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ABSTRACT:  Nowadays a multi-core SoC memory latency continues to become a critical bottleneck. Memory 
latency includes both on-chip memory and off-chip memory latency. The memory latency degrades the entire 
system performance of multi-core SoC while accessing the memory for write and read operations. Most 
previous studies treated the on-chip memory controller and the off-chip memory controller as independent 
stages. Without a clear vision for traffic between the two stages, as an example, while accessing SDRAM 
memory, unwanted scenario happen for precharge and activation row buffers in off-chip memory controller 
stage which increases the time and power. The main challenge design of any memory controller for multi-
core processors is to decrease the latency while accessing the main memory for write and read operations 
which lead to improve the speed up of SoC design. In this work, a united multi-core SoC memory controller 
is proposed with burst mode capability using Advanced eXtensible Interface protocol (AXI4-Lite), to improve 
the entire system speed up of multi-core memory controller SoC. The proposed multi-core memory controller 
is designed by different Intellectual Property (IP) core and connects all these IP cores using the AXI4-Lite 
interface protocol to easily communicate and improve the system speed up. The memory controller design is 
implemented using System Verilog HDL, simulation and synthesis are done by using the Vivado tool and 
FPGA ZYNQ-7 ZC702 Evaluation Board (xc7z020clg484-1) accordingly with a maximum speed frequency of 
100 MHz. 

Keywords: On-chip memory, Off-chip memory, Memory controller, Advanced eXtensible interface.  

Abbreviations: SoC, system on chip; FPGA, field-programmable gate array; HDL, hardware description language; 
Tcl, Tool Command Language; ACLK, clock signal; ARESET, reset signal; AWADDR, write address; ARADDR, read 
address; AWBURST, write address burst ; ARBURST, read burst address ; AWVALID, write address valid; ARVALID, 
read address valid; AWREADY, write address ready; ARREADY, read address ready; WDATA, write data; RDATA, 
read data; BVALID, write valid; BREADY, write ready; BRESP, write response; INCR, increment.

I. INTRODUCTION 

A typical multi-core processors system has two types of 
random-access memory: on-chip memory, and off-chip 
memory. The on-chip memory usually consists of static 
random access memory (SRAM). On the other hand, 
off-chip memory usually consists of dynamic random 
access memory (DRAM). During write/ read access to/ 
from on-chip/ off-chip memories, the access latency of 
on-chip memory is less compared to that of off-chip 
memory. 
The main reasons for high access latency in the off-chip 
memory are to store the data in the capacitors as 
charges and to refresh the data every a few cycles [1]. 
Each core machine consists of one processor, two or 
more levels of on-chip memory, off-chip memory and 
Input/ Output (I/O) devices. Levels of on-chip memory 
relate to the size and distance from the processor which 
displays the memory hierarchy, for example accessing 
data from the first level on-chip memory faster than 
accessing it from the second level, and so on. 
Consequently, the use of on-chip memory reduces the 
Memory Access Time (MAT) and resulting in a better 
performance [2]. 

