
Noami et al., International Journal on Emerging Technologies 11(3): 468-475(2020) 468

International Journal on Emerging Technologies 11(3): 468-475(2020)

ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Design and Implementation of a United Multi-Core Memory Controller using AXI4-
Lite Interface Protocol

Ahmed Noami
1
, B. Pradeep Kumar

1
 and P. Chandrasekhar

2

1
Ph.D. Scholar, Department of Electronics and Communication,

College of Engineering, Osmania University, Hyderabad (Telangana), India.
2
Professor, Department of Electronics and Communication, College of Engineering,

Osmania University, Hyderabad (Telangana), India.

(Corresponding author: Ahmed Noami)
(Received 26 February 2020, Revised 18 April 2020, Accepted 22 April 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Nowadays a multi-core SoC memory latency continues to become a critical bottleneck. Memory
latency includes both on-chip memory and off-chip memory latency. The memory latency degrades the entire
system performance of multi-core SoC while accessing the memory for write and read operations. Most
previous studies treated the on-chip memory controller and the off-chip memory controller as independent
stages. Without a clear vision for traffic between the two stages, as an example, while accessing SDRAM
memory, unwanted scenario happen for precharge and activation row buffers in off-chip memory controller
stage which increases the time and power. The main challenge design of any memory controller for multi-
core processors is to decrease the latency while accessing the main memory for write and read operations
which lead to improve the speed up of SoC design. In this work, a united multi-core SoC memory controller
is proposed with burst mode capability using Advanced eXtensible Interface protocol (AXI4-Lite), to improve
the entire system speed up of multi-core memory controller SoC. The proposed multi-core memory controller
is designed by different Intellectual Property (IP) core and connects all these IP cores using the AXI4-Lite
interface protocol to easily communicate and improve the system speed up. The memory controller design is
implemented using System Verilog HDL, simulation and synthesis are done by using the Vivado tool and
FPGA ZYNQ-7 ZC702 Evaluation Board (xc7z020clg484-1) accordingly with a maximum speed frequency of
100 MHz.

Keywords: On-chip memory, Off-chip memory, Memory controller, Advanced eXtensible interface.

Abbreviations: SoC, system on chip; FPGA, field-programmable gate array; HDL, hardware description language;
Tcl, Tool Command Language; ACLK, clock signal; ARESET, reset signal; AWADDR, write address; ARADDR, read
address; AWBURST, write address burst ; ARBURST, read burst address ; AWVALID, write address valid; ARVALID,
read address valid; AWREADY, write address ready; ARREADY, read address ready; WDATA, write data; RDATA,
read data; BVALID, write valid; BREADY, write ready; BRESP, write response; INCR, increment.

I. INTRODUCTION

A typical multi-core processors system has two types of
random-access memory: on-chip memory, and off-chip
memory. The on-chip memory usually consists of static
random access memory (SRAM). On the other hand,
off-chip memory usually consists of dynamic random
access memory (DRAM). During write/ read access to/
from on-chip/ off-chip memories, the access latency of
on-chip memory is less compared to that of off-chip
memory.
The main reasons for high access latency in the off-chip
memory are to store the data in the capacitors as
charges and to refresh the data every a few cycles [1].
Each core machine consists of one processor, two or
more levels of on-chip memory, off-chip memory and
Input/ Output (I/O) devices. Levels of on-chip memory
relate to the size and distance from the processor which
displays the memory hierarchy, for example accessing
data from the first level on-chip memory faster than
accessing it from the second level, and so on.
Consequently, the use of on-chip memory reduces the
Memory Access Time (MAT) and resulting in a better
performance [2].

From the miss requests available in memory controller’
buffer, the memory controller based on scheduling
policy selects only one request to access the memory in
every clock cycle. Selected request to access the
memory is sent to the command generators stage. This
stage translates the memory request to commands to
be able to access the off-chip memory for write/ read in
the proper way. The data storage in off-chip memory is
organized as multiple memory hierarchies which are
represented by ranks, banks, rows, and columns
respectively. The memory controller can manage the
parallel memory accesses at ranks and banks memory
hierarchies and only one-row buffer can be active in
each bank. To write/read a column, it must be the target
row of this column open in the row buffer before
performing any actual write/ read access (row activate
operation). The bank must be closed target row after
write/ read completed (precharge operation) [3].
The traditional memory subsystem architecture of multi-
core processors is shown in Fig. 1. The L3-level on-chip
memory stage is the first access point of multi-core
memory access traffics. The miss requests of L3-level
on-chip memory are forwarded to the memory controller
where these miss requests are buffered in the memory
controller’s transaction queue and waiting to be

