
Purohit et al.,

International Journal on Emerging Technologies 11(2): 668-673(2020) 668

International Journal on Emerging Technologies 11(2): 668-673(2020)
ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Arithmetic and Logical Unit Design for Area Optimization for Microcontroller

Amrut Anilrao Purohit
1,2

, Mohammed Riyaz Ahmed
2
 and R. Venkata Siva Reddy

2

1
Research Scholar, VTU Belagavi (Karnataka), India.

2
School of Electronics and Communication Engineering,

REVA University Bengaluru, (Karnataka), India.

(Corresponding author: Amrut Anilrao Purohit)

(Received 04 January 2020, Revised 02 March 2020, Accepted 03 March 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Arithmetic and Logic Unit (ALU) can be understood with basic knowledge of digital electronics
and any engineer will go through the details only once. The advantage of knowing ALU in detail is two-
folded: firstly, programming of the processing device can be efficient and secondly, can design a new ALU
architecture as per the various constraints of the use cases. The miniaturization of digital circuits can be
achieved by either reducing the size of transistor (Moore’s law) or by optimizing the gate count of the circuit.
The first has been explored extensively while the latter has been ignored which deals with the application of
Boolean rules and requires sound knowledge of logic design. The ultimate outcome is to have an area
optimized architecture/approach that optimizes the circuit at gate level. The design of ALU is for various
processing devices varies with the device/system requirements. The area optimization places a significant
role in the chip design. Here in this work, we have attempted to design an ALU which is area efficient while
being loaded with additional functionality necessary for microcontrollers. One novel approach in our work is
that the concept of hard-wired architecture (for multiplier and divider) is borrowed from Digital Signal
Processors. Another aspect worth mentioning is the implementation of barrel shifter which will considerably
reduce the execution time. The hardware design is made via Xilinx 9.1 ISE on Virtex 5 FPGA and verified
using ISim. The results are very encouraging, and it seems that a thorough understanding and proper
implementation of ALU will allow us to put other units in their place.

Keywords: ALU, Verilog, FPGA, Microcontroller, Area Optimization and Instruction set.

I. INTRODUCTION

The power of any embedded system is assessed based
on how powerful the processor is, and the capability of
processor is adjudicated by the ALU which invariably
boils-down to the instruction set. ALU is a core part of a
processor and its design will play a vital role in
execution of every instruction [1].
The three primary parameters under consideration for
ALU design are always power dissipation, speed of
operation and chip area. As the designer tries to
minimize one parameter, at least one of the other two
parameters increases, thereby creating a challenge.
Hence, optimizing all the three parameters in a proper
balance is crucial. The circuit designers and
researchers have tried hard to explore and exploit every
avenue in the chip designing to achieve less power
consumption, increased speed of operations and
optimize area on the chip [2]. The advancement in
technology and ever rising demand for hand-held
devices have compelled chip designers to focus on area
reduction/ optimization.
The miniaturization of the digital circuits can be
achieved either by reducing the size of transistor or by
minimizing the gate count of the design. The first
approach tries to keep up with Moore’s law and has
reached sub-nanometer technology leading to
advancements in CMOS VLSI [3]. The latter approach
has less buyers due to the need of sound knowledge in
logic design which demands more human efforts. It
deals with application of Boolean rules to simplify the
equations thereby reducing the complexity of the
circuits. The very careful design and testing of ALU are
crucial in the process of area optimization [4].
The Central Processing Unit (CPU) is the core of any
embedded system [5]. The CPU’s are categorized

