-08-2023 5 22-08-2023 1 

04-09-2023 12-09-2023 8 14-09-2023 10 11-09-2023 7 15-09-2023 11 07-09-2023 3 03-09-2023 -1 

22-09-2023 02-10-2023 10 30-09-2023 8 26-09-2023 4 30-09-2023 8 22-09-2023 0 22-09-2023 0 

07-10-2023 10-10-2023 3 14-10-2023 7 14-10-2023 7 14-10-2023 7 13-10-2023 6 11-10-2023 4 

26-10-2023 30-10-2023 4 03-11-2023 8 01-11-2023 6 04-11-2023 9 29-10-2023 3 26-10-2023 0 

06-11-2023 05-11-2023 -1 23-11-2023 17 15-11-2023 9 24-11-2023 18 02-11-2023 -4 06-11-2023 0 

20-11-2023 20-11-2023 0 05-12-2023 15 30-11-2023 10 06-12-2023 16 25-11-2023 5 20-11-2023 0 

10-12-2023 13-12-2023 3 20-12-2023 10 16-12-2023 6 21-12-2023 11 10-12-2023 0 09-12-2023 -1 

30-12-2023 30-12-2023 0 10-01-2024 11 06-01-2024 7 07-01-2024 8 30-12-2023 0 30-12-2023 0 

17-01-2024 20-01-2024 3 31-01-2024 14 28-01-2024 11 01-02-2024 15 21-01-2024 4 19-01-2024 2 

Table 9: Predicted date accuracy by algorithms for Components (in %). 

Components 
Linear 

Regression 

Gradient 

Boosting 

Random 

Forest 

Decision 

Tree 

K - Nearest 

Neighbors 

Support Vector 

Machine 

Boom Roller 58.33 0.00 0.00 0.00 16.67 75 

Copping Roller 18.18 9.09 0.00 9.09 27.27 63.64 

Guide Roller 46.15 7.69 7.69 7.69 15.38 53.85 

SMD 30.77 0.00 0.00 0.00 23.08 69.23 

 

MEAN ABSOLUTE ERROR (MAE) 

The MAE measures the average magnitude of the errors 

in a set of forecasts, without considering their direction. 

It measures the accuracy of continuous variables. 

MAE=  (1) 

Among the algorithms tested, SVM emerged as the 

most effective, demonstrating superior performance 

across the components.  

Table 10 shows the Mean Absolute Error between the 

actual date and the date that is predicted by the 

algorithm.

Table 10: Mean Absolute Error shown by each algorithm for components (in days). 

Components 
Linear 

Regression 

Gradient 

Boosting 

Random 

Forest 
Decision Tree 

K- Nearest 

Neighbors 

Support Vector 

Machine 

Boom Roller 4.00 10.08 8.42 10.17 5.00 0.67 

Copping Roller 3.82 6.55 4.64 6.64 2.00 1.36 

Guide Roller 3.85 12.38 9.92 11.77 6.23 1.38 

SMD 5.92 12.54 10.08 12.92 5.77 3.62 

 

A graphical representation shown in Figure 5 of MAE 
by algorithm shows the predictive performance for each 

component. The vertical axis represents MAE, and the 

horizontal axis lists components. Each algorithm is 

represented by distinct bars. For example, SVM shows 

the lowest MAE for SMD (4 days) and consistent 
accuracy for the boom roller (1 day). This visualization 

helps identify the best algorithm for each component 

and areas for improvement.
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Fig. 5. Graphical Analysis of MAE by Algorithm for Component Performance Evaluation. 

DISCUSSION 

Predictive mechanical maintenance has been 

revolutionized by the integration of AI, ML, Data 

Science, and Python, offering significant improvements 

in reliability and efficiency. AI and ML algorithms, 

such as Linear Regression, Gradient Boosting, Random 

Forest, Decision Trees, K-nearest neighbors, and 

Support Vector Machines analyze extensive real-time 
data collected from historical records to identify 

patterns indicative of potential failures. Python, with its 

rich ecosystem of libraries like Scikit-learn, NumPy, 

Pandas, and MatPlotlib, provides powerful tools for 

implementing these algorithms. These technologies 

allow for the precise prediction of equipment failures, 

enabling maintenance teams to address issues 

proactively rather than reactively. In the context of 

milling machines, AI and ML models can process data 

related to the diameter of pipes, the thickness of plates, 

and machine speed to forecast the failure of 
components like boom rollers, copping rollers, guide 

rollers, and support material devices (SMD). 