e
t

Noami et al., International Journal on Emerging Technologies 11(3): 468-475(2020) 469

scheduled to the off-chip memory for write/ read
operations.
The two controllers of L3-level on-chip memory and off-
chip memory as shown in Fig. 1 have seemed as
though separate units that make incorrect final
scheduling ruling. The forwarded L3-level on-chip
memory miss requests are invisible at the off-chip
memory controller side, as well as the amplified states
of the row-buffer are invisible at L3-level on-chip
memory controller side. These limited miss requests
visibility on both sides oftentimes heads towards
incorrect scheduling decisions. Increase L3-level on-
chip memory miss requests rate by multi-core
processors traffic makes problem by bringing more
traffic miss requests to the off-chip memory controller.
Therefore, the two stages on-chip memory controllers
lead to increase latency while multi-core processors
accessing the memory for write and read operations.
However, in this paper, we designed a united multi-core
memory controller to decrease system latency that
leads to improve the system speed up.

 L3-level Memory Controller

Fig. 1. Traditional memory subsystem of multi-core
processors.

II. MOTIVATION AND LITERATURE

Architectures controllers of the L3-level on-chip memory
and the off-chip memory have been discussed widely in
recent years. All previous works were focused on the
DRAM-aware management of L3-level on-chip write
backs. However, L3-level on-chip memory misses at run
time can also impact the performance of the scheduling
process as shown in Fig. 2. Assume that A and B are
two miss memory requests and both are waiting at the
L3-level on-chip memory side. In the same off-chip
memory bank (K) and different row buffers (R1 & R2
respectively) the target addresses of the two miss
memory requests A and B are located. Initially as shown
in Fig. 2 the row R2 of memory bank K is active. If both
A and B requests existing at the on-chip memory side
and request A is first served by the L3-level on-chip
memory controller, it will arrive earlier than request B at
the transaction queue. Without knowing at the same
time by the existence of request B in the L3-level on-
chip memory stage, the memory scheduler precharges
row R2 and activate the row buffer of miss request A.
During miss request B arrives next, the scheduler will
precharge row R1 and then re-activate R2.
Most previous works tackle these two independent
memory controller stages fabrics that lead to unwanted
scenario happen for precharge, activation row buffers at
the off-chip memory controller stage which increase the
latency for multi-core processors while accessing the
main memory for write and read operations [4-8]. Xilinx
proposed a united memory controller using the AXI4-
Lite interface protocol that handles both independent
memory controller stages [10]. However, it can handle
only a single-core processor. The design was proposed

for one core processor with two write and two read
operations to/ from the memory, which means that the
single-core processor write two different 32-bits data to
two different memory locations and after a nanoseconds
of time the single-core processor read the same data.
This scenario of write and read operations leads to more
time to complete the two write and two read operations.
The main contribution of this work is to write and read
operations for single-core processor in a parallel way to
improve the speed up of existing work and then design
a united multi-core memory controller using the AXI4-
Lite interface protocol that improves the speed up
(decrease latency) while multi-core processors
accessing the memory for write and read operations. All
the cores can write/ read to/ from the main memory at
the same time in parallel to improve the speed up of the
entire SoC design.

Fig. 2. Precharge and Activation Operations [9].

III. PROPOSED MODEL

Fig. 3 illustrates the proposed design model of the multi-
core memory controller SoC. Different Intellectual
Property (IP) exists in the design which represents all
components of our multi-core memory controller model.
The first IP is AXI verification (AXI VIP) [11]. It is an IP
core using to initiate a write and read transactions as
single or multi-core processors with different interface
protocol modes such as AXI3, AXI4-Lite, and AXI4. In
this paper, we used this IP core to initiate a write and
read transactions for single and multi-core processors
with AXI4-Lite interface protocol. The second IP is AXI
Block RAM (BRAM) Controller [12]. It is a united
memory controller that receives requests and manages
them for access to the off-chip memory. This memory
controller can also support different interface protocols
such as AXI3, AXI4-Lite, and AXI4. We used four AXI
BRAM Controllers with AXI4 interface to manage
requests from four-core processors. Each core
processor can manage by an independent AXI BRAM
Controller. The third IP is Block Memory Generator [13].
It is an IP core that creates the BRAM which represents
a portion of the off-chip memory which only one
processor can access it. Regardless of the type of the
off-chip memory, we used four BRAMs which represent
four portions of the off-chip memory and each processor
can access its address space (BRAM). The fourth IP is
AXI Interconnect [14]. The AXI Interconnect IP core
allows connects one AXI master or more and one AXI
slave or more, which can be different kinds of interface
protocol, clock domain, and data width. We used this IP
to connect one master (AXI VIP) and multiple slaves
(AXI Memory Controller). Inside the AXI Interconnect IP,
it is available also data buffer in different sizes which are
working as L3-level on-chip memory between one core
processor or multi-core processors and memory
controller. These data buffers accommodate the data
movement between one core processor or multi-core

