
Mewada et al., International Journal on Emerging Technologies 11(4): 347-351(2020) 347

International Journal on Emerging Technologies 11(4): 347-351(2020)
ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Distributed Implementation of Efficient Symmetric Key Cryptic Algorithm of AES
Algorithm using Multi Nodes

Shivlal Mewada
1
, Sita Sharan Gautam

2
and Pradeep Sharma

3

1
Department of Physical Sciences, Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya,

Chitrakoot, Satna (Madhya Pradesh) India.
2
Department of Physical Sciences, Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya,

Chitrakoot, Satna (Madhya Pradesh) India.
3
Department of Computer Science, Govt. Holkar [Model, Autonomous] Science College, Indore India.

(Corresponding author: Shivlal Mewada)
(Received 14 May 2020, Revised 23 June 2020, Accepted 02 July 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: In the development of information technology, protecting sensitive information via cryptography
methods is becoming more and more important in daily life. A cryptography method plays a dynamic role in
providing information security against unauthorized users. That is, this technique increases the protection of
the user password from unauthorized users. There are several issues and challenges to implementing and
analyze of AES algorithm. Distributed computing is a promising method to enhance security and increase
the efficiency of the AES algorithm. Distributed computation can be performed using multi-nodes by
distrusting the execution of the algorithm in multiple cores.
The study present a distributed implementation and performance analysis of the AES algorithm using multi-
nodes (Node-1, Node-2, Node-3) to reduce the execution time of the AES algorithm and compare the
distributed exaction time with sequential exaction time of AES. The experiments show that the proposed AES
distributed implementation is significantly better than the AES sequential implementation.

Keywords: Node-1, Node-2, Node-3 AES Algorithm, Cryptography.

I. INTRODUCTION

Information security on database server is very
challenging specially while ensuring individual privacy of
information contents.SKC techniques are applied to
ensure sensitive information over the network [1]. Its
main purpose is to prevent from the intended receiver.
In 2001 replaces the DES or AES. AES can be used for
online applications on variety of digital contents, like
video/audio, and smart cards data. One of the main
advantage of Rijndael algorithm is that it can be used for
both hardware and software implementation. AES
algorithm is a SKC algorithm. AES algorithms has many
performance improvement hints such as memory
requirement and execution time [1-4]. In order to
improvise the execution time of AES algorithm is by
using distributing computing technique. The Distributed
computing environment is a widely-used industry
standard that supports this kind of distributed
computing. Several nodes in isolation are working on a
single problem. In distributed computing, it is divided
into many parts, and allocated to different nodes and
can communicate with each other to achieve the gain.
The main objective of this paper to increase the
efficiency and performance of AES algorithm using
distributed computing. In this paper, we presents a
distributed implementation and performance analysis of
AES algorithm using multi-nodes (Node-1, Node-2,
Node-3) to reduce the execution time of AES algorithm
and compare the distributed exaction time with

sequential exaction time of AES. The experiments show
that the proposed AES distributed implementation is
significantly better than the AES sequential
implementation.
There search paper is categorized as follows, Section I
contains the introduction of AES Algorithm with main
objective of this paper, Section II contain the
background of SKC algorithms of AES, Section III
contain the methodology experimental set up, Section
IV describes results and discussion of this study,
Section V concludes research work with future
directions.

II. AES ALGORITHM

AES algorithm accepts input block sizes 128, 192 and
256 bits uses key size - 128,192 and 256 bits. It
depends on the length of key e.g. 10 iterations for 128
bit key, 12 iterations for 192-bit key and 14 iterations for
256 bit keys. In this algorithm, plain text transformed
into cipher text after passing through the different stages
like- byte substitution, row shift, column and iteration
key [3-9].

Table 1: Key length and number of iteration of AES
[1, 3-9].

Key Lengths (bits) # Iterations = nr

128 bit 10

192 bit 12

256 bit 14

e
t

Mewada et al., International Journal on Emerging Technologies 11(4): 347-351(2020) 348

Fig. 1. AES Encryption and Decryption Process [1, 3-9]

Steps:
Encrypt_block(plain_text [16], cipher_text[16],
array_round_key[R+1])
begin
block[16];
block = plain_text;
AddRoundKey(block, round_key[0]);
fori = 1 to R-1 step 1 to 4 do
step 1: SubBytes(block);
step 2: ShiftRows(block);
step 3: MixColumns(block);
step 4: AddRoundKey(block, round_key[i]);
end for
SubBytes(block);
ShiftRows(block);
AddRoundKey(block , round_key[R]);
cipher_text=block;
end

III. PROPOSED FRAMEWORK FOR DISTRIBUTED
IMPLEMENTATION OF AES

Here, we have applied the distrusted algorithm in order
to enhance the efficiency of AES using different nodes.

