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ABSTRACT:  In this paper, hybrid projective compound synchronization using disturbance observer based 
adaptive sliding mode control technique has been performed in presence of unknown bounded 
disturbances. The unknown disturbances are estimated using fractional order disturbance observer. 
Numerical simulations have been performed using MATLAB which verify the efficacy of our theoretical 
results. The obtained results have been compared with prior published literature. To design controllers in the 
presence of disturbances is a very challenging task but controllers have been designed successfully and 
results have been compared which show better results. It may have a great application across many areas 
like secure communication, image encryption etc.   
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I. INTRODUCTION 

Chaos Theory is an emerging field of research owing to 
its growing applications in various fields of science and 
engineering. Chaotic systems possessing the unique 
property of showing extreme high sensitivity to initial 
conditions and parameter values are being considered 
suitable in areas of secure communication, image 
encryption, control theory etc. Also since the fractional 
order system of equations are shown to represent real 
life situations more accurately as compared to their 
integer counterpart, therefore fractional calculus is 
turning to be a prime tool for research worldwide. Many 
systems such as electromagnetic waves, viscoelastic 
systems, dielectric polarization are all known to have 
fractional order dynamics. 
Ever since chaos was observed for the first time in 
fractional ordered Lorenz system by Grigorenko & 
Grigorenko, chaos control and synchronization Luo 
(2009), Pecora & Carroll (1990), Zhang et al., (2009) 
[12, 13, 21] of fractional ordered chaotic systems 
became active research areas. Many synchronization 
techniques Khan & Bhat (2016) [7], Singh et al., (2016) 
[16], Khan (2017) [8], Khan et al., (2017) [9], He et al., 
(2018) [5], Dongmo et al., (2018) [3], Das and Yadav 
(2017) [2], Zhang et al., (2017) [22], Wei et al., (2014) 
[19], Khan & Tyagi (2017) [11], Wu et al., (2019) [23], 
Skardal et al., (2017) [24], such as Active Control, 
Parameter Estimation Method, Tracking Control 
Method, Sliding Mode Control Method have been 
developed and applied on fractional ordered chaotic 
systems. Yang et al., (2011) [20], Podlubny (1998) [14], 
Hilfer (2000) [6], Hilfer et al., (2000) [1], Tavassoli et al., 
(2013) [18]. However sliding mode control method 
(Fang and Hou 2016) [4] is supposed to be the best 
because of its high robustness and rapid convergence. 

In this manuscript, disturbance observer based adaptive 
sliding mode hybrid projective compound 
synchronization is studied among modified fractional 
order jerk system in presence of unknown bounded 
disturbances by suitably designing a FODO and using 
sliding mode control technique to achieve the 
synchronization. The disturbance observer here helps 
approximate the unknown disturbances. 
The rest of the article is arranged as: 
Section II begins with preliminaries. Section III gives the 
system description on which numerical simulations have 
been performed. Section IV designs the FODO based 
adaptive sliding mode compound synchronization to 
estimate the disturbances. Section V achieves the 
desired synchronization. Section VI contains the 
numerical simulations and discussions. Section VII 
compares our obtained results with previous literature. 
Section VIII concludes the article. 

II. PRELIMINARIES 

We here state a few preliminaries that will be used 
throughout the paper: 
Definition 1: The Caputo’s derivative of fractional order 
'p' on function f(t) is given by: 

�������� = 1
��� − �� � �����

�� − ������� ���
�

 

where � − 1 < � < �  and ���� = � �����
� �����  is the 

Gamma function. 
Property 1: The Caputo's fractional derivative is zero 
when f(t)=constant. 
Property 2: The Caputo’s fractional derivative satisfies 
the linear property: ��� ��!� + #$�!�% =  ����!� + #��$�!� , where   and # 
are constants. 
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Lemma 1: Suppose Φ ∈ , be a continuously derivable 
function and 0 < . < 1. Then, for any time ! ≥ !� 1
2 ��Φ�!�1 ≤ Φ�!���Φ�!� 
Lemma 2: For the equation  ��3�!� ≤ −#�3�!� + #� 
there exists a constant !� > 0 for which for all !5�!� , ∞� 
satisfies the condition  

‖3�!�‖ ≤ 2#�#�  

where 3�!� is state variable of the system and #� , #� are 
non-negative constants. 
Assumption: The Caputo's derivative of the unknown 
external disturbances are considered to be bounded 
throughout the paper i.e. |��Φ:�!�| ≤ | :| where Φ:�!� 
are unknown external disturbances and  : > 0  are 
positive constants. 

