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ABSTRACT: COVID-19 acted as a window of opportunity for cyber criminals to develop malware-infected 
apps. During this lockdown period, everyone is sitting at homes and interacting with others mostly through 
smartphones. With an exponential increase in Android apps and hence in Android malware, it has become 
really challenging that how to secure user’s privacy. For this purpose, a number of academicians and 
researchers have proposed various signature-based and machine learning approaches to detect Android 
malware. Signature-based approaches can detect only known malware whose signature definitions are 
already present in its database. On the other hand, machine learning approaches, which were proposed in 
the literature were developed either with irrelevant features or not able to detect malware which are 
developed during COVID-19 pandemic. To overcome these issues it becomes highly essential to develop an 
effective and efficient Android malware detection model. Therefore, in this research paper, 11,000 distinct 
Android apps are collected, that belong to twelve different categories of Android apps. A total of 1844 unique 
features from these gathered Android apps are extracted and using ten distinct feature selection approaches 
irrelevant features have been removed. After that, an Android malware detection framework is developed by 
using significant features as input and Deep Neural Network (DNN) as machine learning technique. The 
experiment results reveal that the model developed by using rough set analysis as feature selection 
approach along with DNN can detect 97.9% malware from real-world apps. 

Keywords: Android apps, Permissions model, API calls, Deep Neural Network (DNN), Feature selection, Intrusion-
detection, Cyber security, smartphone. 

I. INTRODUCTION 

COVID-19 is a global calamity that started in December 
2019, in Wuhan, Hubei, China [1], on an unbelievable 
scale, with devastating consequences. It has not only 
paid effect on health industry rather it paid effect on the 
other sectors too, like Education, Banking, IT and 
Business. To fight with this novel disease, public health 
officials and local communities suggest “contact tracing” 
smartphone apps. Indian government released 
“AarogyaSetu” [2], WHO released MyHealth [3], Italy 
government launched “Immuni” [4], Singaporean 
government released “TraceTOgether” [5]. These 
smartphone apps demand permissions related to 
approximate location, precise location, bluetooth and 
data sharing. The proper functioning of an Android app 
depends upon the permission model. Therefore, 
permissions play a vital role in the study of smartphone 
security, as cybercriminals use these permissions to 
steal the sensitive or personal information of the users 
from their smartphones. 
Growth of Android malware has become a serious 
threat for user's sensitive information and privacy. 
According to the report published by GDATA [6], cyber 
crooks made more than 10,000 malware-infected apps 
on daily basis. It means that in every 8 seconds a 
malware-infected app is developed. Google introduced 

Google Bouncer [7] in the year 2012 for scanning the 
existing and new apps in its official play store. But 
Google bouncer has a number of limitations [8] and has 
failed to achieve a better detection rate. Later on, 
Google introduced Google play protect in play store for 
scanning the Android apps at the time of downloading 
and installation. According to the report published by 
MacAfee [9], in the first quarter of 2020; 1,000,000 new 
malware detected in the Q4 of 2019. 
To address this issue, in the literature a number of 
authors proposed signature-based [10] and machine 
learning approaches [11-13] for detecting malware from 
Android devices. Signature-based approaches can 
identify only those malware whose signature is already 
present in its database. On the other hand, machine-
learning approaches proposed by academicians and 
researchers are examined on the limited data set. So, to 
build an effective and efficient Android malware 
detection model, in this research paper, we collect 
11,000 distinct Android apps, which further belong to 
twelve different categories of Android apps. We extract 
1844 unique features from these managed apps and 
divide them into thirty different feature sets. The 
performance of the machine-learning algorithm is based 
on the features by which it is trained. To remove 
irrelevant features and misclassified errors, in this 

