
Mahindru & Sangal International Journal on Emerging Technologies 11(3): 516-525(2020) 516

International Journal on Emerging Technologies 11(3): 516-525(2020)

ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

DLDroid: Feature Selection based Malware Detection Framework for Android
Apps developed during COVID-19

Arvind Mahindru
1,2

and A.L. Sangal
3

1
Research Scholar, Department of Computer Science and Engineering,

Dr. B.R. Ambedkar National Institute of Technology Jalandhar-144001 (Punjab), India.
2
Assistant Professor, Department of Computer Science and Applications,

DAV University, Jalandhar 144012 (Punjab), India.
3
Professor, Department of Computer Science and Engineering,

Dr. B.R. Ambedkar National Institute of Technology Jalandhar-144001 (Punjab), India.

(Corresponding author: Arvind Mahindru)

(Received 20 April 2020, Revised 14 May 2020, Accepted 17 May 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: COVID-19 acted as a window of opportunity for cyber criminals to develop malware-infected
apps. During this lockdown period, everyone is sitting at homes and interacting with others mostly through
smartphones. With an exponential increase in Android apps and hence in Android malware, it has become
really challenging that how to secure user’s privacy. For this purpose, a number of academicians and
researchers have proposed various signature-based and machine learning approaches to detect Android
malware. Signature-based approaches can detect only known malware whose signature definitions are
already present in its database. On the other hand, machine learning approaches, which were proposed in
the literature were developed either with irrelevant features or not able to detect malware which are
developed during COVID-19 pandemic. To overcome these issues it becomes highly essential to develop an
effective and efficient Android malware detection model. Therefore, in this research paper, 11,000 distinct
Android apps are collected, that belong to twelve different categories of Android apps. A total of 1844 unique
features from these gathered Android apps are extracted and using ten distinct feature selection approaches
irrelevant features have been removed. After that, an Android malware detection framework is developed by
using significant features as input and Deep Neural Network (DNN) as machine learning technique. The
experiment results reveal that the model developed by using rough set analysis as feature selection
approach along with DNN can detect 97.9% malware from real-world apps.

Keywords: Android apps, Permissions model, API calls, Deep Neural Network (DNN), Feature selection, Intrusion-
detection, Cyber security, smartphone.

I. INTRODUCTION

COVID-19 is a global calamity that started in December
2019, in Wuhan, Hubei, China [1], on an unbelievable
scale, with devastating consequences. It has not only
paid effect on health industry rather it paid effect on the
other sectors too, like Education, Banking, IT and
Business. To fight with this novel disease, public health
officials and local communities suggest “contact tracing”
smartphone apps. Indian government released
“AarogyaSetu” [2], WHO released MyHealth [3], Italy
government launched “Immuni” [4], Singaporean
government released “TraceTOgether” [5]. These
smartphone apps demand permissions related to
approximate location, precise location, bluetooth and
data sharing. The proper functioning of an Android app
depends upon the permission model. Therefore,
permissions play a vital role in the study of smartphone
security, as cybercriminals use these permissions to
steal the sensitive or personal information of the users
from their smartphones.
Growth of Android malware has become a serious
threat for user's sensitive information and privacy.
According to the report published by GDATA [6], cyber
crooks made more than 10,000 malware-infected apps
on daily basis. It means that in every 8 seconds a
malware-infected app is developed. Google introduced

Google Bouncer [7] in the year 2012 for scanning the
existing and new apps in its official play store. But
Google bouncer has a number of limitations [8] and has
failed to achieve a better detection rate. Later on,
Google introduced Google play protect in play store for
scanning the Android apps at the time of downloading
and installation. According to the report published by
MacAfee [9], in the first quarter of 2020; 1,000,000 new
malware detected in the Q4 of 2019.
To address this issue, in the literature a number of
authors proposed signature-based [10] and machine
learning approaches [11-13] for detecting malware from
Android devices. Signature-based approaches can
identify only those malware whose signature is already
present in its database. On the other hand, machine-
learning approaches proposed by academicians and
researchers are examined on the limited data set. So, to
build an effective and efficient Android malware
detection model, in this research paper, we collect
11,000 distinct Android apps, which further belong to
twelve different categories of Android apps. We extract
1844 unique features from these managed apps and
divide them into thirty different feature sets. The
performance of the machine-learning algorithm is based
on the features by which it is trained. To remove
irrelevant features and misclassified errors, in this

e
t

Mahindru & Sangal International Journal on Emerging Technologies 11(3): 516-525(2020) 517