Noami et al., International Journal on Emerging Technologies 11(3): 468-475(2020) 470

processors and off-chip memory (BRAM). The last IP is
Processor System Reset [15]. We used this IP to reset

the single-core processor or multi-core processors and
other different IPs available in our design.

Fig. 3. Proposed Model.

In this work, the proposed design is implemented in
single and multi-core processors for different modes of
write and read operations as shown in the simulation
results section IV.

A. Write Operation
The single and multiple write operations for single and
multi-core processors using the AXI4-Lite interface
protocol are shown in the flowchart in Fig. 5. The AXI4-
Lite interface has three independent channels for write
operation: write address channel, write data channel,
and write response channel [16]. The flowchart shows
the all three independent channel signals that executes
the write operation of single-core or multi-core
processors in the proper way. At the beginning, if the
clock and reset signals are high, the single-core or
multi-core processors (Master) can start the write
operation when the signals of write address channel
AWVALID and AWREADY are high, which represents
that the write address from the master is valid and the
memory controller (Slave) ready to receive the write
address from the master. The signal AWBURST from
master to salve indicates that the write operation will be
in the burst mode and represented by binary value
2’b01. The variable W indicates the memory address
register. If the register is equal to zero this means that
the write operation will be for the start address,
otherwise, add the digit four (4) to the content of the
register W which indicates the next address. The start
addresses according to our design are C0000000,
C2000000, C4000000, and C6000000 of the four core
processors respectively. The write data operation is
transferred when the write channel signals WVALID and
WREADY are high, which indicates that the data
transmitted from master to slave is valid and the salve is
prepared to receive the data transmitted from the
master. WDATA represents the data transferred from
the master to the slave. The last signal BVALID,
BREADy, and BRESP represents the write response
channel of the write operation. BVALID signal sends
from slave to master that indicates all data are received,
BREADY signals send from master to slave that
indicates the master is ready to receive a response
about the data sent and BRESP signals just indicates
the status of the transaction.

B. Read Operation
The single and multiple read operations for single and
multi-core processors using the AXI4-Lite interface
protocol are shown in the flowchart in Fig. 6.

The flowchart shown that AXI4-Lite interface protocol
has only two independent channels for read operation:
read address data channel [16]. The ARVALID,
ARREADY, ARBURST signals represent the read
address channel, and RVALID and READY signals
represent the read data channel. The read transactions
of the AXI4-Lite interface protocol signal details are the
same write transactions mentioned in the previous
section.

Fig. 4. Vivado Tcl Console Command Massage.

Fig. 5. Flowchart of Single and Multi Write Operations.

 Noami et al., International Journal on Emerging Technologies 11(3): 468-475(2020) 471

Fig. 6. Flowchart of Single and Multi Read Operations.

At the end of read operation as shown in the flowchart in
Fig. 6, the comparison step between the write and read
transactions. If data read is same data write, then the
message “data matched and test succeeded” printed in
the Tcl Console Command. A sample message of the
simulation results of our design is shown in snapshot in
Fig. 4 below. Otherwise, try to read operation again to
match the data write.

IV. SIMULATION RESULTS

Fig. 7 (a) and (b) illustrate the snapshot of the
simulation results of a united memory controller for
single-core processor in various operation modes. Fig. 7
(a) shows the two write and two read operations for
single-core processor [10]. The two write and two read