A. Steps of Distributed Implementation of AES Algorithm
1. Start by talking the file to be encrypted with
encryption to be used
2. Divide the file into data block of 128 bits. If exact
multipath of 128 bits is not possible and padding i.e.
stuffing of bits is done to make a perfect block of 128
bits
3. Then take the block and select the version of AES to
be used on the basis of which number of process round
will be selected.
4. Then check availability of the processing node in the
distributed environment on the basis if availability
provides the block to the node.
5. Perform the encryption process on the basis of pre-
defined number of round and number of available
computing node.
6. The final integrate the results and store the time
taken by the process.

7. Display the cipher file
and stop.

With the increasing trends of utilizing more number of
cores users are having their information on various
devices as a decentralized information ion set. The
secure exchange of this information and sharing
computational resources can be utilized in the
enciphering and deciphering process. This section
performs encryption and decryption of data files of
different formats of different sizes with fixed keys over a
homogeneous distributed environment. The encryption
and decryption task is realized using Hadoop (Fig. 2)
distributed over a decentralized algorithm is
implemented for effectiveness measurement. The
results of encryption time, decryption time and
Throughput have been depicted in graphical form as
well as the tabular form to enhance the effectiveness.

Fig. 2. Distributed AES file analysis framework using
Hadoop.

B. Experimental Setup
All the sequential and distributed versions have been
measured on different nodes, comprising performance
analysis was run under windows 10 operating system
with 16 GB of RAM available using three different
Processors as following:
— Processor Intel(R) Core(TM) i5, 2 Core(s)
— Processor Intel(R) Core(TM) i5, 4 Core(s)
— Processor Intel(R) Core(TM) i5, 6 Core(s)
— Input Type: Text

Mewada et al., International Journal on Emerging Technologies 11(4): 347-351(2020) 349

— File Sizes: 8KB, 41KB, 72KB, 121KB

IV. IMPLEMENTATION AND PERFORMANCE
ANALYSIS

For analysis of various input files with variable size and
variation in version of encryption and decryption
algorithms has been presented in Fig. 2. As depicted in
figure, the input to AES algorithm is consist of purely
single type of format either in static contents like text,
image etc. The input files are made compatible to AES

encryption/decryption process using preprocessing
stage, whose function is to segment input files in
appropriate block size (128bit,192bit, 256bit) depending
upon the version of AES algorithm. The Hadoop Layer
distributes the task among RasberryPy machines, and
collects the statistics for analysis purpose. Table 2(a-c)
offers 128 bit, 192 bit and 256 bit encryption time on
node-1, node-2, and node-3 for text document file
format. The respective graphical visualization has been
presented in Fig. 3.

Table 2a: Encryption time of variants of AES128 bits with respect to variable file size.

File Size in KB

128 Bit AES Algorithm Encryption Time (Milliseconds)

Node 1 Node 2 Node 3

8 KB 0.2334588 0.189516 0.2380161

41 KB 0.7171316 0.7065535 0.8440381

72 KB 1.1927315 1.1837054 1.4304351

121 KB 1.9399308 1.9229778 2.2948744

Table 2b: Encryption time of variants of AES 192 bits with respect to variable file size data.

File Size in

KB

192 Bit AES Algorithm Encryption Time
(Milliseconds)

Node 1 Node 2 Node 3

8 KB 0.2439327 0.2208806 0.1887451

41 KB 0.9071685 0.8166214 0.7141003

72 KB 1.5502999 1.3646433 1.1994399

121 KB 2.5878904 2.2287128 1.9857228

Table 2c: Encryption time of variants of AES 256 bits with respect to variable file size data.

File Size in KB

256 Bit AES Algorithm Encryption Time
(Milliseconds)

Node 1 Node 2 Node 3

8 KB 0.2464692 0.3165006 0.235964

41 KB 0.9291581 0.9067466 0.8087673

72 KB 1.5949094 1.5300238 1.3519402

121 KB 2.6227136 2.6409323 2.3071556

(a) (b)

(c)

Fig. 3. Encryption time of with respect to variable file size on different no. of nodes.

Mewada et al., International Journal on Emerging Technologies 11(4): 347-351(2020) 350

Table 3a: Decryption time of variants of AES 128 bits with respect to variable file size.

File Size
in KB

128 Bit AES Algorithm Decryption Time
(Milliseconds)

Node 1 Node 2 Node 3

8 KB 0.2131463 0.2031618 0.2499067

41 KB 3.519882 3.7410648 3.602658

72 KB 1.867561 1.8313682 2.0961187

121 KB 2.0914729 2.054452 2.4250307

Table 3b: Decryption time of variants of AES 192 bits with respect to variable file size.

File Size
in KB

192 Bit AES Algorithm Decryption Time
(Milliseconds)

Node 1 Node 2 Node 3

8 KB 0.2523078 0.2487817 0.1979118

41 KB 3.0790217 2.9230473 2.735396

72 KB 2.2045825 1.897535 1.7249304

121 KB 2.6904273 2.4004421 2.0711603

Table 3c: Decryption time of variants of AES 256 bits with respect to variable file size.