research paper, we build and compare the model by
using ten different feature selection approaches.
In the past few years, the malware detection model
developed by considering Deep Neural Network (DNN)
has achieved a better detection rate. DNN has an ability
to learn from features and do classification
simultaneously to achieve better results. Motivated by
this, in this study, we use permissions, API calls,
number of the user download the apps, and rating of the
app as input features to train with DNN. The main
reason for considering permission as one of the features
is that by using permission, cybercriminal can easily
interact with user's information and steal sensitive
information from user’s smartphones.
Seeing the current situation, most of the organizations
have requested, their workforce to work from home.
Several countries such as India, China, Italy, France,
Poland, New Zealand and the UK have gone into full
lockdown and human beings are forced to stay indoors.
So, people are entirely dependent upon the mobile apps
for communication, news, entertainment, business,
medical, health & fitness, dating, social interactions etc.
Therefore, COVID-19 has become a new weapon for
cyber attackers to develop a number of malware-
infected Android apps in the names of COVID-19 and
spreading ransom are, trojan and Adware. So,
smartphone security becomes highly important during
this time. The unique and novel contributions of this
paper are as follows:
– To the best of our knowledge, this is the first research
work in which 11,000 distinct Android apps [14] are
collected which are developed during COVID-19
pandemic.
– In this study, ten distinct feature selection approaches
are used to remove irrelevant features. To build
effective and efficient malware detection model we
consider Deep Neural Network (DNN) as a machine-
learning algorithm.
– Collected apps belong to twelve different categories of
Android apps, from which 1844 unique features are
extracted to build effective and efficient Android
malware model.
– Proposed malware detection approach is able to
detect malware in less time when compared to previous
distinct anti-virus scanners available in the market.
Rest of the paper is summarized as follows. In section
II, we describe the related work that has been done so
far in the field of Android malware detection and gaps
present in the literature. Section III, represents the
formulation of experimental data set and creation of
feature sets. Feature selection approach is discussed in
section IV. In section V, we discuss about the machine
learning technique used in this research paper. Section
VI, discusses about the different methods on which we
will compare our proposed model. Performance
parameters for evaluating our proposed model are
discussed in section VII. In section VIII and IX, we
discuss about the experimental setup and results of our
performed experiment. In section X, we present the
conclusion and future work.

II. RELATED WORK

In this section of the paper, we discuss about the
previous approaches or frameworks developed for
Android malware detection.

Faruki et al., (2013) proposed AndroSimilar that
generates an automatic signature that extracts
statistically syntactic features, which are used for
malware detection [4]. Andrubis [15] is a web-based
malware analysis platform in which the user can submit
apps through web service, and after analyzing the app
behavior, it returns detail app is benign or malware.
Aurasium [16] takes control of the execution of apps, by
applying arbitrary security policies at run-time. It
repackages the Android apps to include code for policy
enforcement, and any privacy violations are informed to
the user. Aurasium has a limitation; it cannot note the
malicious behavior if an app changes its signature.
CopperDroid [17] performs call-centric dynamic analysis
of Android apps; using Virtual Machine Introspection.
Authors experimented with more than 2900 Android
malware samples, and the technique proposed by them
shows conclusive detection of malware behavior.
Mahindru and Singh (2017) extract 123 dynamic
permissions from 11,000 distinct Android apps and
applied five different machine-learning algorithms, i.e.,
Naïve Bayes, Random Forest, Simple Logistic, Decision
Tree, and k-star. Out of five-implemented machine
learning algorithms, Simple logistic perform better in
detecting malware from real-world apps [13]. Mahindru
and Sangal (2019) proposed “DeepDroid”, which works
on Deep Neural Network (DNN) and Principal
Component Analysis (PCA) as feature selection
method. An experiment was performed on 1,20,000
Android apps and achieved the detection rate of 94%
[18].
CrowDroid [19] is a behavior-based malware detection
system, which works on two components, i.e., a crowd
sourcing app which needs to be installed on user
devices and second on the remote server for malware
detection. CrowDroid with the help of crowd sourcing
app sends the behavioral data in the form of log-file to
the remote server. At the remote server, the collected
behavioral data is processed to create feature vector by
using 2- mean clustering algorithm to predict whether
the app is malicious or benign. However, it has
limitation, CrowDroid app always drain the available
device resources. Mahindru and Sangal (2020)
proposed “PerbDroid”, which can detect limited malware
families [12]. Features were selected by implementing
six distinct feature-ranking approaches (i.e., Principal
Component Analysis (PCA), Gain Ratio, Chi-squared
test, Information gain feature evaluation, OneR feature
evaluation, and Logistic regression analysis). Further,
with selected features, they developed sixty distinct
models by using ten discrete machine-learning
algorithms. The model developed by using a Deep
neural network and PCA achieved a detection rate of
97.8% using 2,00,000 different Android apps. TaintDroid
[20] track the privacy-sensitive information leakage in
the third- party developer apps. Whenever the sensitive
data leave from the smartphone, TaintDroid records the
label of the particular data and the app, which referred
the data along with its destination address. Mahindru
and Sangal (2020) compare the performance of
supervised and semi-supervised machine learning
algorithms by using feature subset selection approaches
[11]. They implemented LLGC as a semi-supervised
machine-learning algorithm and achieved a higher
detection rate on moderate data set. Classification