From the miss requests available in memory controller’ 
buffer, the memory controller based on scheduling 
policy selects only one request to access the memory in 
every clock cycle. Selected request to access the 
memory is sent to the command generators stage. This 
stage translates the memory request to commands to 
be able to access the off-chip memory for write/ read in 
the proper way. The data storage in off-chip memory is 
organized as multiple memory hierarchies which are 
represented by ranks, banks, rows, and columns 
respectively. The memory controller can manage the 
parallel memory accesses at ranks and banks memory 
hierarchies and only one-row buffer can be active in 
each bank. To write/read a column, it must be the target 
row of this column open in the row buffer before 
performing any actual write/ read access (row activate 
operation). The bank must be closed target row after 
write/ read completed (precharge operation) [3].  
The traditional memory subsystem architecture of multi-
core processors is shown in Fig. 1. The L3-level on-chip 
memory stage is the first access point of multi-core 
memory access traffics. The miss requests of L3-level 
on-chip memory are forwarded to the memory controller 
where these miss requests are buffered in the memory 
controller’s transaction queue and waiting to be 
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scheduled to the off-chip memory for write/ read 
operations.  
The two controllers of L3-level on-chip memory and off-
chip memory as shown in Fig. 1 have seemed as 
though separate units that make incorrect final 
scheduling ruling. The forwarded L3-level on-chip 
memory miss requests are invisible at the off-chip 
memory controller side, as well as the amplified states 
of the row-buffer are invisible at L3-level on-chip 
memory controller side. These limited miss requests 
visibility on both sides oftentimes heads towards 
incorrect scheduling decisions. Increase L3-level on-
chip memory miss requests rate by multi-core 
processors traffic makes problem by bringing more 
traffic miss requests to the off-chip memory controller. 
Therefore, the two stages on-chip memory controllers 
lead to increase latency while multi-core processors 
accessing the memory for write and read operations. 
However, in this paper, we designed a united multi-core 
memory controller to decrease system latency that 
leads to improve the system speed up. 

                    L3-level        Memory Controller 

 

Fig. 1. Traditional memory subsystem of multi-core 
processors. 

II. MOTIVATION AND LITERATURE 

Architectures controllers of the L3-level on-chip memory 
and the off-chip memory have been discussed widely in 
recent years. All previous works were focused on the 
DRAM-aware management of L3-level on-chip write 
backs. However, L3-level on-chip memory misses at run 
time can also impact the performance of the scheduling 
process as shown in Fig. 2. Assume that A and B are 
two miss memory requests and both are waiting at the 
L3-level on-chip memory side. In the same off-chip 
memory bank (K) and different row buffers (R1 & R2 
respectively) the target addresses of the two miss 
memory requests A and B are located. Initially as shown 
in Fig. 2 the row R2 of memory bank K is active. If both 
A and B requests existing at the on-chip memory side 
and request A is first served by the L3-level on-chip 
memory controller, it will arrive earlier than request B at 
the transaction queue. Without knowing at the same 
time by the existence of request B in the L3-level on-
chip memory stage, the memory scheduler precharges 
row R2 and activate the row buffer of miss request A. 
During miss request B arrives next, the scheduler will 
precharge row R1 and then re-activate R2. 
Most previous works tackle these two independent 
memory controller stages fabrics that lead to unwanted 
scenario happen for precharge, activation row buffers at 
the off-chip memory controller stage which increase the 
latency for multi-core processors while accessing the 
main memory for write and read operations [4-8].   Xilinx 
proposed a united memory controller using the AXI4-
Lite interface protocol that handles both independent 
memory controller stages [10]. However, it can handle 
only a single-core processor. The design was proposed 

for one core processor with two write and two read 
operations to/ from the memory, which means that the 
single-core processor write two different 32-bits data to 
two different memory locations and after a nanoseconds 
of time the single-core processor read the same data. 
This scenario of write and read operations leads to more 
time to complete the two write and two read operations. 
The main contribution of this work is to write and read 
operations for single-core processor in a parallel way to 
improve the speed up of existing work and then design 
a united multi-core memory controller using the AXI4-
Lite interface protocol that improves the speed up 
(decrease latency) while multi-core processors 
accessing the memory for write and read operations. All 
the cores can write/ read to/ from the main memory at 
the same time in parallel to improve the speed up of the 
entire SoC design. 

 

Fig. 2. Precharge and Activation Operations [9]. 

