Determination of Alumina Content during Aluminum Electrolysis in Cryolite-Alumina Melts

O.Yu. Tkacheva¹, P.A. Arkhipov¹, Yu. P. Zaikov² and A.M. Ivanova³

¹Leading Scientist, Institute of High Temperature Electrochemistry, Yekaterinburg, Russia.
²Scientific Director, Institute of High Temperature Electrochemistry, Yekaterinburg, Russia.
³Head of the Scientific and Technical Center Elter, Krasnoyarsk, Russia.

(Received 03 June 2020, Revised 03 July 2020, Accepted 18 July 2020)

Keywords: Alumina, aluminum electrolysis, cryolite, dissolution, feeding rate, side ledge

I. INTRODUCTION

The processes of mass and heat transfer in industrial aluminum cells have a significant impact on the technological parameters and technical and economic indicators of their operation [1-3]. These processes are determined, first of all, by hydrodynamic flows in cryolite-alumina melt and liquid aluminum. Moreover, the role of hydrodynamic processes increases sharply with an increase in the size and power of reduction cells [4]. Hydrodynamic flows in the melt effect such important mass transfer processes as the dissolution and transport of alumina from the bulk, located between the cell wall and the anode (dissolution zone), to the pole gap (consumption zone); the equalization of the melt constituents concentrations; the formation of the working space in the cell (formation of a side and bottom ledge). Analysis of the experimental data [5] revealed that the interelectrode space can be divided into two regions, differing in the alumina content: near anode - with low alumina concentration and central - with high alumina concentration. The near-anode region corresponds to a zone with the movement of a melt depleted in $\text{Al}_2\text{O}_3$ under the influence of natural convection forces and floating bubbles of anode gas. The central region corresponds to a zone in which the intense mixing of the melt takes place by floating large gas bubbles.

Recently, a fairly large number of works, devoted to the study of the processes of the alumina dissolution and distribution in an electrolytic cell have been published [6-12]. Summarizing the results, the alumina dissolution process can be separated into several stages:

1) the alumina is distributed over the surface of the electrolyte and heats up, which leads to freezing of the electrolyte around the alumina particles. If there is insufficient heat, freezing becomes long, and a dense, insoluble crust forms;
2) when heated, the alumina crystals located in the middle are transformed into $\alpha$-modification, and a sintering of alumina particles occurs;
3) when the frozen formations finally melt, the alumina granules can form agglomerates or lumps, that sink in the electrolyte;
4) the chemical interaction of alumina with molten cryolite begins as soon as the alumina enters the electrolyte bath. In this case, oxyfluorides are formed, diffusing deep into the melt.

The authors [12] determined the main parameters increasing the alumina dissolution rate: the maximum concentration of cryolite ions in the electrolyte, therefore, a tendency towards an increase in the CR; the lowest initial concentration of dissolved alumina in...
to the electrolyte; maximum available electrolyte surface; maximum rate of heat transfer to the liquid surface and maximum mass transfer of products.

In general, researchers agree that the parameters of dissolution and monitoring the alumina concentration in the cell during electrolysis cannot be studied under industrial conditions [13-15].

The authors [13] developed a setup for determining the parameters of the alumina dissolution in cryolite melt using a lab installation, which allowed the alumina concentration to be measured after 2 seconds with an accuracy of 10%. It was possible to load from 0.2 to 0.6 kg of electrolyte into the installation. The first stage of dissolution, as also reported in [5], proceeded very quickly (in 10 s). The remainder of the alumina dissolved much more slowly due to the formation of agglomerates. In this case, the contact surface of the electrolyte with alumina was significantly reduced. And in the second stage, the dissolution rate changed by 8 times, which could not be explained only by mass transfer since the melt was far from saturation.

If the dissolution time is significantly increased, then there is a risk of sludge formation and, consequently, an unfavorable electrolysis mode [5, 16, 17].

The mechanism of the side ledge formation is described in works [18-24]. The authors [18] put forward a “three-zone theory” of the side ledge structure. According to which the zone closest to the cold wall of the cell consists of sodium (mainly) and calcium cryolites, without alumina; the middle zone, the so-called open crystalline layer, includes dendrites, columnar disordered crystals of the same composition as the previous zone, but they are surrounded by a liquid electrolyte with a lower CR than the main electrolyte, close in composition to chiolite, in the same zone it was identified alumina as an individual phase: the third compressed (closed) layer is formed near the solid-liquid interface due to more active mass transfer with the electrolyte. The structure of the zones varies with a change in the heat flow due to the melting or crystallization of the open crystalline layer.