e
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research paper, we build and compare the model by 
using ten different feature selection approaches. 
In the past few years, the malware detection model 
developed by considering Deep Neural Network (DNN) 
has achieved a better detection rate. DNN has an ability 
to learn from features and do classification 
simultaneously to achieve better results. Motivated by 
this, in this study, we use permissions, API calls, 
number of the user download the apps, and rating of the 
app as input features to train with DNN. The main 
reason for considering permission as one of the features 
is that by using permission, cybercriminal can easily 
interact with user's information and steal sensitive 
information from user’s smartphones. 
Seeing the current situation, most of the organizations 
have requested, their workforce to work from home. 
Several countries such as India, China, Italy, France, 
Poland, New Zealand and the UK have gone into full 
lockdown and human beings are forced to stay indoors. 
So, people are entirely dependent upon the mobile apps 
for communication, news, entertainment, business, 
medical, health & fitness, dating, social interactions etc. 
Therefore, COVID-19 has become a new weapon for 
cyber attackers to develop a number of malware-
infected Android apps in the names of COVID-19 and 
spreading ransom are, trojan and Adware. So, 
smartphone security becomes highly important during 
this time. The unique and novel contributions of this 
paper are as follows: 
– To the best of our knowledge, this is the first research 
work in which 11,000 distinct Android apps [14] are 
collected which are developed during COVID-19 
pandemic. 
– In this study, ten distinct feature selection approaches 
are used to remove irrelevant features. To build 
effective and efficient malware detection model we 
consider Deep Neural Network (DNN) as a  machine-
learning algorithm. 
– Collected apps belong to twelve different categories of 
Android apps, from which 1844 unique features are 
extracted to build effective and efficient Android 
malware model. 
– Proposed malware detection approach is able to 
detect malware in less time when compared to previous 
distinct anti-virus scanners available in the market. 
Rest of the paper is summarized as follows. In section 
II, we describe the related work that has been done so 
far in the field of Android malware detection and gaps 
present in the literature. Section III, represents the 
formulation of experimental data set and creation of 
feature sets. Feature selection approach is discussed in 
section IV. In section V, we discuss about the machine 
learning technique used in this research paper. Section 
VI, discusses about the different methods on which we 
will compare our proposed model. Performance 
parameters for evaluating our proposed model are 
discussed in section VII. In section VIII and IX, we 
discuss about the experimental setup and results of our 
performed experiment. In section X, we present the 
conclusion and future work. 

II. RELATED WORK 

In this section of the paper, we discuss about the 
previous approaches or frameworks developed for 
Android malware detection.  