III. SYSTEM DESCRIPTION 

The modified fractional order jerk chaotic system is 
given by: ������!� = ��1 ����1�!� = ��; ����;�!� = −#���� − ��1 − #1��; − �;<��!�=                 (1) 

where #� = 1.5, #1 = 0.35 and �;���!�� is defined by 

�;<��!�= = �
1 �A� − A1��|��� + 1| − |��� − 1|� + A1���           (2) 

where A� = 2.5, A1 = 0.5 
For hybrid projective compound synchronization we 
need one scaling drive system and two base drive 
systems as in (1). The state variables of the master 
systems respectively are ��: , �1: , �;:  for B = 1, 2, 3  and 
initial conditions as �1, 1, 1�, �1.2, 0.6, 0.5�, �1.3, 0.5, 0.4� 
respectively. 
Next we consider the slave system as the modified 

fractional order jerk system in presence of external 

disturbances as: 

������!� = ��1 + sin ! + G� 

����1�!� = ��; + 5 sin 4! + G1              (3) 

����;�!�
= −#���� − ��1 − #1��;
− 1

2 �A� − A1��|��� + 1|
− |��� − 1|� − A1���+ 0.5 sin 5! + G; 

where ��: are the state variables of the system having 

initial condition as �1.4,0.4,0.3� , Φ� = sin ! , Φ1 =
5 sin 4! , Φ; = 0.5 sin 5!  are the disturbances, u� , u1 , u; 

are the controllers to be designed. 

 

 
Fig. 1. Phase portrait of modified fractional-order Jerk 

system in different planes. 

IV. PROBLEM FORMULATION 

We first design a FODO based adaptive sliding m mode 
compound synchronization scheme to achieve the 
desired synchronization between four modified jerk 
system. We design the scheme for a non-linear FODO 
to estimate the unknown bounded disturbances present 
in the slave system. This scheme helps to increase the 
robustness of the system performance. We have 
proposed here a subsidiary variable θ: , B = 1, 2, 3  for 
scheming the non-linear FODO of fractional order. 
Therefore we have: Θ��!� = Φ��!� − K�����!� Θ1�!� = Φ1�!� − K1��1�!�                      (4) Θ;�!� = Φ;�!� − K;��;�!� 
where K� , K1 , K; > 0  are positive constants to be 
determined. Considering Caputo’s derivative of the 
above system and using (3), we get ���Θ��!� = ���Φ��!� − K����1 + Θ� + K����� − K�G� ��1Θ1�!� = ��1Φ1�!� − K1���; + Θ1 + K1��1� − K1G1 ��;Θ;�!� = ��;Φ;�!�−K;�−#���� − ��1 − #1 − ��; −�

1 �A� − A1��|����!� + 1| − |����!� − 1|� −
A1����!� + Θ; + K;��;�!�� − K;G;             (5) 

The estimates of Θ:�!��B = 1, 2, 3� are: ���ΘL��!� = −K�<��1�!� + K�����!�= − K�ΘL��!� − K�G� 

��1ΘL1�!� = −K1���;�!� + K1��1�!�� − K1ΘL1�!� − K1G1 (6) ��;ΘL;�!� = −K;�−#�����!� − ��1�!�− #1��;�!�
− 1

2 �A� − A1��|����!� + 1|
− |����!� − 1|� − A1����!�+ K;��;�!�� − K;ΘL;�!�− K;G; 

where ΘL:�!� is the estimate of Θ: 
From (4) we have: ΦL��!� = ΘL��!� + K�����!� ΦL 1�!� = ΘL1�!� + K1��1�!�                                              (7) ΦL ;�!� = ΘL;�!� + K;��;�!� 
Error of the disturbance estimates can be stated as  ΦM :�!� = Φ: − ΦL : , B = 1,2,3. 
From Eqn. (4), we have ΘM:�!� = Θ:�!� − ΘL:�!� = Φ:�!� − ΦL :�!� = ΦM :�!�         (8) 
Using Eqns. (3) and (8), the Caputo’s fractional 

derivatives in ΘM:�!�, �B = 1, 2, 3� can be written as: ��NΘM��!� = −K�ΘM��!� + ��NΦ��!� ��NΘM1�!� = −K1ΘM1�!� + ��NΦ1�!�              (9) ��NΘM;�!� = −K;ΘM;�!� + ��NΦ;�!� 
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To analyze the convergence of approximation 

disturbance error ΦM :�!�, �B = 1, 2, 3�  we consider the 
Lyapunov function as: 

OPN�!� = �
1 ΦM :1�!� = �

1 ΘM:1�!�, ∀ B = 1, 2, 3         (10) 

