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ABSTRACT: Lung sounds convey essential information about the health of the patient. Accurate detection, 
followed by the analysis of adventitious sounds, is still a significant challenge. Suitable techniques for the 
same shall empower to deal with the problem of scarcity of expert physicians. The conventional techniques 
suffer from the identification of suitable features that can provide higher accuracies of detection. Here 
features based on higher-order spectral for wavelet bi-spectrum (WBS) and Power Spectrum (PS) are 
introduced and analyzed for the classification of adventitious sounds of lungs, namely wheezes, crackle, and 
normal sound. Comparison is presented between higher-order spectral features based on wavelet bi-
spectrum and power spectrum using classifiers like decision tree, SVM, k-NN, ensemble learner. Here results 
of accuracy are explored for the feature and sub classifier combination. Many feature classifier combination 
has yielded accuracy as high as 100%. Average accuracy achieved in the case of wavelet bi-spectrum 
outperforms that achieved for features based on the power spectrum. 

Keywords: Higher-order spectral, k-NN, SVM, classification tree, wheezes, crackle. 

Abbreviations: Global Peak GP, Local Peak LP, Support Vector Machine SVM, k-Nearest Neighbor k-NN, A- Asthma, 
Acy. Accuracy, AWS- Available with Source, BPF- Band Pass Filter, Bu.- Butter Worth C-Crackle, CA-Commercially 
Available, CAcc. Contact Accelerometer, CC- Coarse Crackle, DT- Decision Tree, DR- Dry rale, DS- Digital Stethoscope, 
EL- Ensemble Learner, ES- Electronics Stethoscope, Fpr- Friction pleural rub, HLS-Healthy Lung Sound, HPF- High Pass 
Filter, Lab. – Laboratory, LPF- Low Pass Filter, MR- Moist rale, N-Subjects/Signals, NA- Not Available, NM- Not Mentioned, 
NU- Not Used O- Order, S-Sensitivity, SF- Sampling Frequency, So- Stridor, SP- Specificity, SR- Sampling Rate, W-
Wheeze, WCC- Wavelet Packet Transform, WBP-Wavelet bi-phase, WBS-Wavelet bi-spectrum, Yrs.- Years. 

I. INTRODUCTION 

As per WHO [1], over 80% of death in the case of 
obstructive pulmonary diseases like Asthma and 
Chronic Obstructive Pulmonary Diseases (COPD) 
occurs in low and lower-middle-income countries. 
Adventitious sounds like wheezes and crackle are heard 
during breathing cycles of patients suffering from 
obstructive pulmonary diseases [2].  Wheezes have a 
time length greater than 150 ms, whereas for crackle, it 
less than 20 ms [2]. Wheezes exhibit continuous 
waveform, while for crackle, the waveforms are 
discontinuous. Experienced human ears can easily 
recognize adventitious sounds. The traditional 
stethoscope was invented in the year 1821. These 
suffer limitations of lower frequency (<120Hz). Previous 
signal processing techniques for the identification of 
wheezes were based on time-expanded waveforms [3]. 
Further works followed to focus on peaks detection in 
the spectrum, their amplitude, and pitch range [4, 5]. 
Researchers employed various classification techniques 
for the labeling of features like neural networks [6].  

Shi et al., (2019) also used BPNN as a classification 
method with the WCC feature but achieved 92.5% 
accuracy [7]. CNN, which was initially introduced for 
image processing, is being employed for lung sound 
analysis with a lower number of data set achieved 97% 
accuracy [8]. The accuracy of algorithms that are based 
on the above criteria depends upon the acoustics 
amplitude of the signals. There remains a need to focus 
on techniques independent of amplitudes, so that 
accuracy of detection remains unaffected by location 
and device of sound capture. The obstruction in airways 
results in changes in non-linear harmonic peaks 
interaction. They have non-stationary characteristics; 
contain non-linearity in their harmonic interactions. 
Wheezes show a phase relationship with quadratic 
phase coupling. Some researchers have employed bi-
coherence [9] and phase spacing features for the 
analysis of lung sound [10]. Also, works are clubbing 
continuous wavelet transform with third-order spectra 
[11]. The severity of asthma is also identified in some of 
the approaches by using integrated power [12]. 
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Taplidou and Hadjilieontiadis (2010) have used higher-
order spectral features for the classification of 
adventitious sounds. Accuracy of detection (96%) is 
calculated using statistical properties (SPSS tool). The 
research used a significant number of features and 
achieved lower accuracy of detection [13].  
The feature abbreviation rules, as introduced in the 
research [13], are followed in this paper with the 
addition of the rules for the features based on the power 
spectrum. 
Here for the identification of nonlinearity in adventitious 
sound wavelet bi-spectrum and power spectrum 
features are employed. A comparative analysis of the 
accuracy of detection is presented between features 
based on the wavelet bi-spectrum and power spectrum.  
The rest of the paper is organized as section II 
discusses the mathematics bases related to features, 
section III presents data analysis, section IV put light on 
validation approaches. section V explains classification 
methods followed in the research, section VI presents 
the experimental results finally section VII concludes the 
paper. 