Faruki et al., (2013) proposed AndroSimilar that 
generates an automatic signature that extracts 
statistically syntactic features, which are used for 
malware detection [4]. Andrubis [15] is a web-based 
malware analysis platform in which the user can submit 
apps through web service, and after analyzing the app 
behavior, it returns detail app is benign or malware. 
Aurasium [16] takes control of the execution of apps, by 
applying arbitrary security policies at run-time. It 
repackages the Android apps to include code for policy 
enforcement, and any privacy violations are informed to 
the user. Aurasium has a limitation; it cannot note the 
malicious behavior if an app changes its signature. 
CopperDroid [17] performs call-centric dynamic analysis 
of Android apps; using Virtual Machine Introspection. 
Authors experimented with more than 2900 Android 
malware samples, and the technique proposed by them 
shows conclusive detection of malware behavior. 
Mahindru and Singh (2017) extract 123 dynamic 
permissions from 11,000 distinct Android apps and 
applied five different machine-learning algorithms, i.e., 
Naïve Bayes, Random Forest, Simple Logistic, Decision 
Tree, and k-star. Out of five-implemented machine 
learning algorithms, Simple logistic perform better in 
detecting malware from real-world apps [13]. Mahindru 
and Sangal (2019) proposed “DeepDroid”, which works 
on Deep Neural Network (DNN) and Principal 
Component Analysis (PCA) as feature selection 
method. An experiment was performed on 1,20,000 
Android apps and achieved the detection rate of 94% 
[18]. 
CrowDroid [19] is a behavior-based malware detection 
system, which works on two components, i.e., a crowd 
sourcing app which needs to be installed on user 
devices and second on the remote server for malware 
detection. CrowDroid with the help of crowd sourcing 
app sends the behavioral data in the form of log-file to 
the remote server. At the remote server, the collected 
behavioral data is processed to create feature vector by 
using 2- mean clustering algorithm to predict whether 
the app is malicious or benign. However, it has 
limitation, CrowDroid app always drain the available 
device resources. Mahindru and Sangal (2020) 
proposed “PerbDroid”, which can detect limited malware 
families [12]. Features were selected by implementing 
six distinct feature-ranking approaches (i.e., Principal 
Component Analysis (PCA), Gain Ratio, Chi-squared 
test, Information gain feature evaluation, OneR feature 
evaluation, and Logistic regression analysis). Further, 
with selected features, they developed sixty distinct 
models by using ten discrete machine-learning 
algorithms. The model developed by using a Deep 
neural network and PCA achieved a detection rate of 
97.8% using 2,00,000 different Android apps. TaintDroid 
[20] track the privacy-sensitive information leakage in 
the third- party developer apps. Whenever the sensitive 
data leave from the smartphone, TaintDroid records the 
label of the particular data and the app, which referred 
the data along with its destination address. Mahindru 
and Sangal (2020) compare the performance of 
supervised and semi-supervised machine learning 
algorithms by using feature subset selection approaches 
[11]. They implemented LLGC as a semi-supervised 
machine-learning algorithm and achieved a higher 
detection rate on moderate data set. Classification 
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algorithms have also achieved the higher prediction rate 
on disease dataset [21]. Table 1 highlights about the 
feature selection approaches and data set used by 
different researchers and academicians in their work. 
From Table 1, it is seen that researchers had applied 
limited feature selection approaches on their collected 
dataset and as it is known that significant features play 
a major role in developing a malware detection model, 
therefore, to overcome this, in this study ten distinct 
feature selection approaches are implemented to select 
significant features. Now, based on the literature review, 
we consider the following research questions in this 
research paper. 

 

A. Research Questions 
RQ1. Which feature selection approach is more 
effective for detecting malware from Android apps? 
To examine this question, in this study, we applied ten 
distinct feature selection approaches and developed 
models by considering DNN as a machine-learning 
algorithm. Further, the performance of the developed 
model is compared with two distinct performance 
parameters, i.e., F-measure and accuracy. 
RQ2. Is the feature selection approaches effect on the 
outcome of the machine-learning algorithm? 
To answer this question, we compare the performance 
of feature selection approaches with all extracted 
feature sets. 

Table 1: Feature selection approaches implemented in the literature. 

Proposed Framework Feature  Selection  Technique  Used 

PerbDroid [12] 
Principal Component Analysis(PCA), Gain Ratio, OneR feature, Information 

gain feature evaluation, Logistic regression analysis evaluation, and Chi-
square test 

Mahindru and Sangal (2019) [11] 
Consistency  Sub-set  Evaluation  Approach, Filtered  Sub-set  Evaluation, 

Rough Set Analysis Approach and Approach Based on Correlation 

Azmoodeh et al., [22] Information Gain 

Shabtai et al., [23] Fisherscore, Chi-square and Information Gain 

Mas’ud et al. [24] Information gain and Chi-square 

MKLDroid [25] Chi-squared 

III. FORMULATION OF EXPERIMENTAL DATA SET 
AND CREATION OF FEATURE SETS 

To reduce the effect of Android malware and for building 
an effective malware model that is capable to detect 
malware from real world apps, in this research paper, 
we collect 11,000 distinct Android apps that belong to 
twelve different categories of Android apps. We 
collected Android application packages (.apk) from 
Google official play store and third party app stores i.e, 
APKmirror [26] and AllFreeAPK [27]. These apk files are 
published from December 2019 to April 2020 in these 
repositories. This data set is available publicly [28].  

Table 2: Number of Android apps used in this 
research work. 