Mahindru & Sangal International Journal on Emerging Technologies 11(3): 516-525(2020) 518

algorithms have also achieved the higher prediction rate
on disease dataset [21]. Table 1 highlights about the
feature selection approaches and data set used by
different researchers and academicians in their work.
From Table 1, it is seen that researchers had applied
limited feature selection approaches on their collected
dataset and as it is known that significant features play
a major role in developing a malware detection model,
therefore, to overcome this, in this study ten distinct
feature selection approaches are implemented to select
significant features. Now, based on the literature review,
we consider the following research questions in this
research paper.

A. Research Questions
RQ1. Which feature selection approach is more
effective for detecting malware from Android apps?
To examine this question, in this study, we applied ten
distinct feature selection approaches and developed
models by considering DNN as a machine-learning
algorithm. Further, the performance of the developed
model is compared with two distinct performance
parameters, i.e., F-measure and accuracy.
RQ2. Is the feature selection approaches effect on the
outcome of the machine-learning algorithm?
To answer this question, we compare the performance
of feature selection approaches with all extracted
feature sets.

Table 1: Feature selection approaches implemented in the literature.

Proposed Framework Feature Selection Technique Used

PerbDroid [12]
Principal Component Analysis(PCA), Gain Ratio, OneR feature, Information

gain feature evaluation, Logistic regression analysis evaluation, and Chi-
square test

Mahindru and Sangal (2019) [11]
Consistency Sub-set Evaluation Approach, Filtered Sub-set Evaluation,

Rough Set Analysis Approach and Approach Based on Correlation

Azmoodeh et al., [22] Information Gain

Shabtai et al., [23] Fisherscore, Chi-square and Information Gain

Mas’ud et al. [24] Information gain and Chi-square

MKLDroid [25] Chi-squared

III. FORMULATION OF EXPERIMENTAL DATA SET
AND CREATION OF FEATURE SETS

To reduce the effect of Android malware and for building
an effective malware model that is capable to detect
malware from real world apps, in this research paper,
we collect 11,000 distinct Android apps that belong to
twelve different categories of Android apps. We
collected Android application packages (.apk) from
Google official play store and third party app stores i.e,
APKmirror [26] and AllFreeAPK [27]. These apk files are
published from December 2019 to April 2020 in these
repositories. This data set is available publicly [28].

Table 2: Number of Android apps used in this
research work.

ID Category Google play
Third-party
app store

DS1 Business 329 1750

DS2 Education 135 2000

DS3 Game 100 1820

DS4 Entertainment 183 152

DS5 Social Media 128 760

DS6 Travel & Local 12 32

DS7 Food & Drink 176 65

DS8 Finance 184 250

DS9 Medical 187 560

DS10
Health &
Fitness

120 1000

DS11
News &

Magazine
139 500

DS12 Dating 185 980

Table 2 shows the category wise number of .apk files
considered in this study. Out of collected 11,000 .apk
packages, 5,500 are malware infected. Virus-total [29]
identify Malware packages.

A. Creation of feature sets
After collecting Android apps from different promise
repositories, we extract permissions and API calls,
which were demanded by Android apps during its
installation and run-time. For extracting features from
Android apps, we used Android studio as an emulator
and self-written java program to extract features from
them mentioned in [13]. We extract 1532 unique
permissions and 310 API calls for developing malware
detection model. List of extracted permissions and API
calls are available for researchers and academicians
[30]. A total of 1844-dimensional Boolean vector, where
“1” implies that the app requires the feature and “0”
implies that the feature is not required. It is very
common that benign and normal apps may request a
similar set of permissions and API calls for its execution.
Permissions overview given by Google [31] is used to
describe the behavior of permission i.e., “dangerous” or
“normal”. After extracting the permissions and API calls,
we divide them into thirty different feature sets, which
are shown in Table 3. In this research paper, we also
consider the rating of an app and number of the user
download the app as features. To normalize the data,
we used the Min-max approach. This approach is based
on the principle of a linear transformation, which bring
each data point ���

 of feature � to a normalized value

���
, that lie in between 0

The following equation is considered to find the
normalized value of ���

:

Normalized �D��
� =

���
���� ()

�"#()���� ()
,

where min(Q) & max(Q) are the minimum and maximum
significance of attribute Q, respectively.