II. MATHEMATICAL BASIS AND FEATURE SET 

Conditions of signal capture from lung and the capturing 
devices are not standardized, so signal detection by 
features based on their amplitudes is a challenging task. 
There is an urgent necessity to introduce features 
independent of signal amplitude. The higher-order 
features target the nonlinear and non-Gaussian 
parameters of the signal. The bi-spectrum estimation 
extracts the degree of quadratic phase coupling 
between frequency components. 

A. Wavelet bi-spectrum (WBS) 
For the transient properties of the signal, the signal is 
convolved with wave-like structures (wavelets). The 
continuous wavelet transform defined as follows [14] 

              (1) 

here, x(t) is the signal in time-domain (x(t)∈ L
2
(R)),* 

represents complex conjugate, and ψ(t) signifies the 
mother wavelet with a as scaling and b as dilation 
factor, and both are continuous. The combination of bi-
spectrum with the wavelet is called wavelet bi-spectrum. 
Here along with continuous wavelet transform, time-
frequency is preferred. Wavelet type complex Morlet is 
selected [11, 14]. 
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here, fc is the central wavelet frequency, and fb is the 
bandwidth parameter. 
The WBS is defined as [15] [16] 

( ) ( ) ( ) ( ) ττττ= ∫
∗

daWaWaWaaWB xxxTx ,,,, 2121                   (3) 

The integration is done over a finite interval of time 
T:τ0≤τ≤τ1 and a, a1, and a2 are the scale length of 
wavelet components and signal, respectively. 

 

B. Power spectrum 
The power spectrum can be calculated with less 
computational cost by the Welch method [17]. In this 
method, there are options to select the type, width, and 
amount of overlap of a window. The window type here is 
Kaiser window with a 50% overlap. The window width is 
such that the frequency resolution of the Welch 
spectrum is equal to the average dB in the width of the 
DFT spectrum. 
If X(j), j=0,…….., N-1 be the samples from second-order 
stochastic sequence here,  E(x)=0 and P(f) is spectral 

density, if 
2

1
≤f  

The segments overlap of length L with D units apart, 
and the Kth segment is defined as 
X1(j) = X(j)  j=0, …….., L-1 
X2(j) = X(j+D)  j=0, …….., L-1                             (4) 
Finally 
Xk(j) = X(j+(K-1)D)  j=0, …….., L-1                             (5) 

here N=(K-1)D+L segments are as shown in Fig. 1. 

 

Fig. 1. Segment division of signal. 

For each segment of Length L, modified periodogram is 
calculated  
X1(j) W(j),……., Xk(j)W(j), here W(j) is data window, 
j=0,…….., L-1, now take FFT 
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Spectral estimation is the average of this periodogram 
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C. Feature set 
Here features under consideration are nonlinear in the 
time-frequency domain, and they are related to non-
linear and non-stationary signal characteristics. The 
characteristics of the signal appear in the quadratic 
phase coupling of distinct harmonic peaks and their 
appearance over time. Figs. 2 to 7 gives a view of the 
wavelet bi-spectrum and power spectrum obtained for 
different adventitious sounds. The figures give the 
scope of availability of a rich feature base. 
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Fig. 2. Wavelet bi-spectrum feature of the wheeze. 

Table 1: List of features and their abbreviations. 