The accuracy shown by SVM, Linear regression, KNN, 

Gradient Boosting, Random Forest, and Decision tree 

for boom roller is 75%, 58.33%, 16.67%, 0.00%, 

0.00%, and 0.00 respectively shown in Table 9. For 

copping roller accuracy shown by SVM, KNN, Linear 

regression, Decision Tree, Gradient boosting, and 

Random forest is 63.64%, 27.27%, 18.18%, 9.09%, 

9.09% and 0.00% respectively shown in Table 9. While 

for Guide roller ac-curacy shown by SVM, Linear 

regression, KNN, Gradient boosting, Decision tree and 
Random forest is 53.85%, 46.15%, 15.38%, 7.69%, 

7.69%, and 7.69% respectively shown in Table 9. For 

SMD, SVM, Linear regression, KNN, Gradient 

boosting, Random forest, and Decision tree accuracy is 

69.23%, 30.77%, 23.08%, 0.00%, 0.00%, and 0.00% 

respectively shown in Table 9. 

SVM achieved the highest accuracy rates of 75% for 

the boom roller, 63.64% for the copping roller, 53.85% 

for the guide roller, and an impressive 69.23% for 

SMD. 

CONCLUSION AND FUTURE SCOPE 

PdM stands as one of the factor strategies that rely on 

real-time data to predict machine failures by estimating 

the RUL. This approach is important for industrial 

machines where safety takes priority due to the huge 

costs and potential risk to human life safety (Adryan 

and Sastra 2021). In conclusion, the project underscores 

the critical role of AI, ML, and Data Science in 

modernizing predictive maintenance strategies. By 

adopting these technologies, industries can move 

towards proactive maintenance practices that not only 
enhance reliability and safety but also drive significant 

cost efficiencies. As technology continues to evolve, 

integrating advanced analytics and predictive 

capabilities will remain pivotal in shaping the future of 

mechanical maintenance. 

After analyzing components' real-time data with the 

help of Python and its libraries like NumPy, Pandas, 

scikit-learn, Matplotlib, sklearn. Linear_model and 

using several machine learning algorithms like Linear 

Regression, Gradient Boosting, Random Forest, 

Decision Tree, K- Nearest Neighbors, Support Vector 
Machine. We can conclude that the SVM is the best-

suited algorithm to predict the component failure date 

of the milling machine. SVM achieved the highest 

accuracy rates among all other algorithms that are 

tested, which is 75% for boom roller, 63.64% for 

copping roller, 53.85% for guide roller, and an 

impressive 69.23% for SMD. MAE shows the average 

difference between the predicted date by algorithms and 

the actual failure date of the component. The MAE 

shown by SVM is ±0.67 days for the boom roller, ±1.36 

days for the copping roller, ±1.38 days for the guide 

roller, and ±3.65 days for SMD.  
When analyzing parameters for predictive maintenance, 

common factors such as temperature, speed, and 

vibration are often prioritized. These are critical 

indicators of a machine's performance and can provide 

valuable insights into the likelihood of component 

failure. However, it is important to recognize that other 

factors, like lubrication, also play a crucial role in 

forecasting the failure of components. Proper 

lubrication reduces friction, minimizes wear, and 

ensures the smooth operation of mechanical parts. A 

lack of adequate lubrication can lead to overheating, 
increased wear, and eventual breakdown, making it a 

significant factor to consider in predictive maintenance 

strategies. While gathering real-time data, machines 
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sometimes undergo modifications to increase their 

capacity and production output. During these periods of 

modification, the machine may not operate as expected, 

which complicates the process of analyzing data and 

predicting component failures. The altered performance 
metrics during modifications can lead to inaccurate 

data, making it challenging to assess the true condition 

of the machine and its components. Consequently, 

predictive maintenance efforts may be hindered, as the 

irregular data does not reflect the machine's typical 

operating conditions. 

Future work in the field of predictive mechanical 

maintenance will likely focus on further enhancing the 

accuracy and efficiency of AI and ML models. One of 

the major challenges in creating a predictive 

maintenance system is the lack of failure data, as the 

machine/ components are frequently repaired before 
they fail (Van Dinter et al., 2022). As data collection 

becomes more sophisticated, incorporating real-time 

data from IoT devices and advanced sensors will 

provide richer datasets for analysis. This will enable the 

development of more precise predictive models. 

ABBREVIATIONS 
PdM Predictive Maintenance 

AI Artificial Intelligence 

ML Machine Learning  

RUL Remaining Useful Life 

SVM Support Vector Machines 

KNN K-Nearest Neighbors 

SMD Support Material Device 

MAE Mean Absolute Error 

EDA Exploratory Data Analysis 

IOT Internet of Things  

D Outer diameter of pipe (mm) 

T Thickness of coil (mm) 

S Speed of machine (m/min) 

Di Difference in the predicted failure date by 
algorithms & actual failure date of the component. 
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this study are available on request from the 

corresponding author. The data are not publicly 

available due to confidentiality agreements with the 
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