Mahindru & Sangal International Journal on Emerging Technologies 11(3): 516-525(2020) 519

Table 3: Formulation of Sets containing (App downloaded by number of users, permissions, API calls and
rating of the App) as features.

No. Description related to No. Description related to

FS1
Phone State and

Phone Connection
FS2 Audio and Video

FS3 Bundle FS4 Log File

FS5 Synchronization Data FS6 Contact Information

FS7 System Settings FS8 Browser Information

FS9 Calendar Information FS10 Account Settings

FS11 Location Information FS12 Widget

FS13 System Tools FS14
Network Information

and Bluetooth Information

FS15 Unique Identifier FS16 File Information

FS17 Services That Cost You Money FS18 Phone Calls

FS19 Database Information FS20 Image

FS21
Contain info.

Related to API calls
FS22

Contain info. Related to
rating and downloads

FS23 Your Accounts FS24 Storage File

FS25 SMS MMS FS26 Read

FS27 Access Action FS28 Read and Write

FS29 Hardware Controls FS30 Default group

IV. FEATURE SELECTION APPROACHES

In this paper, we implemented ten distinct types of
feature selection approaches on a large collection of
1844 features (divided in to thirty distinct feature sets) to
identify the best subset of features which assist us to

detect malware detection with better detection rate and
also minimize the figure of misclassification errors.
Table 4 represents the different feature selection
approaches used in this study.

Table 4: Feature selection approaches.

Name of the feature
selection approach

Description

Gain-ratio feature selection
approach [12]

This approach work on the prediction of the gain-ratio in relation to the class to which the app
belong. The “Z” known as the gain-ratio of feature is measured as:-

Gain − ratio = in this Gain(,) = -(.) − /(,)
here A represents the feature set contains X amount of instances having n distinct classes.

Chi-Square feature selection
approach [12]

This test is utilized to investigate the self-determination between two situations, and in our study,
ranking of features are based on the significance of its statistic, which is related to the class. Higher
the calculated value implies the denial of the outliers and as a result, these selected features can be

considered as better relevance in detecting malware infected apps.

Information-gain feature
selection approach [12]

In Info-gain, features are selected on its relation with respect to the class, which it belong.

OneR feature selection
approach [12]

OneR feature selection approach is utilized for ranking the features. To rank individual features
utilizes it the classification mechanism. In it valuable features are considered asconstant ones and
partition the set of values into a few dissociate intervals made by straightforward approach. In this

study, we consider only features that is having better classification rates.

Principal Component
Analysis (PCA) [12]

Reduction of attribute is accomplished by implementing PCA on our collected data set. PCA helps in
transforming a high dimension data space into a low dimension data space. Features, which are

present in low dimension, have extreme importance in detecting malware.

Logistic regression analysis
[12]

For feature ranking, Univariate Logistic Regression (ULR) analysis being considered to verify the
degree of importance for every feature sets.

Filtered subset evaluation
[11]

Based on the principle to select random subset evaluator from data set that was gained by applying
arbitrary filtering approach.

Consistency subset
evaluation approach [11]

This technique provides the importance of subset of attributes by their level of consistency
appearing in class values, when the training instances are applied on the subset of attributes.

Rough set analysis [11]
This approach is an estimation of conventional set, in terms of a joins of feature sets that provide the

upper and the lower estimation of the original data set.

Correlation based feature
selection [11]

This approach is based on correlation approach which select a subset of features that are
particularly related to the class (i.e., benign or malware).

V. MACHINE LEARNING TECHNIQUE

To develop an effective and efficient Android malware
detection model, we consider the Deep Learning Model
(i.e. DNN) as a machine learning technique. In the
literature, a number of authors proposed the
construction of a Deep Learning Model with
Convolutional neural networks (CNN) and Deep Belief
Networks (DBN) [12, 18].