Feature Feature description Abbreviation 

1 Global max value in the amplitude domain in wavelet bi-spectrum GMaxWBx 

2 Global min value in the amplitude  domain in wavelet bi-spectrum GMinWBx 

3 
The distance of the Ci from the contour S of the ith GP at the bi-

frequency domain in wavelet bi-spectrum 
D

GPi
WBx 

4 Amplitude above mean in wavelet bi-spectrum AmeanWBx 

5 Mean wavelet bi-spectrum related to LPs meanWBx
LP

 

6 
Average instantaneous wavelet bi-spectrum across the examined 

total  time interval T 
mWBx(ω1, ω2) 

7 Maximum wavelet bi-spectrum across time-related to LPs maxWBx
LP

 

8 The standard deviation of the wavelet bi-spectrum related to LPs stdWBx
LP

 

9 Global max value in the amplitude domain in the power spectrum GMaxPx 

10 Global min value in the amplitude domain in the power spectrum GMinPx 

11 
The distance of the Ci from the contour S of the ith GP at the bi-

frequency domain in the power spectrum 
D

GPi
Px 

12 Amplitude above mean in the power spectrum AmeanPx 

13 Mean power spectrum related to LPs meanPx
LP

 

14 
Average instantaneous Power spectrum  across the examined total 

time interval T 
mPx (ω1, ω2) 

15 Maximum power spectrum across time-related to LPs maxPx
LP

 

16 The standard deviation of the power spectrum related to LPs stdPx
LP

 

Fig. 3. Power spectrum feature of wheeze. 

 

Fig. 4. Wavelet bi-spectrum feature of crackle. 
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Fig. 5. Power spectrum feature of crackle. 

 

Fig. 6. Wavelet bi-spectrum feature of normal sound. 

 

Fig. 7. Power spectrum feature of normal sound. 

D. Global Peaks (GPs) 
Peaks identified considering signal for full time duration, 
i.e., defined over T=TTotal, are referred to as Global 

Peaks (GPs). Their different characteristics provide 
wavelet bi-spectrum and power spectrum-related 
characteristics of the proposed feature. The peak is 
identified as GP if its amplitude is higher than the mean 
of the average amplitude of peaks. Computation time is 
reduced by averaging instantaneous wavelet bi-
amplitude across the whole time interval T, stationary in 
the bi-frequency domain. 

 ),,(),( 2121 tAmA xx ωω=ωω                 (10) 

Here, Ax(ω1, ω2,t) is the IWBC amplitude of 
instantaneous wavelet bi-amplitude over the area ∆ 
exceeding statistical noise [11, 18]. 
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E. Local Peaks (LPs) 
These are the peaks that are seen in the detailed 
perspective span of the signal based on window 
overlapping sections ∆ obtained by using IWBS 
analysis. The appearing peaks are designated as Local 
Peaks (LPs). 
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Here, l is the number of LPs and i being the position of 
maximum peak. 

III. DATA ANALYSIS 

Data from different means have been used for the 
analysis of the algorithm. The R.A.L.E.

®
 (Respiration 

Acoustics Laboratory Environment) Lung Sounds 3.2 
[19] and other Internet resources [20-22]. Program for 
education and learning R.A.L.E.

®
 lung sound is 

designed for doctors, educators, students, nurses, and 
health professionals. Respiratory acoustician laboratory 
of the University of Manitoba Winnipeg, Canada, runs 
the program. It has more than 50 respiratory sounds 
recording collections, of various age groups and 
diseases. Quiz section contributes an additional 24 
cases. The collection is felicitated by awarded the Merit 
of computer-based materials by Health Sciences 
Communications Association. The data comprise of 
wheezes (normal, mono, and polyphonic) 252, crackle 
(coarse and fine) 70, normal sound (bronchial, tracheal, 
and bronchovesicular sounds) 50. 

A. Data pre-processing 
Sound signal sampling is done at 4 kHz, 16 bits with 
1024 points per segment with the range -5.0V to +5.0V 
(-32,767 to +32,768). As per the Computerized 
Respiratory Sound Analysis (CORSA) guidelines, first-
order Butterworth filter is used for high pass signals at 
7.5 Hz to filter out DC offsets. Low pass filtration is done 
at 2.5 kHz by using eighth order Butterworth L.P.F., 
also, B.P.F. is done (150 Hz~2 kHz) for heart sound 
cancellation. The Goldwave

®
 software is used to divide 

the signal into segments of their waveform. A 
pulmonologist performed manual validation of the 
database in the medical clinic at Indore, India. 