ID Category Google play 
Third-party 
app store 

DS1 Business 329 1750 

DS2 Education 135 2000 

DS3 Game 100 1820 

DS4 Entertainment 183 152 

DS5 Social Media 128 760 

DS6 Travel & Local 12 32 

DS7 Food & Drink 176 65 

DS8 Finance 184 250 

DS9 Medical 187 560 

DS10 
Health & 
Fitness 

120 1000 

DS11 
News & 

Magazine 
139 500 

DS12 Dating 185 980 

Table 2 shows the category wise number of .apk files 
considered in this study. Out of collected 11,000 .apk 
packages, 5,500 are malware infected. Virus-total [29] 
identify Malware packages. 

A. Creation of feature sets 
After collecting Android apps from different promise 
repositories, we extract permissions and API calls, 
which were demanded by Android apps during its 
installation and run-time. For extracting features from 
Android apps, we used Android studio as an emulator 
and self-written java program to extract features from 
them mentioned in [13]. We extract 1532 unique 
permissions and 310 API calls for developing malware 
detection model. List of extracted permissions and API 
calls are available for researchers and academicians 
[30]. A total of 1844-dimensional Boolean vector, where 
“1” implies that the app requires the feature and “0” 
implies that the feature is not required. It is very 
common that benign and normal apps may request a 
similar set of permissions and API calls for its execution. 
Permissions overview given by Google [31] is used to 
describe the behavior of permission i.e., “dangerous” or 
“normal”. After extracting the permissions and API calls, 
we divide them into thirty different feature sets, which 
are shown in Table 3. In this research paper, we also 
consider the rating of an app and number of the user 
download the app as features. To normalize the data, 
we used the Min-max approach. This approach is based 
on the principle of a linear transformation, which bring 
each data point ���

 of feature � to a normalized value 

���
, that lie in between 0 

The following equation is considered to find the 
normalized value of ���

: 

Normalized �D��
� =

���
���� ( )

�"#( )���� ( )
, 

where min(Q) & max(Q) are the minimum and maximum 
significance of attribute Q, respectively. 
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Table 3: Formulation of Sets containing (App downloaded by number of users, permissions, API calls and 
rating of the App) as features. 

No. Description related to No. Description related to 

FS1 
Phone State and 

Phone Connection 
FS2 Audio and Video 

FS3 Bundle FS4 Log File 

FS5 Synchronization   Data FS6 Contact Information 

FS7 System Settings FS8 Browser Information 

FS9 Calendar  Information FS10 Account Settings 

FS11 Location Information FS12 Widget 

FS13 System Tools FS14 
Network Information 

and Bluetooth Information 

FS15 Unique Identifier FS16 File Information 

FS17 Services That Cost You Money FS18 Phone Calls 

FS19 Database Information FS20 Image 

FS21 
Contain info. 

Related to API calls 
FS22 

Contain info. Related to 
rating and downloads 

FS23 Your Accounts FS24 Storage File 

FS25 SMS MMS FS26 Read 

FS27 Access  Action FS28 Read and Write 

FS29 Hardware Controls FS30 Default group 

 
IV. FEATURE SELECTION APPROACHES 

In this paper, we implemented ten distinct types of 
feature selection approaches on a large collection of 
1844 features (divided in to thirty distinct feature sets) to 
identify the best subset of features which assist us to  

detect malware detection with better detection rate and 
also minimize the figure of misclassification errors. 
Table 4 represents the different feature selection 
approaches used in this study. 

Table 4: Feature selection approaches. 

Name of the feature 
selection approach 

Description 

Gain-ratio feature selection 
approach [12] 

This approach work on the prediction of the gain-ratio in relation to the class to which the app 
belong. The “Z” known as the gain-ratio of feature is measured as:- 

Gain − ratio =  in this Gain(,) = -(.) − /(,) 
here A represents the feature set contains X amount of instances having n distinct classes. 