III. PROPOSED MODEL 

Fig. 3 illustrates the proposed design model of the multi-
core memory controller SoC. Different Intellectual 
Property (IP) exists in the design which represents all 
components of our multi-core memory controller model. 
The first IP is AXI verification (AXI VIP) [11]. It is an IP 
core using to initiate a write and read transactions as 
single or multi-core processors with different interface 
protocol modes such as AXI3, AXI4-Lite, and AXI4. In 
this paper, we used this IP core to initiate a write and 
read transactions for single and multi-core processors 
with AXI4-Lite interface protocol. The second IP is AXI 
Block RAM (BRAM) Controller [12]. It is a united 
memory controller that receives requests and manages 
them for access to the off-chip memory. This memory 
controller can also support different interface protocols 
such as AXI3, AXI4-Lite, and AXI4. We used four AXI 
BRAM Controllers with AXI4 interface to manage 
requests from four-core processors. Each core 
processor can manage by an independent AXI BRAM 
Controller. The third IP is Block Memory Generator [13]. 
It is an IP core that creates the BRAM which represents 
a portion of the off-chip memory which only one 
processor can access it. Regardless of the type of the 
off-chip memory, we used four BRAMs which represent 
four portions of the off-chip memory and each processor 
can access its address space (BRAM). The fourth IP is 
AXI Interconnect [14]. The AXI Interconnect IP core 
allows connects one AXI master or more and one AXI 
slave or more, which can be different kinds of interface 
protocol, clock domain, and data width. We used this IP 
to connect one master (AXI VIP) and multiple slaves 
(AXI Memory Controller). Inside the AXI Interconnect IP, 
it is available also data buffer in different sizes which are 
working as L3-level on-chip memory between one core 
processor or multi-core processors and memory 
controller. These data buffers accommodate the data 
movement between one core processor or multi-core 
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processors and off-chip memory (BRAM). The last IP is 
Processor System Reset [15]. We used this IP to reset 

the single-core processor or multi-core processors and 
other different IPs available in our design.  

 

Fig. 3. Proposed Model. 

In this work, the proposed design is implemented in 
single and multi-core processors for different modes of 
write and read operations as shown in the simulation 
results section IV. 

A.  Write Operation 
The single and multiple write operations for single and 
multi-core processors using the AXI4-Lite interface 
protocol are shown in the flowchart in Fig. 5. The AXI4-
Lite interface has three independent channels for write 
operation: write address channel, write data channel, 
and write response channel [16]. The flowchart shows 
the all three independent channel signals that executes 
the write operation of single-core or multi-core 
processors in the proper way. At the beginning, if the 
clock and reset signals are high, the single-core or 
multi-core processors (Master) can start the write 
operation when the signals of write address channel 
AWVALID and AWREADY are high, which represents 
that the write address from the master is valid and the 
memory controller (Slave) ready to receive the write 
address from the master. The signal AWBURST from 
master to salve indicates that the write operation will be 
in the burst mode and represented by binary value 
2’b01. The variable W indicates the memory address 
register. If the register is equal to zero this means that 
the write operation will be for the start address, 
otherwise, add the digit four (4) to the content of the 
register W which indicates the next address. The start 
addresses according to our design are C0000000, 
C2000000, C4000000, and C6000000 of the four core 
processors respectively. The write data operation is 
transferred when the write channel signals WVALID and 
WREADY are high, which indicates that the data 
transmitted from master to slave is valid and the salve is 
prepared to receive the data transmitted from the 
master. WDATA represents the data transferred from 
the master to the slave. The last signal BVALID, 
BREADy, and BRESP represents the write response 
channel of the write operation. BVALID signal sends 
from slave to master that indicates all data are received, 
BREADY signals send from master to slave that 
indicates the master is ready to receive a response 
about the data sent and BRESP signals just indicates 
the status of the transaction. 

B. Read Operation 
The single and multiple read operations for single and 
multi-core processors using the AXI4-Lite interface 
protocol are shown in the flowchart in Fig. 6.  

The flowchart shown that AXI4-Lite interface protocol 
has only two independent channels for read operation: 
read address data channel [16]. The ARVALID, 
ARREADY, ARBURST signals represent the read 
address channel, and RVALID and READY signals 
represent the read data channel. The read transactions 
of the AXI4-Lite interface protocol signal details are the 
same write transactions mentioned in the previous 
section.  