IV. k-FOLD CROSS-VALIDATION APPROACH  

Cross-validation is one of the commonly used method 
as a robust model for selection. The method with some 
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prior assumptions is rarely tied to a particular feature of 
an algorithm. 
Cross-validation aims to estimate the performance of 
the learned model from data using an algorithm. The 
cross-validation can be used to estimate the 
generalization of an algorithm or to compare the 
performance of two or more different algorithms. 
The conventional k-fold cross-validation follows: 
D= Training set 
k= Number of a fold (k=10)  
C= Selected Classifier 
– Divide D into k folds 
– Model-based on C using k-1 folds 
– Test the model in step 2 using the k fold. 
– Repeat step 3 for every fold [23]. 

 

Fig. 8. Flow chart of the cross-validation method. 

V. CLASSIFICATION METHODS 

There are four classification methods employed in this 
research. Each method has three to six sub classifiers, 
as shown in Fig. 9.  

A. Decision Tree [24] 
They fall into the category of non-parametric supervised 
learning methods. The tree structure has two types of 
nodes, leaf and internal nodes. The majority vote of 
training examples reaching that leaf designates the 
class label. Internal nodes branch out according to 
answers. The splits are non-leaf nodes and are 
associated with feature tests.  
In the case of the coarse tree, the slit is kept as 100. 
The medium tree uses fewer leaves than a fine tree. In 

fine tree coarse distinctions between clauses are 
achieved using a lesser number of leaves.  
The result is obtained when a leaf node is approached 
after the conduction of a series of feature tests. In each 
step, a data set is identified, and a split is selected, then 
this split is used to divide the data set into subsets, and 
each subgroup remains data set for the next step. 

 

Fig. 9. Supervised classification approaches. 

B. Support Vector Machine (SVM) [25, 26] 
SVM is one of the most effective supervised 
classification algorithms. With a set of training examples 
and marked categories, SVM training builds a model 
that assigns new cases to one type or the other. SVM is 
mostly used as a non-probabilistic classification method. 
Linear SVM uses a linear kernel similarly cubic and 
quadratic SVM uses cubic and quadratic kernel, 
respectively. Fine, medium, and Gaussian SVM uses a 
Gaussian kernel with a kernel scale. It is finely detailed 
and less finely and mid-class between the two, 
respectively. 

C. k-Nearest Neighbor Classifier [27] 
Here, specifying the number of nearest neighbors 
provides the decision of the classification process. It is a 
non-parametric learning algorithm, which means, here 
all or most of the training data is employed during the 
testing phase. 
 Number k makes a circle, and the class or label of an 
unknown feature is assigned based on the largest 
number count of a particular class among all classes in 
that circle. 

D. Ensemble Learner [28] 
In this method, the decision to label a class is achieved 
by combining the decisions of the individual classifiers. 
In ensemble learners bagging and boosting classifiers 
are most widely used. 
In the Bagging tree, an additional data set is generated 
from the original data set to achieve a decrease in the 
variance of prediction. Boosting involves a two-step 
approach. In the first step, subsets of the original data 
are obtained to achieve a series of averagely 
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performing models. In the second step, to achieve an 
increase in performance, a voting scheme is used to 
club the previous performances together. 

VI. RESULTS 

Here adventitious sounds are classified by a total of 16 
(equally divided among both categories) features based 
on WBS and PS. There are in total 36 results presented 
for the set of feature sub classifier combinations. As 
summarized in Table 2, accuracy as high as 100% is 
obtained in the feature sub classifier combination like 
fine k-NN, weighted k-NN for both types of features, 
bagged tree, and subspace k-NN with power spectrum 
feature. Also, the highest accuracy is achieved in the 
case of RUSboost Tree with WBS feature using Matlab

©
 

2019b. Parallel coordinate graphs (Fig. 10-13) are used 
for the analysis of multi-variable data and visualization 
of high-dimensional geometry. These have n parallel 
lines, typically erected vertical and spaced equally. 

 

Fig. 10. Parallel coordinates graph of linear SVM in 
wavelet bi-spectrum. 

Table 2: Summary of the accuracy of detection chart obtained in different classifier feature combination. 