Extensive studies devoted to the mechanism of the formation of solid deposits at the cathode were carried out by researchers [5, 25, 26]. The purpose of work [26] was to determine the effect of the alumina feeding rate and the temperature gradient on the composition of the deposits at the cathode. It is mentioned, that these deposits limit the cathode area, which leads to a decrease in the current flow and an increase in the cell instability. The deposits can be in solid or solid-liquid state. The proportion of alumina in them changes from 20 to 50 wt%. It was concluded that to minimize energy consumption, the electrolysis cell should operate at a lower voltage. But at the same time, the overheating becomes less, the ledge is thicker, and more solid deposits appear on the cathode. Thus, the formation of solid deposits on the cathode is a consequence of two phenomena: dissolution and deposition of alumina, and heat losses on the cathode surface.

Sludge formation as a result of the slow alumina dissolution is undesirable, as it violates the power current lines and lowers the current efficiency. In turn, large changes in the alumina content lead to an increase in the frequency of anode effects.

Thus, the efficient dissolution of alumina is a critical factor in stable aluminum electrolysis. Fast alumina dissolution is achieved if a large mass of alumina is well distributed in the electrolyte and the resulting agglomerates quickly decompose. The anode gas evolution increases the dissolution rate, facilitating the dispersion of the alumina granules as well as the disintegration of agglomerates.

Various technological procedures aimed at improving the rate of alumina dissolution in the electrolyte and its distribution over the bath are widely applied in the aluminum industry. Such techniques include the use of automatic alumina feed, point feeding, reduction of electrolyte volume, etc [27-29].

In order to minimize the problem of dissolution and distribution of alumina in an industrial cell, a complex of technological improvements is required, aimed at adapting the cell by changing the operating parameters (electrolyte composition, alumina feeding strategy, overheating, operating temperature) in accordance with the quality of alumina [29].

The purpose of the work was to determine the alumina content in the electrolyte of conventional composition and the alumina distribution in the cell during aluminum electrolysis under different conditions of the alumina feeding (frequency and amount).

II. MATERIALS AND METHODS

The aluminum electrolysis was carried out in the cryolite electrolyte of the conventional composition, consisting of NaF (57 wt%), AlF$_3$ (49 wt%) and CaF$_2$ (5 wt%), CR 2.7. The electrolyte was prepared from individual salts NaF and AlF$_3$(both supplied by Vekton, RF). The initial alumina content in the electrolyte was 4 wt%. The X-ray phase analysis and particle size analysis of the alumina Al$_2$O$_3$ (Granchnik, RF) revealed that it contained 27.3% α-Al$_2$O$_3$, 60.7% γ-Al$_2$O$_3$, 12.1% η-Al$_2$O$_3$ with an average particle size of 60 μm.

The experimental measurements of the alumina content in cryolite are based on the principle of creating electrolysis conditions that are as close as possible to processes occurring in existing electrolysis cells. For this, a sufficient volume of electrolyte is needed, so that the alumina content in the electrolyte is determined not only by natural convection, but also by forced convection resulting from anode gas evolution during electrolysis.

The electrolysis was carried out in a lab setup, schematically depicted in Fig. 1. A graphite crucible filled with electrolyte and aluminum at the bottom was placed in a protective steel container. The cell was installed using the lifting mechanism in the furnace. A cover with a heat insulator closed the furnace shaft.

The operating parameters of aluminum electrolysis were as follows: current 13,7–14,8 A; electrolyte temperature 980°C; the anode current density 0.75 A/cm$^2$. The aluminum level in the crucible was about 80 mm; the electrolyte mass was about 10 kg; the electrolyte level was 140–160 mm; the interpolear distance was 30 mm, and the electrolysis elapsed time was about 60 h. The mass of each alumina addition (m) to the electrolyte during electrolysis was determined by the equation:

$$m = E \cdot I \cdot t \cdot 1.89$$ (1)

where $E$ is the electrochemical equivalent, $I$ is the current, $t$ is the electrolysis time. The conversion factor of aluminum metal into alumina is 1.89.

**Fig. 1.** Electrolysis cell schematic: 1. current lead to graphite crucible served as a cathode, 2. cover with mounted holes for current leads and tube for alumina adding and sampling, 3. graphite anode, 4. electrolyte, 5. liquid aluminum, 6. fire-clay brick, 7. furnace, 8. lining.