based on the processing devices as Application Specific
Integrated Circuits (ASIC), Field Programmable Gate
Arrays (FPGA), Microprocessor, Digital Signal
Processor (DSP), Microcontrollers. Each of these
processing devices are targeted for specific application.
The major feature that distinguishes all the above
specified processing devices is primarily it ALU. The
ALU is generally an asynchronous logic circuit which
acts as the core of any processing device. The ALU of
the processing devices vary in its functionality, decoding
logic, size of the instruction set based on the device it's
going to be incorporated.
ASIC's are extremely fast as they are designed for a
dedicated application and occupy the least amount of
area on the chip. The design and fabrication of an ASIC
consumes significant amount of time and man hours
making them expensive at a smaller scale but would
turn out to be cost effective at large scale. FPGA
designs are slower than the other counterparts and
occupies a significantly larger area on chip but dominate
over the others due to their hardware reconfigurable
architecture, and shorter design and testing time.
The Microprocessors find their application in the high-
speed fixed-point arithmetic, logical and data transfer
operations [6]. They are suitable for the more of a
general-purpose application ranging from a personal
computer to a super computer. They are designed
generally using Von Neumann Architecture along with
the complex instruction set (CISC) which makes the
decoding logic bulky at the same time making it
programmer friendly [7].
Digital Signal Processors operate on floating-point
arithmetic and is supported by a Multiply and
Accumulate (MAC) unit to perform faster multiplication
and addition; and a Barrel Shifter to perform faster
logical operation [8]. This increases the area occupied
on the chip, hence increasing the cost. The DSP’s

e
t

Purohit et al.,

International Journal on Emerging Technologies 11(2): 668-673(2020) 669

operate at lesser clock frequencies compared to
Microprocessors, which reduces the power dissipation
on the chip. The DSP’s find their application in all
multimedia applications due to the presence of MAC
unit, Barrel shifter and a floating point ALU.
Microcontrollers are primarily system-on-chip (SoC),
which works on fixed-point arithmetic at even lower
clock frequencies compared to DSP’s. The lesser
external interface is required for the system to operate
for a similar functionality when compared to
Microprocessors. Microcontrollers operating at very low
speeds that is suitable for the rate of change of physical
parameters makes them handy to interface with the
external world. The lower prices of microcontrollers add
on to the demand for them in the industry. Both DSP’s
and Microcontrollers are designed using Harvard
Architecture along with the reduced instruction set
(RISC) leads to the smaller decoding logic thus reducing
the chip area compared to microprocessors [9]. The
multiply/divide operations are performed using
microcode architecture in Microprocessor/
Microcontroller, whereas DSP's use hard-wired
architecture [10]. Several architectures have been
investigated previously with an intention to achieve
trade-off between power and performance [1, 5]. Little
has been done in the area optimization, which will lead
to a win-win situation for both the cases: as lesser area
requires lesser power and reduced number of gates will
lower the complexity thereby increasing performance.
The existing architecture occupy more are on the chip or
have lesser features or functionalities or instructions to
work with. The fewer instructions makes the programs
more complex and requires more ALU operations to
perform the same task. Hence making the systems
slower. The area optimization of ALU is necessary so as
to reduce the chip area and eventually reduce the cost
on the system. It not only reduces the chip area but also
reduce the amount of power requirement as the number
of gate operation in the circuit reduces.
The aim is to achieve lower area and decent
performance with our proposed architecture. The work
focuses on optimizing the circuit by reducing the gate
count and designing a more powerful device. The power
of any embedded system is assessed based on how
powerful the processor is; and the capability of the
processor is adjudicated by ALU, which invariably boils
down to the instruction set. The very careful design and
testing of the ALU are crucial in the process of area
optimization. Verilog is used for the design and
verification of the IP core. The Verilog designs are said
to occupy lesser area if the number of Look-Up-Tables
(LUT) and the number of slices is reduced in the design.
Thus, conclude that the chip area can be reduced
significantly by reducing the gate count of the design for
the same operation.
The remainder of the paper is arranged as follows:
Section II describes the proposed ALU architecture,
along with experimental set-up. Section III provides
details on the instruction set. Section IV presents the
results along with the discussion. Finally, the paper
concludes in section V. To reach to a broader audience,
the paper also provides research gaps and future scope
in this section.