Chi-Square feature selection 
approach [12] 

This test is utilized to investigate the self-determination between two situations, and in our study, 
ranking of features are based on the significance of its statistic, which is related to the class. Higher 
the calculated value implies the denial of the outliers and as a result, these selected features can be 

considered as better relevance in detecting malware infected apps. 

Information-gain feature 
selection approach [12] 

In Info-gain, features are selected on its relation with respect to the class, which it belong. 

OneR feature selection 
approach [12] 

OneR feature selection approach is utilized for ranking the features. To rank individual features 
utilizes it the classification mechanism. In it valuable features are considered asconstant ones and 
partition the set of values into a few dissociate intervals made by straightforward approach. In this 

study, we consider only features that is having better classification rates. 

Principal Component 
Analysis (PCA) [12] 

Reduction of attribute is accomplished by implementing PCA on our collected data set. PCA helps in 
transforming a high dimension data space into a low dimension data space. Features, which are 

present in low dimension, have extreme importance in detecting malware. 

Logistic regression analysis 
[12] 

For feature ranking, Univariate Logistic Regression (ULR) analysis being considered to verify the 
degree of importance for every feature sets. 

Filtered subset evaluation 
[11] 

Based on the principle to select random subset evaluator from data set that was gained by applying 
arbitrary filtering approach. 

Consistency  subset  
evaluation  approach [11] 

This technique provides the importance of subset of attributes by their level of consistency 
appearing in class values, when the training instances are applied on the subset of attributes. 

Rough set analysis [11] 
This approach is an estimation of conventional set, in terms of a joins of feature sets that provide the 

upper and the lower estimation of the original data set. 

Correlation based feature 
selection [11] 

This approach is based on correlation approach which select a subset of features that are 
particularly related to the class (i.e., benign or malware). 

V. MACHINE LEARNING TECHNIQUE 

To develop an effective and efficient Android malware 
detection model, we consider the Deep Learning Model 
(i.e. DNN) as a machine learning technique. In the 
literature, a number of authors proposed the 
construction of a Deep Learning Model with 
Convolutional neural networks (CNN) and Deep Belief 
Networks (DBN) [12, 18]. 

In the present paper, we consider CNN architecture for 
building the deep learning model [12]. DNN can be 
assembled with different deep architecture i.e., Deep 
Belief Networks (DBN) and Convolutional neural 
networks (CNN). In the present paper, we select DBN 
architecture to develop our deep learning model. Fig. 1 
demonstrates the architecture of deep learning method. 
It is divided in to two stages, one is supervised back-
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propagation and second stage is unsupervised pre-
training. In the early stage of model building, Restricted 
Boltzmann Machines (RBM), with the deep neural 
network are used to trained the model. In training step, 
iterative process is used to build the model with 
unlabeled Android apps. In the back-propagation stage, 
pre-trained DBN is fine-tuned with labeled Android apps 
in a supervised manner. Model build by considering 
deep learning method use an Android app in both 
stages of the training process. 

 

Fig. 1. DNN Model. 

VI. COMPARISON OF PROPOSED MODEL WITH 
DIFFERENT EXISTING TECHNIQUES 

To examine that our developed framework is able to 
achieve a higher detection rate or not, in this research 
paper, we analyze the outcome of our proposed model 
with two distinct methods which are mentioned below: 
(a) Comparison of results with previously used 
classifiers: To verify that our developed model is 
feasible to detect malware as equivalent to previously 
used classifiers or not, we validate it based on two 
performance parameters i.e., F-measure and Accu- 
racy. 
(b) Comparison of results with different Anti-Virus 
scanners: To analyze the performance of our model for 
malware detection, we chose ten available distinct anti-
virus scanners and compare their detection rate with the 
detection rate of the proposed model. 