operations are completed at time 585ns. The
transactions are done in the normal way which the
single-core processor write two different 32–bits data
(abcde000 and abcde001) into two different 32-bits
memory location (C0000000 and C0000004) then after
a nanoseconds of time the single-core processor read
the data. Our proposed model executes the two write
and two read operations in a parallel way which leads to
reduce the transaction time. The two write and two read
operations of our proposed model for single-core
processor completed at time 565ns as shown in Fig. 7
(b). In the Fig. 8 (a) and (b) show the simulation results
of a united memory controller for single-core processor
with three write and three read operations. In the figure
8a, the transactions are done in the normal way which
the single-core processor write three different 32–bits
data (abcde000, abcde001, and abcde002) into three
different 32-bits memory locations (C0000000,
C0000004, and C0000008) then after a nanoseconds of
time the single-core processor read the data.
The three write and three read operations completed at
time 725ns. However, the three write and three read
operations of our proposed model for single-core
processor completed in a parallel way at time 685ns as
shown in Fig. 8 (b). In the other simulation results, we
increased the number of core processors and number of
write and read operations (united memory controller for
multi-core processors) using the same two different
ways mentioned above.
In the Fig. 9 (a) and (b) show the simulation results of a
united memory controller for two-core processors with
two write and two read operations for each core
processor using the same two different ways mentioned
above. In the normal way, the first core processor write
two different 32–bits data (abcde000 and abcde001)
into two different 32-bits memory locations (C0000000
and C0000004) and then after a nanoseconds of time
the first core processor read the data.

Fig. 7 (a) 2 write and 2 read transactions of single core processor [10].

Fig. 7 (b) 2 write and 2 read transactions of single core processor in parallel.

Noami et al., International Journal on Emerging Technologies 11(3): 468-475(2020) 472

Fig. 8 (a) 3 write and 3 read transactions of single-core processor.

Fig. 8 (b) 3 write and 3 read transactions of single-core processor in parallel.

Fig. 9 (a) 2 write and 2 read transactions of two-core processors.

Fig. 9 (b) 2 write and 2 read transactions of two-core processors in parallel.

The second core processor write two different 32–bits
data (abcde003 and abcde004) into two different 32-bits
memory locations (C2000000 and C2000004) then after
a nanoseconds of time the second core processor read
the data. This two write and two read operations
completed at time 1355ns. In a parallel way (our
proposed), the two-core processors can write their two

different 32-bits data (abcde000 and abcde001) for the
first core processor and (abcde003 and abcde004) for
the second core processor into two different 32-bits
memory locations (C0000000 and C0000004) for the
first core processor and (C2000000 and C2000004) for
the second core processor at the same time
respectively. This two write and two read operations

Noami et al., International Journal on Emerging Technologies 11(3): 468-475(2020) 473

completed at time 1295ns. In the Fig.10a and figure 10b
show the simulation results of two-core processors with
three writes and three read operations for each core
processor using the two different ways.
In the normal way, the first core processor write three
different 32–bits data (abcde000, abcde001, and
abcde002) into three different 32-bits memory locations
(C0000000, C0000004, and C0000008) and then after a
nanoseconds of time the first core processor read the
data. The second core processor write three different
32–bits data (abcde003, abcde004 and abcde005) into
three different 32-bits memory locations (C2000000,
C2000004, and C2000008) then after a nanoseconds of
time the second core processor read the data. This
three write and three read operations completed at time
1695ns. In a parallel way (our proposed), the two-core
processors can write their three different 32-bits data
(abcde000, abcde001, and abcde002) for the first core
processor and (abcde003, abcde004, and abcde005) for
the second core processor into three different 32-bits

memory locations (C0000000, C0000004, and
C0000008) for the first core processor and (C2000000,
C2000004, and C2000008) for the second core
processor at the same time respectively. This three
write and three read operations completed at time
1595ns. The other remaining simulation results of a
united memory controller for one/ two/ three/ four-core
processors with two/ three/ four write and two/ three/
four read operations using the two different ways are
directly written into Table 1. It is reported from Table 1
that our proposed model improves the speed up of write
and read operations. In a united memory controller for
single-core processor with two/ three/ four write and
read operations, our model improves the speed up of
write and read operations by 20ns, 40ns, and 60ns
respectively. In two-core processors with two/ three/ four
write and read operations for each core processor, our
model improve the speed up of write and read
operations by 60ns, 100ns, and 140 ns respectively.

Fig. 10 (a) 3 write and 3 read transactions of two-core processors.

Fig. 10 (b) 3 write and 3 read transactions of two-core processors in parallel.

Table 1: Comparison between Number of Core Processors and Number of Transactions.