In the present paper, we consider CNN architecture for
building the deep learning model [12]. DNN can be
assembled with different deep architecture i.e., Deep
Belief Networks (DBN) and Convolutional neural
networks (CNN). In the present paper, we select DBN
architecture to develop our deep learning model. Fig. 1
demonstrates the architecture of deep learning method.
It is divided in to two stages, one is supervised back-

Mahindru & Sangal International Journal on Emerging Technologies 11(3): 516-525(2020) 520

propagation and second stage is unsupervised pre-
training. In the early stage of model building, Restricted
Boltzmann Machines (RBM), with the deep neural
network are used to trained the model. In training step,
iterative process is used to build the model with
unlabeled Android apps. In the back-propagation stage,
pre-trained DBN is fine-tuned with labeled Android apps
in a supervised manner. Model build by considering
deep learning method use an Android app in both
stages of the training process.

Fig. 1. DNN Model.

VI. COMPARISON OF PROPOSED MODEL WITH
DIFFERENT EXISTING TECHNIQUES

To examine that our developed framework is able to
achieve a higher detection rate or not, in this research
paper, we analyze the outcome of our proposed model
with two distinct methods which are mentioned below:
(a) Comparison of results with previously used
classifiers: To verify that our developed model is
feasible to detect malware as equivalent to previously
used classifiers or not, we validate it based on two
performance parameters i.e., F-measure and Accu-
racy.
(b) Comparison of results with different Anti-Virus
scanners: To analyze the performance of our model for
malware detection, we chose ten available distinct anti-
virus scanners and compare their detection rate with the
detection rate of the proposed model.

VII. EVALUATION OF PERFORMANCE
PARAMETERS

In this section of the paper, we discuss the fundamental
definitions of the performance parameters utilized by us
while evaluating our proposed model for malware
detection. The confusion matrix is used to calculate all
these parameters. It consists of information related to
actual and detected classification built by detection
models. Table 5 demonstrates the confusion matrix for
the malware detection model. In this study, two
performance parameters namely, F-measure and
Accuracy are employed for measuring the performance
of malware detection models. Below we yield formulae
to evaluate Accuracy and F-measure:

And

Table 5: Confusion matrix Used in this study.

 Malware Benign

Malware Malware →Malware Malware→ Malware

Benign Benign → Malware Benign →Benign

VIII. EXPERIMENTAL SETUP

In the present section, we introduce the experimental
setup done to find the performance of our developed
malware detection models. DNN is implemented on
11,000 Android apps, which belong to twelve different
categories of android apps mentioned in Table 2. All
these data sets have a varying number of benign or
malware apps that are adequate to perform our
analysis. Fig. 2 demonstrates the framework of DLDroid.
The subsequent measures are pursued at the time of
either choosing a subset of features to develop the
malware detection model that detects that app belongs
to benign or malware class. Feature selection
approaches are employed on 12 different categories of
Android apps. Hence, a total of 132 ((1 selecting all
extracted features+ 10 feature selection approaches) ×
 12 data sets (subsets of different feature sets particular
to data sets determined after conducting feature
selection) × 1 detection methods) different detection
models have been developed in this research paper.
The subsets of features obtained from aforementioned
procedure are given as an input to machine learning
classifiers. To compare the developed models, we use
20-fold cross-validation method. Cross-validation is a
statistical learning approach that is utilized to classify
and match the models by dividing the data into two
different portions. One portion is utilized to train and the
remaining portion of data is utilized to verify the build
model, on the basis of training. The data is initially
separated into K same sized segments. K-1 folds are
utilized to train the model and the rest one fold is utilized
for testing intention.

Mahindru & Sangal International Journal on Emerging Technologies 11(3): 516-525(2020) 521

Fig. 2. Framework of DLDRoid.

K-fold cross-validation is having important significance
in utilizing the data set for the both testing and training.
For this study, 20-fold cross-validation is utilized to
analyze the models, i.e., data sets are segregated into
20 portions. The outcomes of all build malware
detection models are matched with each other by
employing two distinct performance measure
parameters: F-measure and Accuracy.

IX. RESULTS OF PERFORMED EXPERIMENT

In the current section of the paper, the relationship
among different feature sets and malware detection at
the class level is submitted. The set of features is used
as an input and presents the ratio of benign and
malware apps within an experiment. F-measure and
Accuracy are used as performance assessment
parameters to match the performance of the Android
malware detection model developed by using
supervised machine learning algorithms.

A. Feature selection approach
Fig. 3 demonstrates the significant features, which help
us to build the malware detection model. Black circle is
significant feature set and blank rectangle is insignificant
feature set.