 

VII. EVALUATION OF PERFORMANCE 
PARAMETERS 

In this section of the paper, we discuss the fundamental 
definitions of the performance parameters utilized by us 
while evaluating our proposed model for malware 
detection. The confusion matrix is used to calculate all 
these parameters. It consists of information related to 
actual and detected classification built by detection 
models. Table 5 demonstrates the confusion matrix for 
the malware detection model. In this study, two 
performance parameters namely, F-measure and 
Accuracy are employed for measuring the performance 
of malware detection models. Below we yield formulae 
to evaluate Accuracy and F-measure:  

 

And 

 

 

Table 5: Confusion matrix Used in this study. 

 Malware Benign 

Malware Malware →Malware Malware→ Malware 

Benign Benign → Malware Benign →Benign 

VIII. EXPERIMENTAL SETUP 

In the present section, we introduce the experimental 
setup done to find the performance of our developed 
malware detection models. DNN is implemented on 
11,000 Android apps, which belong to twelve different 
categories of android apps mentioned in Table 2. All 
these data sets have a varying number of benign or 
malware apps that are adequate to perform our 
analysis. Fig. 2 demonstrates the framework of DLDroid. 
The subsequent measures are pursued at the time of 
either choosing a subset of features to develop the 
malware detection model that detects that app belongs 
to benign or malware class. Feature selection 
approaches are employed on 12 different categories of 
Android apps. Hence, a total of 132 ((1 selecting all 
extracted features+ 10 feature selection approaches) ×
 12 data sets (subsets of different feature sets particular 
to data sets determined after conducting feature 
selection) × 1 detection methods) different detection 
models have been developed in this research paper. 
The subsets of features obtained from aforementioned 
procedure are given as an input to machine learning 
classifiers. To compare the developed models, we use 
20-fold cross-validation method. Cross-validation is a 
statistical learning approach that is utilized to classify 
and match the models by dividing the data into two 
different portions. One portion is utilized to train and the 
remaining portion of data is utilized to verify the build 
model, on the basis of training. The data is initially 
separated into K same sized segments. K-1 folds are 
utilized to train the model and the rest one fold is utilized 
for testing intention.  
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Fig. 2. Framework of DLDRoid. 

K-fold cross-validation is having important significance 
in utilizing the data set for the both testing and training. 
For this study, 20-fold cross-validation is utilized to 
analyze the models, i.e., data sets are segregated into 
20 portions. The outcomes of all build malware 
detection models are matched with each other by 
employing two distinct performance measure 
parameters: F-measure and Accuracy. 

IX. RESULTS OF PERFORMED EXPERIMENT 

In the current section of the paper, the relationship 
among different feature sets and malware detection at 
the class level is submitted. The set of features is used 
as an input and presents the ratio of benign and 
malware apps within an experiment. F-measure and 
Accuracy are used as performance assessment 
parameters to match the performance of the Android 
malware detection model developed by using 
supervised machine learning algorithms. 

A. Feature selection approach 
Fig. 3 demonstrates the significant features, which help 
us to build the malware detection model. Black circle is 
significant feature set and blank rectangle is insignificant 
feature set. 

B. Machine Learning Techniques 
Eleven subsets of features (1 considering all set of 
extracted features + 10 resulting by implemented 

feature selection approaches) are used as an input to 
build a model for malware detection. Hardware used to 
carry out this study is the Intel Core i9 processor having 
a secondary memory of 1TB hard disk and primary 
memory of 16GB. Models are developed by using the 
MATLAB environment. Further, the performance of each 
detection model is measured by using two distinct 
performance parameters i.e., F-measure and Accuracy.  
Tables 6 and 7, present the outcomes obtained for 
distinct data sets by utilizing DNN. Used abbreviations 
in this study are (FS1: Correlation best Feature 
Selection, FS2: Classifier Subset Evaluation, FS3: 
Filtered Subset Evaluation, FS4: Rough Set Analysis 
(RSA), FR1: Chi Squared test, FR2: Gain Ratio Feature 
Evaluation, FR3: Filtered Subset Evaluation, FR4: 
Information Gain Feature Evaluation, FR5: Logistic 
regression analysis, FR6: Principal.  
Component Analysis (PCA) and AF: All Extracted 
features) From Tables 6 and 7, it may be concluded 
that: 
– Model developed by considering features selected by 
Rough Set Analysis (FS4) as input is able to detect 
malware more effectively rather than model developed 
by using all extracted feature sets. 
– From Table 6 and 7, we have seen that feature 
selection approach paid a serious effect on the outcome 
of the model developed for malware detection. 
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(a) Chi-square  (b) Gain ratio 