Core Processor
Transactions

Single-Core
Processor

Two-core
Processors

Three-core
Processors

Four-core
Processors

2 Write & 2 Read [10] (Normal Way) 585 ns 1355 ns 1695 ns 2055 ns

2 Write & 2 Read (Our Model) 565 ns 1295 ns 1595 ns 1895 ns

3 Write & 3 Read (Normal Way) 725 ns 1695 ns 2205 ns 2735 ns

3 Write & 3 Read (Our Model) 685 ns 1595 ns 2045 ns 2495 ns

4 Write & 4 Read (Normal Way) 865 ns 2035 ns 2715 ns 3395 ns

4 Write & 4 Read (Our Model) 805 ns 1895 ns 2495 ns 3095 ns

Noami et al., International Journal on Emerging Technologies 11(3): 468-475(2020) 474

In three-core processors with two/ three/ four write and
read operations for each core processor, our model
improves the speed up of write and read operations by
100ns, 160ns, and 220ns respectively. In four-core
processors with two/ three/ four write and read
operations for each core processor, our model improves
the speed up of write and read operations by 160ns,
240ns, and 300ns respectively.
We observed from the simulation results that the normal
way [10], which execution the write and read operations
leads to increase the latency while the multi-core
processors SoC and write and read operations are
increases. This normal way it seems undesirable for
many multi-core processors SoC applications that need
the speed up to improve the entire performance of the
design.
Also, we observed from the simulation results that the
parallel way, our model, which execution the write and
read operations decrease the latency for write and read
operations of multi-core processors which lead to
improve the speed up of SoC design. This way
desirable for many multi-core processors SoC
applications which need to execute so many write and
read operations at the same time and improve the entire
performance of SoC design.

V. REAL-TIME DESIGN ANALYSIS

Debugging multi-core memory controller is done on
FPGA ZYNQ-7 ZC702 Evaluation Board
(xc7z020clg484-1). At the beginning of the debugging
design on FPGA, we replaced the VIP IP core that
initiated all write and read AXI4-Lite transactions of
single and multi-core processors in the simulation stage
by JTAG-to-AXI IP core [17]. Because VIP IP core is
supporting only simulation stage of the design and VIP
IP core is replaced by wires after synthesis design. The
JTAG-to-AXI IP core initiates the real-time write and
read AXI4-Lite transactions at debugging design stage
on FPGA by using Tcl console command of the Vivado
tool. The Tcl console command of write AXI4-Lite
transaction written in the form such “create_hw_axi_txn
write_txn [get_hw_axis hw_axi_1] -address xxxxxxxx -
data {zzzzzzzz} -type write”. This command indicates
the type of transaction, address then data. For the read
AXI4-Lite transaction, the command written such
“create_hw_axi_txn read_txn [get_hw_axis hw_axi_1] –
address xxxxxxxx -type read”. This command indicates
the type of transaction and the address only. These Tcl
console commands for both write and read transactions
are already supports the INCR type of the burst mode
for only one burst length data transfer with 32 bits width.
Finally, we used also different Tcl console commands to
run the write and read operations on FPGA hardware.
These commands are run_hw_axi [get_hw_axi_txns
write_txn] for write operations and run_hw_axi
[get_hw_axi_txns read_txn] for read operation.

Table 2: FPGA Utilization Summary.

Logic Utilization Available Used
Utilization

Percentage

Slice LUTs 53200 4658 8.75%

Slice Registers 106400 2842 2.67%

Slice 13300 1932 14.5%

LUT as Memory 17400 2851 16.38%

Block RAM Tile 140 14 10%

Bounded IOB 200 2 1%

In the existing model there is no mentioned for the
FPGA device utilization. However all the logics
hardware utilization summary such as lookup tables,
registers, slice, lookup tables as memory, block RAM
and inputs/ outputs of the ZYNQ-7 ZC702 Evaluation
Board (xc7z020clg484-1) of our proposed model are
shown in Table 2.

VI. CONCULSION

In this paper a united multi-core memory controller using
the AXI4-Lite interface protocol is proposed to improve
the SoC speed up. The proposed model is simulated for
one/ two/ three/ four-core processers with two/ three/
four write and read operations for each core processor.
Our design improved the speed up for one/ two/ three/
four-core processors with two/ three/ four write and read
operations. It is shown from simulation results that our
design decreased the access time latency of the write
and read operations of single and multi-core processors.
For one/ two/ three/ four-core processors with two write
and read operations, the latency is decreased by 3.42%,
4.43%, 5.9%, and 7.78% respectively. For two-core
processors with two/ three/ four write and read
operations the latency is decreased by 4.43%, 5.9%,
and 6.94% respectively, etc. The design is implemented
using System Verilog HDL. The simulation and
synthesis are done by using Vivado tool and FPGA
ZYNQ-7 ZC702 Evaluation Board (xc7z020clg484-1)
accordingly.