Data mining Technique 
 

Classifier Type Accuracy of WBS (%) Accuracy of PS(%) 

Decision tree 
 

Coarse Tree 92.5 93.3 

Medium Tree 99.2 98.9 

Fine Tree 99.2 98.9 

SVM 

Linear SVM 94.1 91.9 

Quadratic SVM 95.2 94.4 

Cubic SVM 94.6 95.2 

Fine Gaussian SVM 96.5 97.8 

Medium Gaussian SVM 95.2 94.9 

Coarse  Gaussian SVM 90.6 91.4 

k-NN 

Fine k-NN 100 100 

Medium k-NN 93.5 92.2 

Cosine k-NN 93.0 93.0 

Cubic k-NN 93.0 91.7 

Weighted k-NN 100 100 

 
Ensemble learner 

 
 
 

Bagged Tree 99.2 100 

Subspace Discriminant 91.7 90.3 

Subspace k-NN 99.5 100 

RUSboost Tree 100 99.5 

Table 3: Summary of researchers showing the accuracy of detection. 

Author/ 
Year 

Feature 
extraction 

method 
Classifier Sensitivity/Accuracy/Reliability 

Database 
Source 

Database 
Availability 

Sound 
capture 
source 

Location 
of 

Sound 
Capture 

Data Pre-
processing 

Data 
Quantity 
and other 

information 

Rizal 
 et al., 
(2019) 

[29] 

Multi-
distance 

signal level 
difference 
(MSCD) 

Multi layer 
perceptron 

(MLP) 
Acy. 98.99% 

RALE 
[19],  

Wilkins 
[30] 

CA 
CAcc. 

(EMT25, 
Siemens) 

Chest 
wall 

SF 8 kHz 

N=109 
HLS 22, A 
18, C 20, 

Fpr 19, So 
20 

Shi  
et al., 
(2019) 

[31] 

Temporal 
features Mel 
spectrogram 

features 

Bi GRU-
VGGish 

Acy. 87.41% NM AWS 
3M 

Littmann 
3200 ES 

NM SF 4 kHz 

N=384 
HLS 120, 

PS 156,  A 
108 

Niu 
et al., 
(2019) 

[32] 

Time 
Frequency 

Logistic 
Classifier 

Acy. 93.36% 

Baidu 
Cloud 

repository 
[33] 

CA 
Capacitive 
microphone 
SKC MP 40 

NM 
3

rd
 O Bu. 

BPF IIR 20-
600 Hz 

N=220 

Shi et al., 

(2019) [7] 
WCC BPNN Acy. 92.5% NM AWS 

3M 
Littmann 

DS 
NM SF 4 kHz 

N=64 
HLS 6, 
DR 29, 
MR 29 

Proposed 
method 

Power 
spectrum  
and WBS 

DT, SVM, 
k-NN, EL 

Acy. 90% to 100% 
RALE 
[19],  

[20-22] 
CA 

CAcc. 
(EMT25, 
Siemens) 

Chest 
wall 

SF 4 kHz, 
HPF 7.5 
kHz, LPF 
2.5 kHz, 
BPF 150 
Hz-2 kHz 

N= 372 
HLS 50, 
W 252, 
C 70 
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Fig. 11. Parallel coordinates graph of fine k-NN in 
wavelet bi-spectrum. 

 

Fig. 12. Parallel coordinates graph of fine k-NN in the 
power spectrum. 

 

Fig. 13. Parallel coordinates graph of linear SVM in the 
power spectrum. 

The solid lines in the plot mention the median values for 
each group and the dotted lines as the quartile values of 
the same color. As an example, in the case of wave 
type crackle, the solid lines show the median value 
measured for each variable. The dotted lines above 
solid lines signify the 75 percent of measurements for 
each variable, and the dotted lines below show 25 
percentage measurements for each variable on wave-
type crackle and similarly for wave-type normal sound 
and wheezes. 

VII. CONCLUSION 

Adventitious sounds of obstructive pulmonary diseases 
like Asthma and COPD possess non-stationary nature. 
The higher-order spectral analysis provides a useful tool 
for the classification of adventitious sounds like 
wheezes, crackle, and normal sounds. Sixteen 
introduced features based on the wavelet bi-spectrum 
and power spectrum are presented in this research. 
Some of the feature classifier combinations have 
yielded 100% accuracy. Average accuracy achieved in 
the case of wavelet bi-spectrum outperforms that 
achieved in the case of the power spectrum. 

VIII. FUTURE SCOPE 

Based on research after a more significant number of 
trails, the set of features and classifiers can be locked 
for the real-time classification process. The system with 
data-collecting sensors, pre-processing data, 
controllers, and the classification approaches for the 
real-time identification of adventurous sounds may be of 
great help for medical research professionals. Also, the 
combination of feature classifiers can be applied for the 
classification of any other type of defined sound. 
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