II. PROPOSED ARCHITECTURE

The ALU operations are primarily divided into Arithmetic
operations and Logical operations. The Arithmetic
operations like Addition, Subtraction, Increment,
Decrement and so on are performed by Arithmetic unit,
while Logical unit performs AND, OR, XOR,
complement, rotate, shift operations etc [11, 12]. The
multiplexers and de-multiplexers play a vital role in
selecting the respective results generated by the ALU
[13]. The Microcontrollers need to handle the individual
port lines which necessitate the need for bit handling
instructions. Thus, an ALU of a Microcontroller needs to
cater to both the bit-wise and the byte-wise Logical
operations, arithmetic and data transfer operations. In
spite of incorporating all the ALU operations, the
challenges lie in optimizing the area occupied on the
chip.
Adders form the core of any arithmetic unit with varied
designs like Ripple Carry Adder (RCA), Carry Look
Ahead Adder (CLA), Carry Save Adder (CSA), Carry
Select Adder (CSeA) etc. The respective adders are
selected based on the parameter to be minimized. If the
focus is on reducing the delay, then CSeA would be a
better choice but penalizes with a large chip area and
more power-hungry. While CLA would be relatively
slower than the CSeA but occupies significantly lesser
area. The CSA would be a better choice as the number
of bits needed to be added increases as in case of
multipliers [14]. The RCA occupies the least possible
area but is slower as the number of bits to be added
increases.

Fig. 1. A block diagram of proposed ALU architecture.

The proposed architecture focuses on the area
optimization and hence RCA has been used in the
entire design. The block diagram of the proposed ALU is
shown in Fig.1.
The ALU is designed to be incorporated in a
Microcontroller along with a barrel shifter to make logical
operation yield quicker results [15]. The complete
instruction set of the ALU has been designed. The pin
diagram each of the modules/ units, namely byte ALU,
Bit ALU, Barrel Shifter, ALU top module, and 8*8 bit
multiplier and 16/8 bit divider module are given in Fig. 2.

Purohit et al.,

International Journal on Emerging Technologies 11(2): 668-673(2020) 670

(a)

(b)

(c)

(d)

(e)

Fig. 2. Pin description of proposed ALU architecture (a) Arithmetic and Logical Unit (excluding multiplier and divider)
(b) bit-handling unit (c) Barrel Shifter (d) ALU top module (e) 8*8 bit multiplier and 16/8 bit divider module.

III. INSTRUCTION SET

There are 8 bit-handling instructions designed as
described below:
MOV ci, bit: Transfers the content of bit location
identified by the Op-code (lower bits) in input ‘a’ to carry
flag (represented by co output in the waveform).
XOR ci, bit: Performs XOR operation between the
content of bit location identified by the Op-code (lower
bits) in ‘a’ input with carry flag (represented by ci input in
the waveform) and store it in the carry flag (represented
by co output in the waveform).
AND ci, bit: Performs AND operation between the
content of the bit location identified by the Op-code
(lower bits) in ‘a’ input with carry flag (represented by ci
input in the waveform) and store it in the carry flag
(represented by co output in the waveform).

OR ci, bit: Performs OR operation between the content
of the bit location identified by the Op-code (lower bits)
in ‘a’ input with carry flag (represented by ci input in the
waveform) and store it in the carry flag (represented by
co output in the waveform).
MOV bit, ci: Transfers the carry flag (represented by ci
input in the waveform) to the bit location identified by
the Op-code (lower bits) in output y.
INV bit: Compliments the content of the bit location
identified by the Op-code (lower bits) on input ‘a’ and
stores in the same bit position on output y.
CLR bit: Clears the content of the bit location identified
by the Op-code (lower bits) on input a and stores in the
same bit position on output y.
SET bit: Sets the content of the bit location identified by
Op-code (lower bits) on input ‘a’ and stores in the same
bit position on output y. The details of all the instructions
and the Op-Codes is given in Table 1.

Purohit et al.,

International Journal on Emerging Technologies 11(2): 668-673(2020) 671

Table 1: Table of Instruction Set.