The rate of adding alumina $u(\text{Al}_2\text{O}_3)$ in the electrolyte is determined as:

$$u(\text{Al}_2\text{O}_3) = \frac{\sum m_i}{\Delta t}$$  \hspace{1cm} (2)

where $m_i$ is the mass of alumina added after a certain period of time $\Delta t$.

Measurements of the side ledge thickness, formed during the solidification of the electrolyte for the period of electrolysis, were conducted by the measuring mechanism. It was mounted on a platform with a ruler. The thickness was determined by the difference between the measurement before electrolysis and during electrolysis. The procedure is described in more detail elsewhere [30].

The electrolyte samples were withdrawn during electrolysis in order to determine the alumina content. The oxygen analysis was performed using an ELTRA ON 900 Oxygen Analyzer.

The alumina dissolution rate in the electrolyte was found by comparing the values of the dissolved alumina content, determined in the electrolyte sample, and the loss of alumina consumed in the electrochemical reaction.

**III. RESULTS AND DISCUSSION**

A voltage change during electrolysis is given in Fig. 2. Voltage dips are associated with the current disconnection, during which the thickness of the side ledge was measured and samples of electrolyte was taken for chemical analysis. The mass of the alumina addition calculated according to Faraday’s law, taking into account 50% of current efficiency, was 4.5 g per hour. A frequency of alumina additions to the electrolyte during the entire electrolysis is presented in Fig. 2. The alumina was not added during the first 7 h of electrolysis, while the voltage reached a constant value of 2.2 V. From the 7th to 11th h, the alumina in amount of 4.5 g/h was added; however, the voltage did not reach the technological value of 2.5 B.

**Fig. 2.** The cell voltage, the amount and frequency of alumina additions, and the analyzed alumina content in the electrolyte during electrolysis.

The alumina content in the electrolyte decreased to 3.96% by 19th h. Therefore, the mass of addition was increased to 10 g (at 22 h). However, at 24th hour of the process, the electrolyte temperature decreased, and the voltage fluctuation began. The heat losses were reduced by additional insulation of the furnace with lining material. It helped to stabilize the voltage (at 30th h). Then, with the addition of 10 g/h, the voltage fluctuation stopped. The alumina content in the electrolyte increased from 3.59% to 3.85% and it was 3.81% by the end of the experiment.

The side ledge profile along the crucible height formed during long-term electrolysis is plotted in Fig. 3. The side ledge was not produced during the first 10 h. Analysis of the electrolyte sample withdrawn after 10 h of electrolysis showed that the alumina content remained unchanged (4.09% and 4.08%). This proves that all the alumina supplied in doses of 4.5 g per hour was dissolved and spent on the electrochemical reaction to produce aluminum.

From 12th h, the dose of adding was increased to 10 g/h. At constant temperatures and CR, an almost 2-fold increase in the dose of alumina resulted in the formation of the side ledge. Chemical analysis of the electrolyte on alumina gave 4.26 wt%.

The rate of the alumina addition during the period from 11 to 16 h of electrolysis calculated according to eq. (2) was 10 g/h. It was added 50 g Al$_2$O$_3$. Of these, the consumption of alumina due to electrolysis at an average current of 14.8 A and a current efficiency of 50% amounted to 22.3 g; another 18 g was consumed to increase the alumina content from 4.07 to 4.26%; the remaining 9.7 g (19.4%) of the alumina went into solid precipitate to form a side ledge, the thickness of which increased from 2 to 12 mm. Thus, at the rate of 10 g/h, about 19.4% of the added alumina does not have time to dissolve in the electrolyte. The undissolved alumina, due to convective flows created by active gas evolution at the anode, is transferred to the walls of the cell and settles. By the end of the electrolysis, the formed side ledge is almost unchanged. Therefore, the dissolution rate of alumina is determined only by its soluble part, in other words, all incoming alumina into the melt goes into the active electrochemical form and is spent on the production of aluminum metal.

V. FUTURE SCOPE
The obtained results regarding the alumina content in cryolite melt during aluminum electrolysis can be used for developing criteria for the dissolution and distribution of alumina in an industrial electrolyte, which can be applied as boundary conditions in a predictive mathematical model of the dissolution and distribution of alumina. Based on this model, the optimal alumina feeding system for industrial electrolysis cell will be established.

ACKNOWLEDGEMENT
This work has been financially supported by the Ministry of Education and Science of RF under the federal target program (Agreement EB N075-15-2019-1949, internal No5.604.21.0239, IN RFMEFI60419X0239).

Conflict of Interest. No.

REFERENCES