 

Fig. 4. Vivado Tcl Console Command Massage. 

 

Fig. 5. Flowchart of Single and Multi Write Operations. 
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Fig. 6. Flowchart of Single and Multi Read Operations. 

At the end of read operation as shown in the flowchart in 
Fig. 6, the comparison step between the write and read 
transactions. If data read is same data write, then the 
message “data matched and test succeeded” printed in 
the Tcl Console Command. A sample message of the 
simulation results of our design is shown in snapshot in 
Fig. 4 below. Otherwise, try to read operation again to 
match the data write. 

IV.  SIMULATION RESULTS 

Fig. 7 (a) and (b) illustrate the snapshot of the 
simulation results of a united memory controller for 
single-core processor in various operation modes. Fig. 7 
(a) shows the two write and two read operations for 
single-core processor [10]. The two write and two read 

operations are completed at time 585ns. The 
transactions are done in the normal way which the 
single-core processor write two different 32–bits data 
(abcde000 and abcde001) into two different 32-bits 
memory location (C0000000 and C0000004) then after 
a nanoseconds of time the single-core processor read 
the data. Our proposed model executes the two write 
and two read operations in a parallel way which leads to 
reduce the transaction time. The two write and two read 
operations of our proposed model for single-core 
processor completed at time 565ns as shown in Fig. 7 
(b). In the Fig. 8 (a) and (b) show the simulation results 
of a united memory controller for single-core processor 
with three write and three read operations. In the figure 
8a, the transactions are done in the normal way which 
the single-core processor write three different 32–bits 
data (abcde000, abcde001, and abcde002) into three 
different 32-bits memory locations (C0000000,  
C0000004, and C0000008) then after a nanoseconds of 
time the single-core processor read the data. 
The three write and three read operations completed at 
time 725ns. However, the three write and three read 
operations of our proposed model for single-core 
processor completed in a parallel way at time 685ns as 
shown in Fig. 8 (b). In the other simulation results, we 
increased the number of core processors and number of 
write and read operations (united memory controller for 
multi-core processors) using the same two different 
ways mentioned above.  
In the Fig. 9 (a) and (b) show the simulation results of a 
united memory controller for two-core processors with 
two write and two read operations for each core 
processor using the same two different ways mentioned 
above. In the normal way, the first core processor write 
two different 32–bits data (abcde000 and abcde001) 
into two different 32-bits memory locations (C0000000 
and C0000004) and then after a nanoseconds of time 
the first core processor read the data.  

 

 

Fig. 7 (a) 2 write and 2 read transactions of single core processor [10]. 

 

Fig. 7 (b) 2 write and 2 read transactions of single core processor in parallel. 



Noami  et al.,      International Journal on Emerging Technologies   11(3): 468-475(2020)                               472 

 

Fig. 8 (a) 3 write and 3 read transactions of single-core processor. 

 

Fig. 8 (b) 3 write and 3 read transactions of single-core processor in parallel. 

 

Fig. 9 (a) 2 write and 2 read transactions of two-core processors. 

 

Fig. 9 (b) 2 write and 2 read transactions of two-core processors in parallel. 

The second core processor write two different 32–bits 
data (abcde003 and abcde004) into two different 32-bits 
memory locations (C2000000 and C2000004) then after 
a nanoseconds of time the second core processor read 
the data. This two write and two read operations 
completed at time 1355ns. In a parallel way (our 
proposed), the two-core processors can write their two 