 Op-Code (Lower bits)
Op-Code

(Higher bits)
Operations 000 001 010 011 100 101 110 111

0000 Arithmetic/Logical NOP
CLR
MEM

INC
MEM

DEC
MEM

ADD
MEM,A

ADC
MEM,A

SBB
MEM,A

SB
MEM,A

0001 Arithmetic/Logical
CPL
MEM

XCHG A,
MEM

MOV
A,MEM

MOV
MEM,A

RLC
MEM

RRC
MEM MUL DIV

0010 Arithmetic/Logical CMP CLR INC DEC ADD ADC SBB SB
0011 Arithmetic/Logical CPL XOR AND OR RLC RRC DAA DAS
0100 Rotate left by no. bits Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
0101 shift left by no. bits Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
0110 Rotate right by no. bits Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
0111 shift right by no. bits Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
1000 Mov ci,bit Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
1001 Xor bitwise Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
1010 And bitwise Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
1011 Or bitwise Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
1100 Mov bit,ci Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
1101 Inv bitwise Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
1110 Clr bit (bit position) Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
1111 Set bit (bit position) Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7

IV. RESULTS

The entire ALU is divided into 5 major blocks:
anoxcsmm_1: This block operates upon all the bit-wise
operations carried out by the ALU. These operations are
carried out when the Op-Code (higher bits) range from
1000 to 1111. The related output waveforms are shown
in Fig. 3 (a) (b)
alu: This block operates upon 8-bit data arithmetic and
logical operations. These operations are carried out
when the Op-Code (higher bits) range from 0000 to
0011. The results of operation wrt 0000 and 0001 would
be stored in the memory locations whereas 0010 and
0011 would be stored in accumulator. The results of
multiplication and division would be stored in exclusive
memory locations meant for multiplication and division
registers. The NOP instruction, data transfer and
exchange instructions are part of this Op-code range.
The RLC and RRC instructions perform left and right

rotation of the data through carry flag. The waveforms
are shown in Fig. 3 (b).
rsrl: This block performs rotate and shift operations left
or right by the number of bits specified in the Op-Code
(lower bits). These operations are carried out when the
Op-Code (higher bits) range from 0100 to 0111. The
barrel shifter is designed in this block. The waveforms
are shown in Fig. 3 (d).
md16_8: This block performs 8-bit * 8-bit multiplication
of a and b inputs to yield 16-bit result on res_h and res_l
output lines and division of 16-bit (a and b inputs put
together) by 8-bit number on d input to yield 16-bit
quotient on res_u and res_h and 8-bit reminder on res_l
output lines. The waveforms are shown in Fig. 3 (e).
alu_final: This block integrates anoxcsmm_1, alu, rsrl,
and md16_8 blocks. The design summary of the ALU
top module is shown in Fig. 4.
The obtained results of the proposed design are
summarized in Table 2.

(a)

(b)

Purohit et al.,

International Journal on Emerging Technologies 11(2): 668-673(2020) 672

(c)

(d)

(e) 8*8 bit multiplier and 16/8 bit divider module.

Fig. 3. Waveforms, (a) and (b) bytewise arithmetic and logical operations, (c) bitwise operations, (d) barrel shifter, (e)
8*8 bit multiplier and 16/8 bit divider module.

Fig. 4. Design Summary of proposed ALU, showing the number of LUTs, slices.

Purohit et al.,

International Journal on Emerging Technologies 11(2): 668-673(2020) 673

Table 2: Design Summary.

Module No. LUT No. Slices
anoxcsmm_1 13 7

alu 66 30
rsrl 22 7

md16_8 300 133
Alu_final 426 190

V. CONCLUSION

An asynchronous ALU has been designed with 4
modules namely: bit handling ALU block, byte handling
ALU, Barrel shifter block, and hard-wired Multiplier and
Divider block. The proposed architecture is area efficient
and is optimized at gate level. The novel architecture
incorporating hard-wired multiplier and divider along
with barrel shifter have shown good results. Thus, the
chip area was reduced significantly by reducing the gate
count of the design for same operations.
As a part of future enhancement, we can focus on
integrating the proposed ALU on to a microcontroller
and further extend it to ASIC to reduce the delay.
Various additions to the architecture such as dual-core
ALU design, is possible. We can also include various
communication protocols such as Serial Peripheral
interface, Universal Asynchronous Receive and
Transmit (UART), and Inter IC Communication (I2C).

VI. FUTURE SCOPE

The future scope of this work is to optimize the area of
the chip using various modelling style and look into
which styles suits the most in the ALU design and
further optimize the area occupied on the chip retaining
all the features or instructions deigned in the proposed
ALU, thereby increasing the performance of the circuit.