Using Lemma 1, the Caputo’s derivative of OPN�!� can 

be written as: ��NOPN�!� < ΘM:�!���NΘM:�!�            (11) 

After substituting (9) in (11), we get the following: 

��NOPN�!� ≤ ΘM:�!� R−K:ΘM:�!� + ��NΦ:�!�S 

≤ −K: RΘM:�!�S1 + ΘM:�!���NΦ:�!�      (12) 

Using Assumption 1 in Eqn. (12), we obtain: 

��NOPN�!� ≤ −K:ΘM:1�!� + 1
2 ΘM:1�!� + 1

2 ζ:1 

≤ − RK: − �
1S ΘM:1�!� + �

1 ζ:1            (13) 

= U�OVN�!� + U� 

where U� = 2K: − 1 and U� = �
1 ζ:1. 

If K: > �
1, then from (13) and Lemma 2, we have the 

following: 

WOPN�!�W ≤ XNY1�Z[��.\�                          (14) 

which implies 

WΦM :�!�W ≤ ] XNYZ[��.\                          (15) 

From Eqn. (15), we have that the disturbance estimation 

error ΦM :�!�  is bounded above. Thus, for the external 

disturbances ΦM :�!�, �B = 1, 2, 3�,  the disturbance 

approximation error |ΦM :�!�| satisfies WΦM :�!�W ≤ ^: , where ^: > 0 is unknown positive constant. In reality, it is very 

difficult to determine the upper bounds WΦM :�!�W  and 

therefore we introduce the estimated value _̂: of ^:�B = 1, 2, 3�.  Thus from the above analysis, the 
disturbance estimated error of the Modified Jerk system 
is bounded using the designed nonlinear FODO. 

V. ADAPTIVE SLIDING MODE HYBRID PROJECTIVE 
COMPOUND SYNCHRONIZATION 

We now define the hybrid projective compound 
synchronization error between identical fractional order 
modified jerk systems in presence of unknown bounded 
disturbance ����!� = ��� − `������1� + �;�� ��1�!� = ��1 − `1��1��11 + �;1�         (16) ��;�!� = ��; − `;��;��1; + �;;� 
Therefore, the error dynamics can be written as: �a����!� = �a��� − `��a�����1� + �;�� − `������a�1� +�a�;�� �a��1�!� =�a��1 − `1�a��1��11 + �;1� − `1��1��a�11 + �a�;1� 
                                                    (17) �a��;�!� = �a��; − `;�a��;��1; + �;;� − `;��;��a�1; +�a�;;� 
Substituting the values of the derivatives we get: 

�a����!� = ��1 + ��11 + �;1��`1��1 − `����� − `���1 

��1� + �;�� + sin ! + G� 

�a��1�!� = ��; + ��1; + �;;��`;��; − `1��1� − `1��; 

��11 + �;1� + 5 sin 4! + G1 

�a��;�!� = −#���� − #�`������1� + �;�� − ��1 +
`1��1��11 + �;1� − #1`;��1; + �;;� −
�
1 �A� − A1��|��� + 1| − |��� − 1|� − A1��� +
#�`;<�����1; + �;;� + ��;��1� + �;��= +
`;<��1��1; + �;;� + ��;��11 + �;1�= +
2#1`;��;��1; + �;;� + �

1 �A� − A1��|��� + 1| −
|��� − 1|���1; + �;;� + `;A1�����1; + �;;� +
�
1 �A� − A1��|�1� + 1| − |�1� − 1| + |�;� + 1| −
|�;� − 1|���; + `;A1��;��1� + �;�� +
0.5 sin 5! + G;                          (18) 

To study the stability of fractional order synchronization 
error dynamical system, chose a linear sliding mode 
surface as  b:�!� = ��:�!�, B = 1,2,3                           (19) 
Taking the fractional derivative of (19), we get �ab:�!� = �a��:�!�, B = 1,2,3                      (20) 
Using the adaptive sliding mode approach, we design 
the controller as: G��!� = −��1 − ��11 + �;1��`1��1 − `�����− `���1��1� + �;�� − c�b�− 3L�sign<b��!�= − ΦL� G1�!� = −��; + ��1; + �;;��`;��; − `1��1� −`1��;��11 + �;1� − c1b1 − 3L1sign<b1�!�= − ΦL 1    (21) G;�!� = #���� + #�`������1� + �;�� + ��1+ `1��1��11 + �;1�+ #1`;��1; + �;;�

+ 1
2 �A� − A1��|��� + 1|

− |��� − 1|� + A1���− #�`;<�����1; + �;;�
+ ��;��1� + �;��=
− `;<��1��1; + �;;�
+ ��;��11 + �;1�=− 2#1`;��;��1; + �;;�
− 1