B. Machine Learning Techniques
Eleven subsets of features (1 considering all set of
extracted features + 10 resulting by implemented

feature selection approaches) are used as an input to
build a model for malware detection. Hardware used to
carry out this study is the Intel Core i9 processor having
a secondary memory of 1TB hard disk and primary
memory of 16GB. Models are developed by using the
MATLAB environment. Further, the performance of each
detection model is measured by using two distinct
performance parameters i.e., F-measure and Accuracy.
Tables 6 and 7, present the outcomes obtained for
distinct data sets by utilizing DNN. Used abbreviations
in this study are (FS1: Correlation best Feature
Selection, FS2: Classifier Subset Evaluation, FS3:
Filtered Subset Evaluation, FS4: Rough Set Analysis
(RSA), FR1: Chi Squared test, FR2: Gain Ratio Feature
Evaluation, FR3: Filtered Subset Evaluation, FR4:
Information Gain Feature Evaluation, FR5: Logistic
regression analysis, FR6: Principal.
Component Analysis (PCA) and AF: All Extracted
features) From Tables 6 and 7, it may be concluded
that:
– Model developed by considering features selected by
Rough Set Analysis (FS4) as input is able to detect
malware more effectively rather than model developed
by using all extracted feature sets.
– From Table 6 and 7, we have seen that feature
selection approach paid a serious effect on the outcome
of the model developed for malware detection.

Mahindru & Sangal International Journal on Emerging Technologies 11(3): 516-525(2020) 522

(a) Chi-square (b) Gain ratio

(c) Information gain (d) Logistic regression analysis

(e) OneR (f) PCA

(g) Classifier (h) Correlation based feature selection

(i) Filtered (j) RSA

Fig. 3. Feature ranking approaches.

Table 6: Accuracy measured using different feature selection approaches.

Accuracy

ID AF FR1 FR2 FR3 FR4 FR5 FR6 FS1 FS2 FS3 FS4

DS1 68.3 81 84 86 86 82 83 85 86 83 89.8

DS2 65 80.8 84 87 86 85 82 85 86 89 91.8

DS3 67 81 84 87 82 85 83 81 84 89 90.8

DS4 62.8 78 81 89 86 83 89 85 87 89 90.7

DS5 68.8 81 83 80 81 86 87 82 83 85 89.8

DS6 67.9 85 87 86 85 84 88 89 92 94 96.7

DS7 78 81 85 88 89 89.6 88.7 86 86.8 89.7 93.8

DS8 65 78 75 78 82 84 85 86 87 88 91

DS9 68 84 87 92 91 83 84 96 95 93 86

DS10 66.8 78 86 88 89 82 89 89 89.8 89.7 97

DS11 79 88 88 86 86 89 89 80 86 88 98

DS12 66.8 82 88 82 86 81 83 88 87 89 90

Table 7: F-measure measured using different feature selection approaches.

F-measure

ID AF FR1 FR2 FR3 FR4 FR5 FR6 FS1 FS2 FS3 FS4

DS1 0.79 0.81 0.85 0.83 0.81 0.83 0.85 0.82 0.87 0.81 0.89

DS2 0.75 0.82 0.86 0.85 0.84 0.81 0.85 0.83 0.85 0.81 0.87

DS3 0.78 0.87 0.86 0.85 0.83 0.85 0.86 0.85 0.84 0.87 0.89

DS4 0.72 0.80 0.88 0.84 0.87 0.86 0.86 0.87 0.81 0.86 0.88

DS5 0.67 0.80 0.81 0.82 0.83 0.83 0.84 0.85 0.86 0.87 0.90

DS6 0.69 0.88 0.85 0.86 0.87 0.87 0.85 0.88 0.87 0.88 0.90

DS7 0.70 0.86 0.85 0.84 0.87 0.89 0.86 0.87 0.82 0.81 0.89

DS8 0.67 0.81 0.81 0.88 0.85 0.84 0.83 0.84 0.84 0.88 0.89

DS9 0.78 0.89 0.92 0.94 0.93 0.92 0.96 0.99 0.91 0.92 0.91

DS10 0.70 0.82 0.81 0.88 0.86 0.87 0.85 0.88 0.82 0.88 0.96

DS11 0.72 0.87 0.86 0.86 0.85 0.87 0.85 0.84 0.82 0.85 0.93

DS12 0.75 0.80 0.81 0.82 0.81 0.81 0.82 0.86 0.86 0.84 0.89

Mahindru & Sangal International Journal on Emerging Technologies 11(3): 516-525(2020) 523

C. Evaluation of DLDroid with existing techniques
available in the literature
(i) Comparison of results with previously used classifiers: In
this study, we also makes the comparison with different
most often used supervised machine learning approaches

present in literature such as SVM with three distinct kernels
i.e., linear, polynomial and RBF, Naïve Bayes classifier,
Decision tree analysis, Logistic regression and Neural
network. Fig. 4 demonstrates the box-plot diagrams for F-
measure and Accuracy of commonly utilized classifiers.