ACKNOWLEDGMENT

The authors would like to thank Rukmini Education
Charitable Trust for providing the necessary facilities
and support to carryout this work.

Conflict of Interest. The authors declare no conflict of
interest associated with this work.

REFERENCES

[1]. Chen, J., Vasudevan, D., Popovici, E., &
Schellekens, M. (2011). Design of a Low Power, Sub-
Threshold, Asynchronous Arithmetic Logic Unit Using a
Bidirectional Adder. In 2011 14th Euromicro Conference
on Digital System Design, 301-308. IEEE.
[2]. Kulkarni, R., & Kulkarni, S. Y. (2014). Energy
efficient implementation of 16-Bit ALU using block
enabled clock gating technique. In 2014 Annual IEEE
India Conference (INDICON), 1-6. IEEE.
[3]. Syamala, Y., & Tilak, A. V. N. (2011). Reversible
arithmetic logic unit. In 2011 3rd International

Conference on Electronics Computer Technology, 5,
207-211. IEEE.
[4]. Adamec, F., & Fryza, T. (2009). Design and
Optimization of ColdFire CPU Arithmetic Logical Unit.
In 2009 MIXDES-16th International Conference Mixed
Design of Integrated Circuits & Systems, 699-702.
IEEE.
[5]. TM, A., & Selvakumarraja, S. (2015). Design of Low
power four function 8-bit ALU for nano based systems.
In 2015 International Conference on Communications
and Signal Processing (ICCSP), 1583-1587. IEEE.
[6]. Hinsu, N., & Suryavanshi, D. (2014). A prototype
design for microprocessor based on Verilog HDL.
In International Conference for Convergence for
Technology-2014, 1-5. IEEE.
[7]. Šilc, J., Ungerer, T., & Robic, B. (2000). A survey of
new research directions in
microprocessors. Microprocessors and
Microsystems, 24(4), 175-190.
[8]. Eyre, J., & Bier, J. (2000). The evolution of DSP
processors. IEEE Signal Processing Magazine, 17(2),
43-51.
[9]. Palekar, S., & Narkhede, N. (2016). 32-Bit RISC
processor with floating point unit for DSP applications.
In 2016 IEEE International Conference on Recent
Trends in Electronics, Information & Communication
Technology (RTEICT), 2062-2066. IEEE.
[10]. Bhagat, S. M., & Bhandari, S. U. (2018). Design
and Analysis of 16-bit RISC processor. In 2018 Fourth
International Conference on Computing Communication
Control and Automation (ICCUBEA), 1-4. IEEE.
[11]. Gupta, N., Shrivastava, S., Patidar, N., Katiyal, S.,
& Choudhary, K. K. (2012). Design of one bit arithmetic
logic unit (ALU) in QCA. Int. J. Comput. Appl. Eng.
Sci., 2(3), 281-285.
[12]. Muduli, G., Pradhan, B., Jena, M. R., & Nath, S.
(2014). Design of an Efficient Low Power 4-bit arithmatic
Logic Unit (ALU) using VHDL. International Transaction
of Electrical and Computer Engineers System, 2, 144-
148.
[13]. Yadav, P., Kumar, G., & Gupta, S. (2014). Design
and implementation of 4-bit arithmetic and logic unit chip
with the constraint of power consumption. IOSR Journal
of Electronics and Communication Engineering (IOSR-
JECE), 9(3), 36-43.
[14]. Kathirvelu, M. (2019). Design and Implementation
of Optimized Area and PDP Multiplier for High Speed
Digital Circuit Applications. International Journal of
Recent Technology and Engineering (IJRTE), 1081-
1085.
[15]. Trivedi, P., & Tripathi, R. P. (2015). Design &
analysis of 16 bit RISC processor using low power
pipelining. In International Conference on Computing,
Communication & Automation, 1294-1297 IEEE.

How to cite this article: Purohit, A. A., Ahmed, M. R., Reddy, R. V. S. (2020). Arithmetic and Logical Unit Design
for Area Optimization for Microcontroller. International Journal on Emerging Technologies, 11(2): 668–673.