different 32-bits data (abcde000 and abcde001) for the 
first core processor and (abcde003 and abcde004) for 
the second core processor into two different 32-bits 
memory locations (C0000000 and C0000004) for the 
first core processor and (C2000000 and C2000004) for 
the second core processor at the same time 
respectively. This two write and two read operations 
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completed at time 1295ns. In the Fig.10a and figure 10b 
show the simulation results of two-core processors with 
three writes and three read operations for each core 
processor using the two different ways.  
In the normal way, the first core processor write three 
different 32–bits data (abcde000, abcde001, and 
abcde002) into three different 32-bits memory locations 
(C0000000, C0000004, and C0000008) and then after a 
nanoseconds of time the first core processor read the 
data. The second core processor write three different 
32–bits data (abcde003, abcde004 and abcde005) into 
three different 32-bits memory locations (C2000000, 
C2000004, and C2000008) then after a nanoseconds of 
time the second core processor read the data. This 
three write and three read operations completed at time 
1695ns. In a parallel way (our proposed), the two-core 
processors can write their three different 32-bits data 
(abcde000, abcde001, and abcde002) for the first core 
processor and (abcde003, abcde004, and abcde005) for 
the second core processor into three different 32-bits 

memory locations (C0000000, C0000004, and 
C0000008) for the first core processor and (C2000000, 
C2000004, and C2000008) for the second core 
processor at the same time respectively. This three 
write and three read operations completed at time 
1595ns. The other remaining simulation results of a 
united memory controller for one/ two/ three/ four-core 
processors with two/ three/ four write and two/ three/ 
four read operations using the two different ways are 
directly written into Table 1. It is reported from Table 1 
that our proposed model improves the speed up of write 
and read operations. In a united memory controller for 
single-core processor with two/ three/ four write and 
read operations, our model improves the speed up of 
write and read operations by 20ns, 40ns, and 60ns 
respectively. In two-core processors with two/ three/ four 
write and read operations for each core processor, our 
model improve the speed up of write and read 
operations by 60ns, 100ns, and 140 ns respectively. 

 

 

Fig. 10 (a) 3 write and 3 read transactions of two-core processors. 

 

Fig. 10 (b) 3 write and 3 read transactions of two-core processors in parallel. 

Table 1: Comparison between Number of Core Processors and Number of Transactions. 

 
 

 

 

 

Core Processor 
Transactions 

Single-Core 
Processor 

Two-core 
Processors 

Three-core 
Processors 

Four-core 
Processors 

2 Write & 2 Read   [10] (Normal Way) 585 ns 1355 ns 1695 ns 2055 ns 

2 Write & 2 Read          (Our Model) 565 ns 1295 ns 1595 ns 1895 ns 

3 Write & 3 Read          (Normal Way) 725 ns 1695 ns 2205 ns 2735 ns 

3 Write & 3 Read          (Our Model) 685 ns 1595 ns 2045 ns 2495 ns 

4 Write & 4 Read          (Normal Way) 865 ns 2035 ns 2715 ns 3395 ns 

4 Write & 4 Read          (Our Model) 805 ns 1895 ns 2495 ns 3095 ns 
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In three-core processors with two/ three/ four write and 
read operations for each core processor, our model 
improves the speed up of write and read operations by 
100ns, 160ns, and 220ns respectively. In four-core 
processors with two/ three/ four write and read 
operations for each core processor, our model improves 
the speed up of write and read operations by 160ns, 
240ns, and 300ns respectively.  
We observed from the simulation results that the normal 
way [10], which execution the write and read operations 
leads to increase the latency while the multi-core 
processors SoC and write and read operations are 
increases. This normal way it seems undesirable for 
many multi-core processors SoC applications that need 
the speed up to improve the entire performance of the 
design.  
Also, we observed from the simulation results that the 
parallel way, our model, which execution the write and 
read operations decrease the latency for write and read 
operations of multi-core processors which lead to 
improve the speed up of SoC design. This way 
desirable for many multi-core processors SoC 
applications which need to execute so many write and 
read operations at the same time and improve the entire 
performance of SoC design. 