  
(c) Information gain (d) Logistic regression analysis 

  
(e) OneR (f) PCA 

  
(g) Classifier (h) Correlation based feature selection 

  
(i) Filtered (j) RSA 

Fig. 3. Feature ranking approaches. 

Table 6: Accuracy measured using different feature selection approaches. 

Accuracy 

ID AF FR1 FR2 FR3 FR4 FR5 FR6 FS1 FS2 FS3 FS4 

DS1 68.3 81 84 86 86 82 83 85 86 83 89.8 

DS2 65 80.8 84 87 86 85 82 85 86 89 91.8 

DS3 67 81 84 87 82 85 83 81 84 89 90.8 

DS4 62.8 78 81 89 86 83 89 85 87 89 90.7 

DS5 68.8 81 83 80 81 86 87 82 83 85 89.8 

DS6 67.9 85 87 86 85 84 88 89 92 94 96.7 

DS7 78 81 85 88 89 89.6 88.7 86 86.8 89.7 93.8 

DS8 65 78 75 78 82 84 85 86 87 88 91 

DS9 68 84 87 92 91 83 84 96 95 93 86 

DS10 66.8 78 86 88 89 82 89 89 89.8 89.7 97 

DS11 79 88 88 86 86 89 89 80 86 88 98 

DS12 66.8 82 88 82 86 81 83 88 87 89 90 

Table 7: F-measure measured using different feature selection approaches. 

F-measure 

ID AF FR1 FR2 FR3 FR4 FR5 FR6 FS1 FS2 FS3 FS4 

DS1 0.79 0.81 0.85 0.83 0.81 0.83 0.85 0.82 0.87 0.81 0.89 

DS2 0.75 0.82 0.86 0.85 0.84 0.81 0.85 0.83 0.85 0.81 0.87 

DS3 0.78 0.87 0.86 0.85 0.83 0.85 0.86 0.85 0.84 0.87 0.89 

DS4 0.72 0.80 0.88 0.84 0.87 0.86 0.86 0.87 0.81 0.86 0.88 

DS5 0.67 0.80 0.81 0.82 0.83 0.83 0.84 0.85 0.86 0.87 0.90 

DS6 0.69 0.88 0.85 0.86 0.87 0.87 0.85 0.88 0.87 0.88 0.90 

DS7 0.70 0.86 0.85 0.84 0.87 0.89 0.86 0.87 0.82 0.81 0.89 

DS8 0.67 0.81 0.81 0.88 0.85 0.84 0.83 0.84 0.84 0.88 0.89 

DS9 0.78 0.89 0.92 0.94 0.93 0.92 0.96 0.99 0.91 0.92 0.91 

DS10 0.70 0.82 0.81 0.88 0.86 0.87 0.85 0.88 0.82 0.88 0.96 

DS11 0.72 0.87 0.86 0.86 0.85 0.87 0.85 0.84 0.82 0.85 0.93 

DS12 0.75 0.80 0.81 0.82 0.81 0.81 0.82 0.86 0.86 0.84 0.89 
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C. Evaluation of DLDroid with existing techniques 
available in the literature 
(i) Comparison of results with previously used classifiers: In 
this study, we also makes the comparison with different 
most often used supervised machine learning approaches 

present in literature such as SVM with three distinct kernels 
i.e., linear, polynomial and RBF, Naïve Bayes classifier, 
Decision tree analysis, Logistic regression and Neural 
network. Fig.  4 demonstrates the box-plot diagrams for F-
measure and Accuracy of commonly utilized classifiers.  