 (a)

(b)

Fig. 4. Diagram of box-plot showing performance of different classifiers.

On the basis of Fig. 4, we observed that DLDroid (DNN +
FS4) has higher median value along with some outliers.
(ii) Comparison of results with different Anti-Virus scanners:
Although our proposed model gives a better performance as
compared to the machine learning technique used in the
literature, in the end, it must be comparable with the
common anti-virus products available in practice for Android

malware detection. For this experiment, we select 10
different anti-viruses that are available in the market and
applied them to our collected data set. For this experiment,
we consider Android apps whose size is less than 50 MB.
The performance of the proposed framework is
comparatively better than many of the anti-viruses available
in the experiment. Table 8 shows us the results of the
experiment with anti-virus scanners.

Mahindru & Sangal International Journal on Emerging Technologies 11(3): 516-525(2020) 524

Table 8: Comparison with distinct anti-virus scanners.

Name of the Anti-virus Detection rate (in%) Speed to detect malware in sec

Cyren 82 60

Ikarus 82.68 62

VIPRE 89 40

McAfee 89 30

AVG 90 32

AVware 92.8 30

ESETNOD32 92.9 20

CATQuickHeal 96.9 32

AegisLab 97.1 30

NANOAntivirus 96.2 20

DLDroid(our proposed framework)

97.9 12

The detection rate of the anti-viruses scanners varies
considerably. Also, the best antivirus scanners detected
97.1% of the Android malware and certain scanners
identified only 82% of the malicious samples, likely do not
being specialized in detecting Android malware. By using
11,000 Android apps, DNN gives us the detection rate of
97.9% and outperforms equivalent to different anti-virus
scanners. From this, we can say that our proposed
framework is more efficient in detecting malware rather than
the manually created definition of distinct anti-virus
scanners.
 (iii) Experimental findings: The comprehensive conclusion
of our experimental work is presented in this section. The
empirical study was performed for twelve distinct categories
of Android apps by considering supervised machine learning
techniques. Based on the experimental results, this research
paper is able to answer the questions mentioned in section
II.
RQ1: To address the RQ1, Tables 6 and 7 were analyzed.
Here, it is found that the model build by utilizing FS4 is able
to detect more malware from Android apps when compared
to other approaches.
RQ2: In the present paper, feature selection approach is
used to identify the smaller subset of features. By utilizing
this, we considered the best possible subsets of the
features, which helps to develop a model to identify whether
an app is benign or malware. Based on the experimental
results mentioned in Tables 6 and 7, it indicates that in
number of cases there occurs a reduced subset of features,
which are best for building a detection model when
compared to all the extracted features.

X. CONCLUSION AND FUTURE SCOPE

This work is emphasized on developing a malware
detection framework by using a selected set of features
that help us to identify that an Android app belongs to
malware class or benign class. The experiment was
performed by taking assistance of twelve distinct
categories of Android apps.
Our submissions after performing the experiment are the
following:
– Empirical results specify that it is feasible to identify a
small subset of features. Malware detection model
developed by considering a small set of features is able
to detect malware and benign apps with the inferior value
of misclassified errors and better accuracy.
– Based on experimental findings, we observed that
considering feature selection approaches helps to reduce
the feature sets.

The result of models build by using feature selection
approaches perform better when compared to all
extracted feature sets.
– Based on the proposed detection framework, it is seen
that model build by utilizing FS4 is capable to detect
97.9% unknown malware from real-world apps.
In this research paper, we proposed the malware
detection model that detects only whether an app is
malware or benign. Further, work can be extended to
develop a model for malware detection, which predicts
whether a particular feature is capable to detect malware,
or not. Moreover, this study can be replicated over other
Android apps repository, which utilized soft computing
models to attain a better detection rate for malware.

Conflict of Interest. No conflict of interest.