File Size
in KB

256 Bit AES Algorithm Decryption Time
(Milliseconds)

Node 1 Node 2 Node 3

8 KB 0.3148548 0.2593651 0.2541463

41 KB 2.8602295 2.8290212 3.015084

72 KB 2.1346345 2.0694675 1.9434674

121 KB 2.602651 2.715495 2.3108432

(a) (b)

(c)

Fig. 4. Decryption time of with respect to variable file size for Text files data on different no. of nodes.

Mewada et al., International Journal on Emerging Technologies 11(4): 347-351(2020) 351

The response of experimentation Table 2(a-c) provides
encryption time on node-1, node-2 and node-3 for
textual document file format. The respective graphical
visualization has been presented in Fig. 3. As
observation is made that with increase in the number of
nodes higher encryption time is recorded. Now the
response of experimentation Table 3(a-c) provides
decryption time on node-1, node-2, and node-3 for
audio document file format. The respective graphical
visualization has been presented in figure.4 that shows
a zig-zag pattern. But in general, there is overall
decrement in decryption time.
The comparison of results obtained during the
experiments is displayed in Table 2(a-c). Table 2(a-c)
illustrates the effects of parameter like execution time,
computing time, size of input text files for encryption
process. Same is depicted for same parameters but for
decryption process in Table 3 (a-c). Experimental
results for execution computing time of variants of 0AES
(128/192/256 bits) on different input plaintext size.
Further observation of distributed implementation for
same input plaintext size using 2 & 3 Node.
Fig. 3(a-c) & 4(a-c) shows graphically execution time for
encryption and decryption process respectively, for
sequential and distributed implementation for encryption
process. One can see the performance improvement in
the distributed implementation, which is not fixed or
constant for all file sizes. However the performance of
distributed implementation for small file is less over
larger file.
Here experiment results of proposed AES algorithms
using 2 and 3 node respectively for distributed
computing has been reduced. So in distributed
technique, the performance of the system has been
increased.
Overall observation: On the basis of the computing
time noted from the above tables, it is observed that
with different variation of AES and multiple node
configurations, approximately 18% enhancement is
observed when 2 nodes with 128 bits AES is used.

V. CONCLUSION

AES systems with distributed algorithms for block cipher
using node-2 with 128 bit takes 18% less time over the
sequential implementation. These experiments
demonstrates the efficiently usage of the multi nodes for

distributed implementation. Thus multi-nodes version
provides an efficient and reliable way to implement AES
cryptography algorithm.

REFERENCES

[1]. M. Nagendra, M. & Chandra Sekhar (2016).
Performance Improvement of Advanced Encryption
Algorithm using Parallel Computation.International
Journal of Software Engineering and Its Applications,
8(2) 287-296.
[2]. Ashok Sharma, Ramjeevan Thakur, Shailesh
Jaloree, “Investigation of Efficient cryptic Algorithm for
cloud storage. Fourth International Conference on
Recent Trends in Communication and Computer
Networks, India, 23-30.
[3]. Dimitrios Zissis, Dimitrios Lekkas (2012).
Addressing cloud computing security issues. Future
Generation Computer Systems, 28, 583–592.
[4]. Vivek Raich, Pradeep Sharma, Shivlal Mewada &
Makhan Kumbhkar (2013). Performance Improvement
of Software as a Service and Platform as a Service in
Cloud Computing Solution. International Journal of
Scientific Research in Computer Science and
Engineering, 1(6), 13-16.
[5]. Mewada, S., Sharma, P. & Gautam, S. S. (2016).
Classification of Efficient Symmetric Key Cryptography
Algorithms. International Journal of Computer Science
and Information Security, 14(2), 105-110.
[6]. Mewada, S., Sharma, P. & Gautam, S. S. (2016).
Exploration of efficient symmetric AES algorithm. IEEE
Symposium on Colossal Data Analysis and Networking
(CDAN), 1-5. DOI: 10.1109/CDAN.2016.7570921
[7]. S. Mewada, P. Sharma and S. S. Gautam (2016).
Exploration of efficient symmetric algorithms. IEEE 3rd
International Conference on Computing for Sustainable
Global Development (INDIACom), New Delhi, India,
663-666.
[8]. S. Mewada, S. S. Gautam, and P. Sharma (2016).
Investigation of Efficient Cryptic Algorithm for Text using
SMCrypter. International Journal of Information Science
and Computing, 3(2), 99-108.
[9]. Mewada, S., Sharma, P. & Gautam, S. S. (2019).
Investigation of Efficient SKC Cryptic Algorithm for
Image Encipherment and Decipherment Using
SMCrypter. International Journal of Computer Sciences
and Engineering, 7(4), 1220-1226.

How to cite this article: Mewada, S., Gautam, S. S.

and Sharma, P. (2020). Distributed Implementation of Efficient

Symmetric Key Cryptic Algorithm of AES Algorithm using Multi Nodes. International Journal on Emerging
Technologies, 11(4): 347–351.