V. REAL-TIME DESIGN ANALYSIS 

Debugging multi-core memory controller is done on 
FPGA ZYNQ-7 ZC702 Evaluation Board 
(xc7z020clg484-1). At the beginning of the debugging 
design on FPGA, we replaced the VIP IP core that 
initiated all write and read AXI4-Lite transactions of 
single and multi-core processors in the simulation stage  
by JTAG-to-AXI IP core [17]. Because VIP IP core is 
supporting only simulation stage of the design and VIP 
IP core is replaced by wires after synthesis design. The 
JTAG-to-AXI IP core initiates the real-time write and 
read AXI4-Lite transactions at debugging design stage 
on FPGA by using Tcl console command of the Vivado  
tool. The Tcl console command of write AXI4-Lite 
transaction written in the form such “create_hw_axi_txn 
write_txn [get_hw_axis hw_axi_1] -address xxxxxxxx -
data {zzzzzzzz} -type write”. This command indicates 
the type of transaction, address then data. For the read 
AXI4-Lite transaction, the command written such 
“create_hw_axi_txn read_txn [get_hw_axis hw_axi_1] –
address xxxxxxxx -type read”. This command indicates 
the type of transaction and the address only. These Tcl 
console commands for both write and read transactions 
are already supports the INCR type of the burst mode 
for only one burst length data transfer with 32 bits width. 
Finally, we used also different Tcl console commands to 
run the write and read operations on FPGA hardware.  
These commands are run_hw_axi [get_hw_axi_txns 
write_txn] for write operations and run_hw_axi 
[get_hw_axi_txns read_txn] for read operation.  

Table 2: FPGA Utilization Summary. 

Logic Utilization Available Used 
Utilization 

Percentage 

Slice LUTs 53200 4658 8.75% 

Slice Registers 106400 2842 2.67% 

Slice 13300 1932 14.5% 

LUT as Memory 17400 2851 16.38% 

Block RAM Tile 140 14 10% 

Bounded IOB 200 2 1% 

In the existing model there is no mentioned for the 
FPGA device utilization. However all the logics 
hardware utilization summary such as lookup tables, 
registers, slice, lookup tables as memory, block RAM 
and inputs/ outputs of the ZYNQ-7 ZC702 Evaluation 
Board (xc7z020clg484-1) of our proposed model are 
shown in Table 2. 

VI. CONCULSION 

In this paper a united multi-core memory controller using 
the AXI4-Lite interface protocol is proposed to improve 
the SoC speed up. The proposed model is simulated for 
one/ two/ three/ four-core processers with two/ three/ 
four write and read operations for each core processor. 
Our design improved the speed up for one/ two/ three/ 
four-core processors with two/ three/ four write and read 
operations. It is shown from simulation results that our 
design decreased the access time latency of the write 
and read operations of single and multi-core processors. 
For one/ two/ three/ four-core processors with two write 
and read operations, the latency is decreased by 3.42%, 
4.43%, 5.9%, and 7.78% respectively. For two-core 
processors with two/ three/ four write and read 
operations the latency is decreased by 4.43%, 5.9%, 
and 6.94% respectively, etc. The design is implemented 
using System Verilog HDL. The simulation and 
synthesis are done by using Vivado tool and FPGA 
ZYNQ-7 ZC702 Evaluation Board (xc7z020clg484-1) 
accordingly. 

VII. FUTURE SCOPE 

AXI4-Lite interface protocol has a limitation features for 
data write and read operations. It is supported only by 
fixed 32-bits data transaction size and one data burst 
mode for each transaction.  
 
Several SoC design needs interface supports variable 
data size and different burst mode such as AXI4 full 
memory-mapped interface protocol. 

ACKNOWLEDGEMENT 

This work has been supported by the Indian Council for 
Cultural Relations (ICCR), India. 

Conflict of Interest. No. 