2 �A� − A1��|��� + 1|
− |��� − 1|���1; + �;;�− `;A1�����1; + �;;�
− 1

2 �A� − A1��|�1� + 1|
− |�1� − 1| + |�;� + 1|− |�;� − 1|���;− `;A1��;��1� + �;�� − c;b;− 3L;sign<b;�!�= − ΦL ; 

where bB$��b� = |e|
e  and c: > 0  are constants. 3L:  is 

estimated value of 3:  �∀ B = 1,2,3� are uptaded by �a3L� = ���|b��!�| − 3L�� �a3L1 = �1<|b1�!�| − 3L1=                        (22) 

�a3L; = �;�|b;�!�| − 3L;� 
where �: > 0, B = 1,2,3  are constants. Substituting the 
controllers we get the error dynamical system as  �a����!� = −c�b� − 3L�sign<b��!�= + Φ� − ΦL� 

�a��1�!� = −c1b1 − 3L1sign<b1�!�= + Φ1 − ΦL 1       (23) 

�a��;�!� = −c;b; − 3L;sign<b;�!�= + Φ; − ΦL ; 

The sliding surface b:�!� is stable and bounded for the 
designed controllers: |b��!�| ≤ f                          (24) 
where B is an unknown constant parameter. 
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Using Eqn. (19) and (24), we get the error system as 
bounded and stable.  ��:�!� ≤ f, B = 1,2,3                             (25) 
We now summarize the above in the form of the 
following theorem: 
Theorem 1: For the hybrid projective compound 
synchronization error system (18) with 0 < `: < 1, if the 
sliding mode surface is designed according to (19) and 
external unknown bounded disturbance is approximated 
by using the scheme non-linear FODO (6) and (7). 
Then, HPCS error is bounded and stable under the 
adaptive sliding mode control scheme as (21) and (22).  
Proof: The Lyapunov function O�!� is selected for the 
convergence of synchronization error ��!� as: 

O�!� = ∑ �
1 b:�!�1;:h� + ∑ �

1 ΦM :�!�1;:h� ∑ �
1 i �

jkN �3L: −;:h�
3:�S1                                                                                          (26) 

 

(a) 

 

(b) 

 
(c) 

Fig. 2. Synchronized trajectories. 

Using property 2 in Eqn. (26), we get �aNO�!� =
�
1 l∑ �aNb:�!�1;:h� +
∑ �aNΦM :�!�1;:h� ∑ �aN i �

jkN �3L: − 3:�m1;:h� m    (27) 

using 3M: = 3L: − 3: and Lemma 1 in Eqn.  (27) can be 
written as  

�aNO�!� ≤ ∑ �
1 b:�!��aNb:�!�;:h� + ∑ �

1 �aNΦM :1�!�;:h� +
∑ �

jkN
;:h� 3M:�aN i �

jkN 3M:m                          (28) 

 

Fig. 3.  Synchronization Error. 

On applying property 2 in the Eqn. (28), we obtain 

�aNO�!� ≤ ∑ b:�!��aNb:�!�;:h� + ∑ �
1 �aNΦM :�!�1;:h� +

∑ �:��;:h� 3M:�aN3M:                                                (29) 
Using (19) and substituting (18) into (29), we obtain 

�aNO�!� ≤ ∑ b:�!�;:h� R−c:b: + ΦM :�!� − 3L:sign<b:�!�=S +
∑ �

1 �aNΦM :1�!�;:h� + ∑ �:��;:h� 3M:�aN3M:       (30) 

 

(a) 

 

(b) 

 

(c) 
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(d) 
Fig. 4. Represents the Synchronized Disturbance 

Observers and its error is represented by (d). 

Applying Property 1 and using 3M: = 3L: − 3: , �B = 1,2,3�, 
we obtain  �aN3M: = �aN3L:                                          (31) 
where 3n is a constant parameter 

Using (22), (30) and (31), we have 

o �:��
;

:h�
3M:�aN3M: = o 3M:

;

:h�
<|b:�!�| − 3L:= 

= o 3M:
;

:h�
|b:�!�| − o 3M:

;

:h�
3L: 

≤ ∑ 3M:;:h� |b:�!�| − �
1 ∑ 3M:1;:h� + �

1 ∑ 3:1;:h�                   (32) 

After substituting (32) into (30), we get 

�aNO�!� ≤ ∑ b:�!�;:h� Rc:b: + ΦM :�!� − 3L:sign<b:�!�=S +
�
1 ∑ �aNΦM :1�!�;:h� + ∑ 3M:;:h� |b:�!�| − �

1 ∑ 3M:1;:h� +
�
1 ∑ 3:1;:h�                                          (33) 

Eqn. (33) can be rewritten as �aNO�!� ≤− ∑ c:b:1�!�;nh� + ∑ |b:�!�|;:h� ΦM : +
∑ 3M:;:h� |b:�!�| − ∑ �

1 3M:1;:h� + �
1 ∑ 3:1;:h� −

∑ 3L:;:h� |b:�!�| + �
1 ∑ �aNΦM :1�!�;:h�  (34) 

Eqn. (34) can be written as follows using WΦM :�!�W < 3: 
and ∑ 3M:;:h� |b:�!�| − ∑ 3L:;:h� |b:�!�| = − ∑ 3:;:h� |b:�!�|. 
�aNO�!� ≤ − ∑ c:b:1�!�;nh� − ∑ �

1 3M:1;:h� + ∑ �
1;:h� 3:1 +

�
1 ∑ �aNΦM :1�!�;:h�                            (35) 

From Eqn. (13) and (35), we have 

�aNO�!�
≤ − o c:b:1�!�

;

:h�
− o 1

2 3M:1;

:h�
+ o 1

2
;

:h�
3:1

+ o − iK: − 1
2m

;

:h�
ΦM :1

+ o 1
2

;

:h�
p:1 

≤ −U1O�!� + U;                                     (36) 

where U1 = min �2c: , 1,2c: − 1�  and U; = ∑ �
1;:h� p:1 +

∑ �
1;:h� 3:1. 

On selecting the value of parameters c: > 0 and K: >0.5, we have the error bounded. Using Lemma 2 in (36), 
we get 

|O�!�| ≤ 2U;U1  

= ∑ rNYsNt[ �∑ uNYsNt[vY                           (37) 

Eqn. (37) implies that 

‖b�!�‖ ≤ ]1<∑ rNYsNt[ �∑ uNYsNt[ =
vY             (38) 

From Eqns. (37) and (38), it is clear that the sliding 
surface b:�!�  and synchronization error �:�!�  are 
bounded as ! → ∞. Thus error dynamical system (18) is 
bounded and stable implying that the synchronization 
between master systems and slave system has been 
achieved. 

VI. NUMERICAL SIMULATIONS AND DISCUSSIONS 

For numerical simulations we have considered 

RΘL��0�, ΘL1�0�, ΘL;�0�S = �. 1, .1, .1�, RKL��0�, KL1�0�, KL;�0�S 

= �. 1, .1, .1� , the designed parameters, �K� , K1 , K;� =
�50,50,50� , ���, �1 , �;� = �. 1, .1, .1�  and �c� , c1, c;� =
�50,50,50� . The disturbance here is taken as Φ� =
sint , Φ1 = 5 sin4!, Φ; = 0.5 sin 5!. 

Fig. 2 shows the synchronized trajectories between 
different state variables. The synchronization errors 
converging to zero are shown in Fig. 3 for initial 
conditions ����, ��1 , ��;� = �3.9,2.6, −0.6�  and Fig. 4 
shows the FODO results for disturbance observer result. 

VII. COMPARISON OF GIVEN SYNCHRONIZATION 
WITH PREVIOUS PUBLISHED LITERATURE 

Here adaptive sliding mode technique has been used to 
achieve the synchronization. When we compare our 
results with the previously published ones, we find that 
our results were much better and achieved 
synchronization error at t = 0.1 sec (approx.). In Khan 
and Trikha (2019) [10] author studies compound 
difference anti-synchronization and achieves the 
synchronization error at t = 5 sec. In Prajapati et al., 
(2018) [15] author studies multi-switching compound 
synchronization error at t = 3 sec. In Sun et al., (2019) 
[17] author studies modifies compound synchronization 
and achieves the synchronization error converge to zero 
at t = 2.5 sec. Hence we may conclude that our 
technique provided much more efficient and better 
results. 

VIII. CONCLUSION 

In this article hybrid projective compound 
synchronization has been achieved among four identical 
fractional order chaotic systems. We have constructed a 
non-linear FODO to estimate the unknown disturbance 
on the identical modified fractional order jerk system. A 
sliding mode control technique has been employed to 
achieve the desired synchronization in presence of 
external unknown bounded disturbance. 
Finally on comparing our results with published 
literature, since our error trajectories synchronize in 
lesser time implying the superiority of our results. 
Our future studies would include applying this 
synchronization technique in area of secure 
communication and image encryption. 
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