 

 (a) 

 

(b) 

Fig. 4. Diagram of box-plot showing performance of different classifiers. 

On the basis of Fig. 4, we observed that DLDroid (DNN + 
FS4) has higher median value along with some outliers.  
(ii) Comparison of results with different Anti-Virus scanners: 
Although our proposed model gives a better performance as 
compared to the machine learning technique used in the 
literature, in the end, it must be comparable with the 
common anti-virus products available in practice for Android 

malware detection. For this experiment, we select 10 
different anti-viruses that are available in the market and 
applied them to our collected data set. For this experiment, 
we consider Android apps whose size is less than 50 MB. 
The performance of the proposed framework is 
comparatively better than many of the anti-viruses available 
in the experiment. Table 8 shows us the results of the 
experiment with anti-virus scanners.  
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Table 8: Comparison with distinct anti-virus scanners. 

Name of the Anti-virus Detection rate (in%) Speed to detect malware in sec 

Cyren 82 60 

Ikarus 82.68 62 

VIPRE 89 40 

McAfee 89 30 

AVG 90 32 

AVware 92.8 30 

ESETNOD32 92.9 20 

CATQuickHeal 96.9 32 

AegisLab 97.1 30 

NANOAntivirus 96.2 20 

DLDroid(our proposed framework) 
 

97.9 12 

The detection rate of the anti-viruses scanners varies 
considerably. Also, the best antivirus scanners detected 
97.1% of the Android malware and certain scanners 
identified only 82% of the malicious samples, likely do not 
being specialized in detecting Android malware. By using 
11,000 Android apps, DNN gives us the detection rate of 
97.9% and outperforms equivalent to different anti-virus 
scanners. From this, we can say that our proposed 
framework is more efficient in detecting malware rather than 
the manually created definition of distinct anti-virus 
scanners. 
 (iii) Experimental findings: The comprehensive conclusion 
of our experimental work is presented in this section. The 
empirical study was performed for twelve distinct categories 
of Android apps by considering supervised machine learning 
techniques. Based on the experimental results, this research 
paper is able to answer the questions mentioned in section 
II. 
RQ1: To address the RQ1, Tables 6 and 7 were analyzed. 
Here, it is found that the model build by utilizing FS4 is able 
to detect more malware from Android apps when compared 
to other approaches. 
RQ2: In the present paper, feature selection approach is 
used to identify the smaller subset of features. By utilizing 
this, we considered the best possible subsets of the 
features, which helps to develop a model to identify whether 
an app is benign or malware. Based on the experimental 
results mentioned in Tables 6 and 7, it indicates that in 
number of cases there occurs a reduced subset of features, 
which are best for building a detection model when 
compared to all the extracted features. 

X. CONCLUSION AND FUTURE SCOPE 

This work is emphasized on developing a malware 
detection framework by using a selected set of features 
that help us to identify that an Android app belongs to 
malware class or benign class. The experiment was 
performed by taking assistance of twelve distinct 
categories of Android apps. 
Our submissions after performing the experiment are the 
following: 
– Empirical results specify that it is feasible to identify a 
small subset of features. Malware detection model 
developed by considering a small set of features is able 
to detect malware and benign apps with the inferior value 
of misclassified errors and better accuracy. 
– Based on experimental findings, we observed that 
considering feature selection approaches helps to reduce 
the feature sets.  

The result of models build by using feature selection 
approaches perform better when compared to all 
extracted feature sets. 
– Based on the proposed detection framework, it is seen 
that model build by utilizing FS4 is capable to detect 
97.9% unknown malware from real-world apps. 
In this research paper, we proposed the malware 
detection model that detects only whether an app is 
malware or benign. Further, work can be extended to 
develop a model for malware detection, which predicts 
whether a particular feature is capable to detect malware, 
or not. Moreover, this study can be replicated over other 
Android apps repository, which utilized soft computing 
models to attain a better detection rate for malware. 
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