REFERENCES 

[1]. Hussain, T., (2014). A Novel Access Pattern-based 
Multi-core Memory Architecture (Doctoral dissertation, 
Departament d'Arquitectura de Computadors, universitat 
politècnica de catalunya).  Retrieved from 
https://upcommons.upc.edu/handle/2117/95566. 
[2]. Sirhan, N., Serhan, S., (2018). Multi-Core 
processors: Concept and Implementations. International 
Journal of Computer Science & Information Technology, 
10(1): 1-10. 
[3]. Tigadi, A., & Guhilot, H. (2018). Design and 
Implementation of a DDR2 SDRAM Controller for Audio 
Data on a Reconfigurable Platform. International Journal 
of Engineering and Manufacturing,  8(5), 32-48. 
[4]. Rixner, S., Dally, W., Kapasi, U., Mattson, P., & 
Owens, J. (2000). Memory access scheduling. The 27

th
 

International Symposium on Computer Architecture 
(IEEE Cat. No.RS00201), 128-138. 
[5]. Kaseridis, D., Stuecheli, J., & John, L. (2011). 
Minimalist open-page: A DRAM page-mode scheduling 
policy for the many-core era. The 44th Annual 



Noami  et al.,      International Journal on Emerging Technologies   11(3): 468-475(2020)                               475 

IEEE/ACMI International Symposium on 
Microarchitecture, 24-35. 

[6]. Ausavarungnirun, R., Chang, K., Subramanian, L., 
Loh, G., & Mutlu, O., (2012). Staged memory 
scheduling: Achieving high performance and scalability 

in heterogeneous systems. The 39th Annual IEEE 
International Symposium on Computer Architecture, 
416-427. 
[7]. Lee, J., & TAP, H. (2012). A TLP-aware cache 
management policy for a CPU-GPU heterogeneous 
architecture. IEEE International Symposium on High-
Performance Comp Architecture, 1-12. 
[8]. Mekkat, V., Holey, A., Yew, P., & Zhai, A. (2013). 
Managing shared last-level cache in a heterogeneous 
multicore processor. The 22nd International Conference 
on Parallel Architectures and Compilation Techniques, 
225-234. 
[9]. Song, Y., Alavoine, O., & Lin, B. (2018). Row-Buffer 
Hit Harvesting in Orchestrated Last-Level Cache and 
DRAM Scheduling for Heterogeneous Multicore 
Systems. Design, Automation & Test in Europe 
Conference & Exhibition (DATE), 779 – 784. 
[10]. Confluence, Using the AXI4 VIP as a master to 
read and write to a AXI4-Lite slave interface, (2020). 
[online]. Available at xilinx-wiki.atlassian.net. 
[11]. AMBA AXI Verification IP, LogiCORE IP Product 
Guide PG267 (v1.1) (2019). [Online]. Available at 
http://www.xilinx.com. 

[12]. AMBA AXI BRAM Controller, LogiCORE IP 
Product Guide PG078 (v4.1) (2019). [Online]. Available 
at http://www.xilinx.com.  
[13]. AMBA AXI Block Memory Generator reference 
guide PG058 (v8.4) (2019). [Online]. Available at 
http://www.xilinx.com.  
[14]. AMBA AXI Interconnect, LogiCORE IP Product 
Guide PG059 (v2.1) (2019). [Online]. Available at 
http://www.xilinx.com.  
[15]. AMBA AXI Processor System Reset Module, 
LogiCORE IP Product Guide PG164 (v5.0) (2015). 
[Online]. Available at http://www.xilinx.com. 
[16]. Sainath Chaithanya, A., Sulthana, S., Yamuna, B. 
& Haritha, Ch (2020). Design of 
AMBA AXI4-Lite for Effective Read/Write Transactions 
with a Customized Memory. International Journal on 
Emerging Technologies, 11(1), 396–402. 
[17]. AMBA JTAG to AXI Master, LogiCORE IP Product 
Guide PG174  (v1.2) (2016). [Online]. Available at 
http://www.xilinx.com. 

 
 
How to cite this article: Noami, A., Kumar, B. P. and Chandrasekhar, P. (2020). Design and Implementation of a 
United Multi-Core Memory Controller using AXI4-Lite Interface Protocol. International Journal on Emerging 
Technologies, 11(3): 468–475. 
 