REFERENCES

[1]. https://www.up.ac.za/news/post_2880755-covid-19-
why-it-matters-that-scientists-continue-their-search-for-
source-of-patient-zeros-infection-
[2]. https://www.mygov.in/aarogya-setu-app/
[3]. https://www.who.int/mediacentre/multimedia/app/en/
[4]. https://www.aa.com.tr/en/europe/italy-to-use-app-to-
track-coronavirus-contacts/1808841
[5]. https://www.businessinsider.in/tech/news/singapore-
is-using-a-high-tech-surveillance-app-to-track-the-
coronavirus-keeping-schools-and-businesses-open-
heres-how-it-works-/articleshow/74797714.cms
[6].
https://www.gdatasoftware.co.uk/news/2019/07/35228-
mobile-malware-report-no-let-up-with-android-malware
[7].
https://en.wikipedia.org/wiki/Google_Playhttps://www.gd
atasoftware.co.uk/news/2019/07/35228-mobile-malware-
report-no-let-up-with-android-malware
[8]. https://www.eweek.com/security/google-bouncer-
vulnerabilities-probed-by-security-researchers
[9]. https://www.mcafee.com/content/dam/consumer/en-
us/docs/2020-Mobile-Threat-Report.pdf
[10]. Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M. S., &
Bharmal, A. (2013). Andro Similar: robust statistical
feature signature for Android malware detection. In
Proceedings of the 6th International Conference on
Security of Information and Networks, 152-159.
[11]. Mahindru, A., & Sangal, A. L. (2020). Feature-Based
Semi-supervised Learning to Detect Malware from
Android. In Automated Software Engineering: A Deep
Learning-Based Approach, 93-118.

Mahindru & Sangal International Journal on Emerging Technologies 11(3): 516-525(2020) 525

[12]. Mahindru, A., & Sangal, A. L. (2020). PerbDroid:
Effective Malware Detection Model Developed Using
Machine Learning Classification Techniques. In A
Journey Towards Bio-inspired Techniques in Software
Engineering, 103-139.
[13]. Mahindru, A., & Singh, P. (2017). Dynamic
permissions based android malware detection using
machine learning techniques. In Proceedings of the 10th
innovations in Software Engineering Conference, 202-
210.
[14]. http://dx.doi.org/10.17632/k4rt99sfbt.2
[15]. http://anubis.iseclab.org/
[16]. Xu, R., Saïdi, H., & Anderson, R. (2012). Aurasium:
Practical policy enforcement for android applications. In
Presented as part of the 21st {USENIX} Security
Symposium ({USENIX} Security 12) (pp. 539-552). [17].
http://copperdroid.isg.rhul.ac.uk/copperdroid/index.php
[18]. Mahindru, A., & Sangal, A. L. (2019). DeepDroid:
Feature Selection approach to detect Android malware
using Deep Learning. In 2019 IEEE 10th International
Conference on Software Engineering and Service
Science (ICSESS), 16-19.
[19]. Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S.
(2011). Crowdroid: behavior-based malware detection
system for android. In Proceedings of the 1st ACM
workshop on Security and privacy in smartphones and
mobile devices, 15-26.
[20]. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun,
B. G., Cox, L. P., & Sheth, A. N. (2014). TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS), 32(2), 1-29.

[21]. Lydia, E. L., Sharmil, N., Shankar, K., & Maseleno,
A. (2019). Analysing the Performance
of Classification Algorithms on Diseases Datasets.
International Journal on Emerging Technologies, 10(3),
224–230.
[22]. Azmoodeh, A., Dehghantanha, A., & Choo, K. K.
R. (2018). Robust malware detection for internet of
(battlefield) things devices using deep eigenspace
learning. IEEE Transactions on Sustainable Computing,
4(1), 88-95.
[23]. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., &
Weiss, Y. (2012). “Andromaly”: a behavioral malware
detection framework for android devices. Journal of
Intelligent Information Systems, 38(1), 161-190.
[24]. Mas'ud, M. Z., Sahib, S., Abdollah, M. F., Selamat,
S. R., & Yusof, R. (2014, May). Analysis of features
selection and machine learning classifier in android
malware detection. In 2014 International Conference on
Information Science & Applications (ICISA), 1-5.
[25]. Narayanan, A., Chandramohan, M., Chen, L., &
Liu, Y. (2018). A multi-view context-aware approach to
Android malware detection and malicious code
localization. Empirical Software Engineering, 23(3),
1222-1274.
[26]. https://www.apkmirror.com/
[27]. https://www.allfreeapk.com/
[28]. http://dx.doi.org/10.17632/k4rt99sfbt.2
[29]. https://www.virustotal.com/gui/home
[30]. http://dx.doi.org/10.17632/b4mxg7ydb7.3
[31].
https://developer.android.com/guide/topics/permissions/o
verviewr

How to cite this article: Mahindru, A. and Sangal, A. L. (2020). DLDroid: Feature Selection based Malware
Detection Framework for Android Apps developed during COVID-19. International Journal on Emerging
Technologies, 11(3): 516–525.