VII. FUTURE SCOPE

AXI4-Lite interface protocol has a limitation features for
data write and read operations. It is supported only by
fixed 32-bits data transaction size and one data burst
mode for each transaction.

Several SoC design needs interface supports variable
data size and different burst mode such as AXI4 full
memory-mapped interface protocol.

ACKNOWLEDGEMENT

This work has been supported by the Indian Council for
Cultural Relations (ICCR), India.

Conflict of Interest. No.

REFERENCES

[1]. Hussain, T., (2014). A Novel Access Pattern-based
Multi-core Memory Architecture (Doctoral dissertation,
Departament d'Arquitectura de Computadors, universitat
politècnica de catalunya). Retrieved from
https://upcommons.upc.edu/handle/2117/95566.
[2]. Sirhan, N., Serhan, S., (2018). Multi-Core
processors: Concept and Implementations. International
Journal of Computer Science & Information Technology,
10(1): 1-10.
[3]. Tigadi, A., & Guhilot, H. (2018). Design and
Implementation of a DDR2 SDRAM Controller for Audio
Data on a Reconfigurable Platform. International Journal
of Engineering and Manufacturing, 8(5), 32-48.
[4]. Rixner, S., Dally, W., Kapasi, U., Mattson, P., &
Owens, J. (2000). Memory access scheduling. The 27

th

International Symposium on Computer Architecture
(IEEE Cat. No.RS00201), 128-138.
[5]. Kaseridis, D., Stuecheli, J., & John, L. (2011).
Minimalist open-page: A DRAM page-mode scheduling
policy for the many-core era. The 44th Annual

Noami et al., International Journal on Emerging Technologies 11(3): 468-475(2020) 475

IEEE/ACMI International Symposium on
Microarchitecture, 24-35.

[6]. Ausavarungnirun, R., Chang, K., Subramanian, L.,
Loh, G., & Mutlu, O., (2012). Staged memory
scheduling: Achieving high performance and scalability

in heterogeneous systems. The 39th Annual IEEE
International Symposium on Computer Architecture,
416-427.
[7]. Lee, J., & TAP, H. (2012). A TLP-aware cache
management policy for a CPU-GPU heterogeneous
architecture. IEEE International Symposium on High-
Performance Comp Architecture, 1-12.
[8]. Mekkat, V., Holey, A., Yew, P., & Zhai, A. (2013).
Managing shared last-level cache in a heterogeneous
multicore processor. The 22nd International Conference
on Parallel Architectures and Compilation Techniques,
225-234.
[9]. Song, Y., Alavoine, O., & Lin, B. (2018). Row-Buffer
Hit Harvesting in Orchestrated Last-Level Cache and
DRAM Scheduling for Heterogeneous Multicore
Systems. Design, Automation & Test in Europe
Conference & Exhibition (DATE), 779 – 784.
[10]. Confluence, Using the AXI4 VIP as a master to
read and write to a AXI4-Lite slave interface, (2020).
[online]. Available at xilinx-wiki.atlassian.net.
[11]. AMBA AXI Verification IP, LogiCORE IP Product
Guide PG267 (v1.1) (2019). [Online]. Available at
http://www.xilinx.com.

[12]. AMBA AXI BRAM Controller, LogiCORE IP
Product Guide PG078 (v4.1) (2019). [Online]. Available
at http://www.xilinx.com.
[13]. AMBA AXI Block Memory Generator reference
guide PG058 (v8.4) (2019). [Online]. Available at
http://www.xilinx.com.
[14]. AMBA AXI Interconnect, LogiCORE IP Product
Guide PG059 (v2.1) (2019). [Online]. Available at
http://www.xilinx.com.
[15]. AMBA AXI Processor System Reset Module,
LogiCORE IP Product Guide PG164 (v5.0) (2015).
[Online]. Available at http://www.xilinx.com.
[16]. Sainath Chaithanya, A., Sulthana, S., Yamuna, B.
& Haritha, Ch (2020). Design of
AMBA AXI4-Lite for Effective Read/Write Transactions
with a Customized Memory. International Journal on
Emerging Technologies, 11(1), 396–402.
[17]. AMBA JTAG to AXI Master, LogiCORE IP Product
Guide PG174 (v1.2) (2016). [Online]. Available at
http://www.xilinx.com.

How to cite this article: Noami, A., Kumar, B. P. and Chandrasekhar, P. (2020). Design and Implementation of a
United Multi-Core Memory Controller using AXI4-Lite Interface Protocol. International Journal on Emerging
Technologies, 11(3): 468–475.

